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Challenge: Words have different meanings in different contexts.
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Q. How can we automate the process of answering questions 
about two words and their meanings?

A.  word embeddings: real-valued vector representations.

Polysemy



Word2Vec

GloVe
(Global Vectors for Word Representations)

FastText

ELMo
(Embeddings from Language Models)

BERT
(Bidirectional Encoder 

Representations from Transformers)

ERNIE
(Enhanced Language Representation 

with Informative Entities)

static contextualized
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Motivating Example

Observation 1.1 Context, in source code is important and can provide the semantics 
for variable/method names.

Observation 1.2 Keywords (e.g., ‘for’, ‘while’, ‘if’), operators (e.g., ‘+’, ‘-’), and 
separators (e.g., ‘;’) maintain same meaning throughout.



Motivating Example

Observation [Mixed Polysemy] Code tokens exhibit mixed polysemy in which some 
tokens have different meanings depending on different contexts, while 
others maintain the same meaning regardless of context.  



Q. Which of the static or contextualized embeddings fit better 
with the mixed polysemy nature of source code?
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Source Code

public ... }

Code Representation 
Learning (CRL) Models

Downstream Tasks

1. Bug Detection
2. Fault Localization
3. Testing
4. Automated 

Program Repair



(RQ1) Which of the static or contextualized embeddings fit better 
with the mixed polysemy nature of source code? 

What is the degree of contextuality for sequence-based, tree-
based, and graph-based code representation learning models?
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Empirical Evaluation (RQ1)

Dataset
§ Code2Vec, with 10,222 top-ranked GitHub Java projects

§ 1.8M+ unique methods

§ 10 samples, each containing 18K+ methods



Models
§ a sequence of tokens     → Word2Vec, GloVe, FastText, ELMo, BERT, CodeBERT
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Models
§ a sequence of tokens     → Word2Vec, GloVe, FastText, ELMo, BERT, CodeBERT

§ abstract syntax tree     → TreeLSTM, ASTNN, TBCNN, TreeCAPS 

§ program dependence graph → Node2Vec, DeepWalk, Graph2Vec  

Empirical Evaluation (RQ1)
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 IntraSim ↓    SelfSim ↓
     CRL model gives each program unit a vector representation that is distinct from 

    all other vectors in the context.

 IntraSim ↑ SelfSim ↓
      CRL model simply contextualizes the program units by making the     

    representation vectors converge.

Empirical Evaluation (RQ1)



Contextuality Measurement
1. Self-Similarity (SelfSim): The average cosine similarity between a program unit’s 

contextualized representation vectors across all unique contexts.

2. Intra-Similarity (IntraSim): The average cosine similarity between a program unit’s 
vector representation and the average of those vectors for the units in that context.

3. Maximum Explainable Variance (MEV): The proportion of variance in the contextualized 
representations of program unit that can be explained by its first principal component.

Empirical Evaluation (RQ1)



Contextuality Measurement
1. Self-Similarity (SelfSim): The average cosine similarity between a program unit’s 

contextualized representation vectors across all unique contexts.

2. Intra-Similarity (IntraSim): The average cosine similarity between a program unit’s 
vector representation and the average of those vectors for the units in that context.

3. Maximum Explainable Variance (MEV): The proportion of variance in the contextualized 
representations of program unit that can be explained by its first principal component.

 MEV → 0 
      Static embedding is a poor replacement.

Empirical Evaluation (RQ1)



Contextuality Measurement
1. Self-Similarity (SelfSim): The average cosine similarity between a program unit’s 

contextualized representation vectors across all unique contexts.

2. Intra-Similarity (IntraSim): The average cosine similarity between a program unit’s 
vector representation and the average of those vectors for the units in that context.

3. Maximum Explainable Variance (MEV): The proportion of variance in the contextualized 
representations of program unit that can be explained by its first principal component.

 MEV → 0 
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Contextuality Measurement
1. Self-Similarity (SelfSim): The average cosine similarity between a program unit’s 

contextualized representation vectors across all unique contexts.

2. Intra-Similarity (IntraSim): The average cosine similarity between a program unit’s 
vector representation and the average of those vectors for the units in that context.

3. Maximum Explainable Variance (MEV): The proportion of variance in the contextualized 
representations of program unit that can be explained by its first principal component.

4.  Anisotropy: Vector representations are more isotropic when the average cosine 
similarity between uniformly randomly sampled program units is close to 0. 

The more contextualized the vector representations, the more anisotropic they are 
(i.e., the closer that average is to 1).
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Empirical Evaluation (RQ1)

Neither static nor contextualized models produce embeddings 
that fit with the nature of mixed polysemy of source code.



Empirical Evaluation

(RQ1) Which of the static or contextualized embeddings fit better 
with the mixed polysemy nature of source code? 

What is the degree of contextuality for sequence-based, tree-
based, and graph-based code representation learning models?

(RQ2) Impact of Contextuality on Bug Detection
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Higher contextuality, higher performance in Bug Detection



Empirical Evaluation

(RQ1) Which of the static or contextualized embeddings fit better 
with the mixed polysemy nature of source code? 

What is the degree of contextuality for sequence-based, tree-
based, and graph-based code representation learning models?

(RQ2) Impact of Contextuality on Bug Detection

(RQ3) Hybrid Code Representation Learning Model
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Empirical Evaluation (RQ3)

HYCODE achieves better F1-Score and AUC than all other 
baselines, while also saving on the running time.



Future Directions

1. Currently, this study is only limited to Java. It would be 
interesting to see how these results extend to other 
programming languages.

2. HYCODE is still very ad-hoc, and our results are encouraging to 
want to explore more fundamental ways for incorporating the 
static or contextual nature of (sub)-tokens in source code into 
the architecture design and pre-training process itself.

The general idea is to enforce the staticization of keywords, 
separators, and operators; and contextualization of identifiers 
and literals.

3. We are open to discuss ideas and potentially collaborate J



Scan QR code to access the 
replication package, data, and 
supplementary material.

Thank you!
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Insights for Sequence-Based Models
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Insights for Impact of Contextuality on Bug Detection



Insights for Hybrid Code Representation Model


