
DEEPVD: Toward Class-Separation Features
for Neural Network Vulnerability

Detection

Shaohua Wang
Department of Informatics

New Jersey Institute of Technology

Aashish Yadavally
Computer Science Department

The University of Texas at Dallas

Wenbo Wang
Department of Informatics

New Jersey Institute of Technology

Yi Li
Department of Informatics

New Jersey Institute of Technology

Tien N. Nguyen
Computer Science Department

The University of Texas at Dallas

Jiyuan Zhang
Computer Science Department

University of Illinois Urbana-Champaign

Background

v Vulnerability detection is the task of analyzing a given code example to predict whether it is vulnerable (i.e.,
possesses vulnerabilities such as Denial of Service, Memory Corruption, etc.), or benign.

Background

v Vulnerability detection is the task of analyzing a given code example to predict whether it is vulnerable (i.e.,
possesses vulnerabilities such as Denial of Service, Memory Corruption, etc.), or benign.

v Recent advances in machine and deep learning has prompted a surge in applying these techniques for
automated vulnerability detection.

Background

v Vulnerability detection is the task of analyzing a given code example to predict whether it is vulnerable (i.e.,
possesses vulnerabilities such as Denial of Service, Memory Corruption, etc.), or benign.

v Recent advances in machine and deep learning has prompted a surge in applying these techniques for
automated vulnerability detection.

v However, Chakraborty et al. [1] reported four key-issues with these approaches:
1. Data Imbalance
2. Data Duplication
3. Inadequate Model Capabilities
4. Learning Irrelevant Features

Background

v Vulnerability detection is the task of analyzing a given code example to predict whether it is vulnerable (i.e.,
possesses vulnerabilities such as Denial of Service, Memory Corruption, etc.), or benign.

v Recent advances in machine and deep learning has prompted a surge in applying these techniques for
automated vulnerability detection.

v However, Chakraborty et al. [1] reported four key-issues with these approaches:
1. Data Imbalance
2. Data Duplication
3. Inadequate Model Capabilities
4. Learning Irrelevant Features

Non-vulnerable code is much more frequent than vulnerable one!

Background

v Vulnerability detection is the task of analyzing a given code example to predict whether it is vulnerable (i.e.,
possesses vulnerabilities such as Denial of Service, Memory Corruption, etc.), or benign.

v Recent advances in machine and deep learning has prompted a surge in applying these techniques for
automated vulnerability detection.

v However, Chakraborty et al. [1] reported four key-issues with these approaches:
1. Data Imbalance
2. Data Duplication
3. Inadequate Model Capabilities
4. Learning Irrelevant Features

Duplication across training/testing splits.

Background

v Vulnerability detection is the task of analyzing a given code example to predict whether it is vulnerable (i.e.,
possesses vulnerabilities such as Denial of Service, Memory Corruption, etc.), or benign.

v Recent advances in machine and deep learning has prompted a surge in applying these techniques for
automated vulnerability detection.

v However, Chakraborty et al. [1] reported four key-issues with these approaches:
1. Data Imbalance
2. Data Duplication
3. Inadequate Model Capabilities
4. Learning Irrelevant Features

Treat code as sequence of tokens and DO NOT consider semantic dependencies..

Background

v Vulnerability detection is the task of analyzing a given code example to predict whether it is vulnerable (i.e.,
possesses vulnerabilities such as Denial of Service, Memory Corruption, etc.), or benign.

v Recent advances in machine and deep learning has prompted a surge in applying these techniques for
automated vulnerability detection.

v However, Chakraborty et al. [1] reported four key-issues with these approaches:
1. Data Imbalance
2. Data Duplication
3. Inadequate Model Capabilities
4. Learning Irrelevant Features

Training Process & Model Design

Background

v Vulnerability detection is the task of analyzing a given code example to predict whether it is vulnerable (i.e.,
possesses vulnerabilities such as Denial of Service, Memory Corruption, etc.), or benign.

v Recent advances in machine and deep learning has prompted a surge in applying these techniques for
automated vulnerability detection.

v However, Chakraborty et al. [1] reported four key-issues with these approaches:
1. Data Imbalance
2. Data Duplication
3. Inadequate Model Capabilities
4. Learning Irrelevant Features

Training Process & Model Design

We focus on identifying “Class-Separation” features

Motivating Examples

Figure 1. CVE-2020-18899: Denial of Service (DoS) from an Uncontrolled Memory Allocation in Exiv2 0.27

Motivating Examples

Figure 1. CVE-2020-18899: Denial of Service (DoS) from an Uncontrolled Memory Allocation in Exiv2 0.27

Value of 0 for subBox.length results in Integer Overflow

Motivating Examples

Figure 1. CVE-2020-18899: Denial of Service (DoS) from an Uncontrolled Memory Allocation in Exiv2 0.27

We can observe a data dependency (red) from line 3 to line 6, and a control dependency (blue) from line 6 to line 7.

Motivating Examples

Figure 1. CVE-2020-18899: Denial of Service (DoS) from an Uncontrolled Memory Allocation in Exiv2 0.27

A model could investigate the data and control flows toward the
exception/error-handling points to detect a potential vulnerability.

Observation 1

Motivating Examples

Figure 2. CVE-2020-19155: Improper Access Control in Jfinal

Motivating Examples

Figure 2. CVE-2020-19155: Improper Access Control in Jfinal

Key Ideas

Focused on improving class-separability, we consider the following:

v Exception-Flow Graph (EFG), which helps distinguish the key characteristics in the proper/improper handling
of exceptions and error cases, a key aspect of vulnerabilities.

Key Ideas

Focused on improving class-separability, we consider the following:

v Exception-Flow Graph (EFG), which helps distinguish the key characteristics in the proper/improper handling
of exceptions and error cases, a key aspect of vulnerabilities.

v Post-Dominator Tree (PDT) considers the regular flows, which EFG does not.

Key Ideas

Focused on improving class-separability, we consider the following:

v Exception-Flow Graph (EFG), which helps distinguish the key characteristics in the proper/improper handling
of exceptions and error cases, a key aspect of vulnerabilities.

v Post-Dominator Tree (PDT) considers the regular flows, which EFG does not.

Figure 3. Exception-Flow Graph (EFG) and Post-Dominator Tree (PDT) for vulnerable code example (left).

Key Ideas

Focused on improving class-separability, we consider the following:

v Exception-Flow Graph (EFG), which helps distinguish the key characteristics in the proper/improper handling
of exceptions and error cases, a key aspect of vulnerabilities.

v Post-Dominator Tree (PDT) considers the regular flows, which EFG does not.

Figure 3. Exception-Flow Graph (EFG) and Post-Dominator Tree (PDT) for vulnerable code example (left).

Statement d is considered as a post-dominator of
another statement s if all the paths to the exit point
of the method starting at s must go through d.

Key Ideas

Focused on improving class-separability, we consider the following:

v Exception-Flow Graph (EFG), which helps distinguish the key characteristics in the proper/improper handling
of exceptions and error cases, a key aspect of vulnerabilities.

v Post-Dominator Tree (PDT) considers the regular flows, which EFG does not.

Figure 3. Exception-Flow Graph (EFG) and Post-Dominator Tree (PDT) for vulnerable code example (left).

Key Ideas

Focused on improving class-separability, we consider the following:

v Exception-Flow Graph (EFG), which helps distinguish the key characteristics in the proper/improper handling
of exceptions and error cases, a key aspect of vulnerabilities.

v Post-Dominator Tree (PDT) considers the regular flows, which EFG does not.

v With each node, we associate a Statement Type (i.e., the root of the sub-AST corresponding to the statement)
which is analogous to the POS-tags in natural language.

Key Ideas

Focused on improving class-separability, we consider the following:

v Exception-Flow Graph (EFG), which helps distinguish the key characteristics in the proper/improper handling
of exceptions and error cases, a key aspect of vulnerabilities.

v Post-Dominator Tree (PDT) considers the regular flows, which EFG does not.

v With each node, we associate a Statement Type (i.e., the root of the sub-AST corresponding to the statement)
which is analogous to the POS-tags in natural language.

v To capture the syntactic structure, we consider the Long Path between two leaf nodes.

Key Ideas

Focused on improving class-separability, we consider the following:

v Exception-Flow Graph (EFG), which helps distinguish the key characteristics in the proper/improper handling
of exceptions and error cases, a key aspect of vulnerabilities.

v Post-Dominator Tree (PDT) considers the regular flows, which EFG does not.

v With each node, we associate a Statement Type (i.e., the root of the sub-AST corresponding to the statement)
which is analogous to the POS-tags in natural language.

v To capture the syntactic structure, we consider the Long Path between two leaf nodes.

v To capture the global context, we consider the caller/callee relations.

Architecture Overview

Empirical Evaluation

Table 1: Comparison with other DL-Based VD Approaches

Empirical Evaluation

Table 1: Comparison with other DL-Based VD Approaches

Overall, DEEPVD relatively improves over the baseline models from 13%– 29.6% in Precision,
from 15.6%–28.9% in Recall, and from 16.4%–25.8% in F-score.

Empirical Evaluation

Figure 4. CVE-2019-1563: A vulnerable code example in OpenSSL.

Empirical Evaluation

Figure 4. CVE-2019-1563: A vulnerable code example in OpenSSL.

v Has 186 lines of code after removing
comments and empty lines.

v PDG with 145 nodes and 477 edges, and
the CPG with 622 nodes and 1,393 edges.

v In contrast, EFG + PDT has 145 nodes and
295 edges.

Empirical Evaluation

Table 2: Comparison on different vulnerability types

Empirical Evaluation

Table 2: Comparison on different vulnerability types

Leveraging EFG+PDT particularly also helped with identifying the popular DOS-based
vulnerabilities, that are majorly identified with improper exception/error-handling.

Conclusion

Conclusion

Conclusion

Conclusion

Conclusion

Link: https://tinyurl.com/4z56haa3

Look – Creative Theme 36

EXTRA SLIDES

