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Training Process & Model Design

We focus on identifying “Class-Separation” features
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Value of 0 for subBox.length results in Integer Overflow
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Figure 1. CVE-2020-18899: Denial of Service (DoS) from an Uncontrolled Memory Allocation in Exiv2 0.27

We can observe a data dependency (red) from line 3 to line 6, and a control dependency (blue) from line 6 to line 7.  



Motivating Examples

Figure 1. CVE-2020-18899: Denial of Service (DoS) from an Uncontrolled Memory Allocation in Exiv2 0.27

A model could investigate the data and control flows toward the 
exception/error-handling points to detect a potential vulnerability. 

Observation 1
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Statement d is considered as a post-dominator of 
another statement s if all the paths to the exit point 
of the method starting at s must go through d. 
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Key Ideas

Focused on improving class-separability, we consider the following:

v Exception-Flow Graph (EFG), which helps distinguish the key characteristics in the proper/improper handling 
of exceptions and error cases, a key aspect of vulnerabilities. 

v Post-Dominator Tree (PDT) considers the regular flows, which EFG does not.

v With each node, we associate a Statement Type (i.e., the root of the sub-AST corresponding to the statement) 
which is analogous to the POS-tags in natural language.

v To capture the syntactic structure, we consider the Long Path between two leaf nodes.

v To capture the global context, we consider the caller/callee relations.



Architecture Overview
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Table 1: Comparison with other DL-Based VD Approaches

Overall, DEEPVD relatively improves over the baseline models from 13%– 29.6% in Precision, 
from 15.6%–28.9% in Recall, and from 16.4%–25.8% in F-score. 



Empirical Evaluation

Figure 4. CVE-2019-1563: A vulnerable code example in OpenSSL.
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Figure 4. CVE-2019-1563: A vulnerable code example in OpenSSL.

v Has 186 lines of code after removing 
comments and empty lines.

v PDG with 145 nodes and 477 edges, and 
the CPG with 622 nodes and 1,393 edges.

v In contrast, EFG + PDT has 145 nodes and 
295 edges.
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Table 2: Comparison on different vulnerability types
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Table 2: Comparison on different vulnerability types

Leveraging EFG+PDT particularly also helped with identifying the popular DOS-based 
vulnerabilities, that are majorly identified with improper exception/error-handling.
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Link: https://tinyurl.com/4z56haa3
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