
Contextuality of Code Representation Learning
Yi Li 1 Shaohua Wang 1 Tien N. Nguyen 2

 1 Department of Informatics, New Jersey Institute of Technology
 2 Computer Science Department, The University of Texas at Dallas

Presenter: Aashish Yadavally 2

https://aashishyadavally.github.io/

Q. How can we automate the process of answering questions
about two words, their meanings, and their relationships?

Q. How can we automate the process of answering questions
about two words, their meanings, and their relationships?

[1] George A. Miller. 1995. WordNet: a lexical database for English. Commun. ACM 38, 11 (Nov. 1995), 39–41. https://doi.org/10.1145/219717.219748

Q. How can we automate the process of answering questions
about two words, their meanings, and their relationships?

[1] George A. Miller. 1995. WordNet: a lexical database for English. Commun. ACM 38, 11 (Nov. 1995), 39–41. https://doi.org/10.1145/219717.219748

“...inspired by psycholinguistic
theories of human lexical memory...”

Q. How can we automate the process of answering questions
about two words, their meanings, and their relationships?

[2] George A. Miller, Nouns in WordNet: A Lexical Inheritance System, International Journal of Lexicography, Volume 3, Issue 4, Winter 1990, Pages 245-264,
https://doi.org/10.1093/ijl/3.4.245

https://doi.org/10.1093/ijl/3.4.245

[2] George A. Miller, Nouns in WordNet: A Lexical Inheritance System, International Journal of Lexicography, Volume 3, Issue 4, Winter 1990, Pages 245-264,
https://doi.org/10.1093/ijl/3.4.245

Q. How can we automate the process of answering questions
about two words, their meanings, and their relationships?

not scalable

https://doi.org/10.1093/ijl/3.4.245

Q. How can we automate the process of answering questions
about two words, their meanings, and their relationships?

A. word embeddings

Q. How can we automate the process of answering questions
about two words, their meanings, and their relationships?

A. word embeddings: real-valued vector representations.

Q. How to generate such word embeddings?

Q. How to generate such word embeddings?

Challenge: Words have different meanings in different contexts.

I geta it

I will go geta a pen

I shall geta to the University at three PM Arrive

Possession

Understanding

I geta it

I will go geta a pen

I shall geta to the University at three PM Arrive

Possession

Understanding

“word senses”

Q. How can we automate the process of answering questions
about two words and their meanings?

A. word embeddings: real-valued vector representations.

Polysemy

Word2Vec

GloVe
(Global Vectors for Word Representations)

FastText

ELMo
(Embeddings from Language Models)

BERT
(Bidirectional Encoder

Representations from Transformers)

ERNIE
(Enhanced Language Representation

with Informative Entities)

static contextualized

I geta it

I will go geta a pen

I shall geta to the University at three PM Arrive

Possession

Understanding

static contextualized

Contextuality of Code Representation Learning

Motivating Example

Motivating Example

Observation 1.1 Context, in source code is important and can provide the semantics
for variable/method names.

Motivating Example

Observation 1.1 Context, in source code is important and can provide the semantics
for variable/method names.

Observation 1.2 Keywords (e.g., ‘for’, ‘while’, ‘if’), operators (e.g., ‘+’, ‘-’), and
separators (e.g., ‘;’) maintain same meaning throughout.

Motivating Example

Observation [Mixed Polysemy] Code tokens exhibit mixed polysemy in which some
tokens have different meanings depending on different contexts, while
others maintain the same meaning regardless of context.

Q. Which of the static or contextualized embeddings fit better
with the mixed polysemy nature of source code?

Contextuality of Code Representation Learning

Source Code

Source Code

...it can be represented as:

§ a sequence of tokens

public ... }

Source Code

...it can be represented as:

§ a sequence of tokens

§ abstract syntax tree

public ... }

Source Code

...it can be represented as:

§ a sequence of tokens

§ abstract syntax tree

§ program dependence graph

public ... }

Source Code

...it can be represented as:

§ a sequence of tokens

§ abstract syntax tree

§ program dependence graph

public ... }

Code Representation
Learning (CRL) Models

Source Code

public ... }

Code Representation
Learning (CRL) Models

Downstream Tasks

1. Bug Detection
2. Fault Localization
3. Testing
4. Automated

Program Repair

(RQ1) Which of the static or contextualized embeddings fit better
with the mixed polysemy nature of source code?

What is the degree of contextuality for sequence-based, tree-
based, and graph-based code representation learning models?

Empirical Evaluation

Empirical Evaluation (RQ1)

Dataset
§ Code2Vec, with 10,222 top-ranked GitHub Java projects

§ 1.8M+ unique methods

§ 10 samples, each containing 18K+ methods

Models
§ a sequence of tokens → Word2Vec, GloVe, FastText, ELMo, BERT, CodeBERT

Empirical Evaluation (RQ1)

Models
§ a sequence of tokens → Word2Vec, GloVe, FastText, ELMo, BERT, CodeBERT

§ abstract syntax tree → TreeLSTM, ASTNN, TBCNN, TreeCAPS

Empirical Evaluation (RQ1)

Models
§ a sequence of tokens → Word2Vec, GloVe, FastText, ELMo, BERT, CodeBERT

§ abstract syntax tree → TreeLSTM, ASTNN, TBCNN, TreeCAPS

§ program dependence graph → Node2Vec, DeepWalk, Graph2Vec

Empirical Evaluation (RQ1)

Contextuality Measurement
1. Self-Similarity (SelfSim): The average cosine similarity between a program unit’s

contextualized representation vectors across all unique contexts.

Empirical Evaluation (RQ1)

Contextuality Measurement
1. Self-Similarity (SelfSim): The average cosine similarity between a program unit’s

contextualized representation vectors across all unique contexts.

2. Intra-Similarity (IntraSim): The average cosine similarity between a program unit’s
vector representation and the average of those vectors for the units in that context.

Empirical Evaluation (RQ1)

Contextuality Measurement
1. Self-Similarity (SelfSim): The average cosine similarity between a program unit’s

contextualized representation vectors across all unique contexts.

2. Intra-Similarity (IntraSim): The average cosine similarity between a program unit’s
vector representation and the average of those vectors for the units in that context.

 IntraSim ↓ SelfSim ↓
 CRL model gives each program unit a vector representation that is distinct from

 all other vectors in the context.

Empirical Evaluation (RQ1)

Contextuality Measurement
1. Self-Similarity (SelfSim): The average cosine similarity between a program unit’s

contextualized representation vectors across all unique contexts.

2. Intra-Similarity (IntraSim): The average cosine similarity between a program unit’s
vector representation and the average of those vectors for the units in that context.

 IntraSim ↓ SelfSim ↓
 CRL model gives each program unit a vector representation that is distinct from

 all other vectors in the context.

 IntraSim ↑ SelfSim ↓
 CRL model simply contextualizes the program units by making the

 representation vectors converge.

Empirical Evaluation (RQ1)

Contextuality Measurement
1. Self-Similarity (SelfSim): The average cosine similarity between a program unit’s

contextualized representation vectors across all unique contexts.

2. Intra-Similarity (IntraSim): The average cosine similarity between a program unit’s
vector representation and the average of those vectors for the units in that context.

3. Maximum Explainable Variance (MEV): The proportion of variance in the contextualized
representations of program unit that can be explained by its first principal component.

Empirical Evaluation (RQ1)

Contextuality Measurement
1. Self-Similarity (SelfSim): The average cosine similarity between a program unit’s

contextualized representation vectors across all unique contexts.

2. Intra-Similarity (IntraSim): The average cosine similarity between a program unit’s
vector representation and the average of those vectors for the units in that context.

3. Maximum Explainable Variance (MEV): The proportion of variance in the contextualized
representations of program unit that can be explained by its first principal component.

 MEV → 0
 Static embedding is a poor replacement.

Empirical Evaluation (RQ1)

Contextuality Measurement
1. Self-Similarity (SelfSim): The average cosine similarity between a program unit’s

contextualized representation vectors across all unique contexts.

2. Intra-Similarity (IntraSim): The average cosine similarity between a program unit’s
vector representation and the average of those vectors for the units in that context.

3. Maximum Explainable Variance (MEV): The proportion of variance in the contextualized
representations of program unit that can be explained by its first principal component.

 MEV → 0
 Static embedding is a poor replacement.

 MEV → 1
 Static embedding is perfect replacement for contextualized representations.

Empirical Evaluation (RQ1)

Contextuality Measurement
1. Self-Similarity (SelfSim): The average cosine similarity between a program unit’s

contextualized representation vectors across all unique contexts.

2. Intra-Similarity (IntraSim): The average cosine similarity between a program unit’s
vector representation and the average of those vectors for the units in that context.

3. Maximum Explainable Variance (MEV): The proportion of variance in the contextualized
representations of program unit that can be explained by its first principal component.

4. Anisotropy: Vector representations are more isotropic when the average cosine
similarity between uniformly randomly sampled program units is close to 0.

The more contextualized the vector representations, the more anisotropic they are
(i.e., the closer that average is to 1).

Empirical Evaluation (RQ1)

Empirical Evaluation (RQ1)

Empirical Evaluation (RQ1)

Empirical Evaluation (RQ1)

Empirical Evaluation (RQ1)

Empirical Evaluation (RQ1)

Empirical Evaluation (RQ1)

Neither static nor contextualized models produce embeddings
that fit with the nature of mixed polysemy of source code.

Empirical Evaluation

(RQ1) Which of the static or contextualized embeddings fit better
with the mixed polysemy nature of source code?

What is the degree of contextuality for sequence-based, tree-
based, and graph-based code representation learning models?

(RQ2) Impact of Contextuality on Bug Detection

Empirical Evaluation (RQ2)

Empirical Evaluation (RQ2)

Empirical Evaluation (RQ2)

Higher contextuality, higher performance in Bug Detection

Empirical Evaluation

(RQ1) Which of the static or contextualized embeddings fit better
with the mixed polysemy nature of source code?

What is the degree of contextuality for sequence-based, tree-
based, and graph-based code representation learning models?

(RQ2) Impact of Contextuality on Bug Detection

(RQ3) Hybrid Code Representation Learning Model

Empirical Evaluation (RQ3)

Empirical Evaluation (RQ3)

Empirical Evaluation (RQ3)

HYCODE achieves better F1-Score and AUC than all other
baselines, while also saving on the running time.

Future Directions

1. Currently, this study is only limited to Java. It would be
interesting to see how these results extend to other
programming languages.

2. HYCODE is still very ad-hoc, and our results are encouraging to
want to explore more fundamental ways for incorporating the
static or contextual nature of (sub)-tokens in source code into
the architecture design and pre-training process itself.

The general idea is to enforce the staticization of keywords,
separators, and operators; and contextualization of identifiers
and literals.

3. We are open to discuss ideas and potentially collaborate J

Scan QR code to access the
replication package, data, and
supplementary material.

Thank you!

Look – Creative Theme 58

EXTRA SLIDES

Insights for Sequence-Based Models

Insights for Tree-Based Models

Insights for Graph-Based Models

Insights for Impact of Contextuality on Bug Detection

Insights for Hybrid Code Representation Model

