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abstract syntax trees (ASTs), control-flow and program dependence graphs (CFGs & PDGs), etc. 

v In contrast, analyzing code fragments from online forums is difficult as they are often incomplete, unparseable, 
contain declaration/reference ambiguity, and are interspersed between user comments. 

Let us call this partial program dependence analysis.
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v Some existing approaches build CFG/PDGs for partial code via manual intervention (e.g., by wrapping around 
method signature) in a best-effort manner, often at the cost of several misses.

In the above code listing, due to the unknown data type string on line 2 and API element transform on 
lines 3 and 4, traditional program analysis tools ignore all CFG/PDG edges to/from these statements. However, 
this listing is vulnerable on line 3, automated detection of which is not possible due to the missing edges.



Motivating Examples

Illustration 1: Incomplete S/O code snippet 
to execute a command within a C++ program, 
that is prone to OS Command Injection.

Partial program dependence analysis is desirable for 
the software engineering tasks in which completely 
analyzable code is not available.

Observation 1



Motivating Examples

Illustration 1: Incomplete S/O code snippet 
to execute a command within a C++ program, 
that is prone to OS Command Injection.

Illustration 2: Complete code example with the same 
POSIX elements as in Illustration 1. Here, similar 
statement blocks are highlighted with same color.

Partial program dependence analysis is desirable for 
the software engineering tasks in which completely 
analyzable code is not available.

Inter-statement dependence analysis of partial code 
can be derived from the patterns learned from such 
analyses of entire programs in existing code corpora.

Observation 1

Observation 2



Key Ideas

v PDGs are repetitive!

Nguyen et al. [1] reported that among 17.5M PDGs with 1.6B PDG subgraphs, 14.3% of the 
PDGs have all of their subgraphs repeated across different projects. Furthermore, in 15.6% of 
the PDGs, at least 90% of their subgraphs are likely to have appeared before in other projects. 

[1] Anh Tuan Nguyen, Hoan Anh Nguyen, and Tien N. Nguyen. 2016. A large-scale study on repetitiveness, containment, and composability of routines in open-source projects. 
In Proceedings of the 13th International Conference on Mining Software Repositories (MSR '16). Association for Computing Machinery, New York, NY, USA, 362–373. 
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General Overview

Code Snippet 

Training Process

v From complete code corpora, build CFG/PDGs to utilize as 
ground-truth.

v Train a model to predict the presence of a CFG/PDG edge 
between two statements in a specific code context.

Inference

v Given partial/complete code snippet, predict the presence 
of a CFG/PDG edge between each statement pair.

v Combination of all such CFG/PDG edges can be realized as a 
CFG/PDG of the code snippet.



NEURALPDA: Neural Network-Based Program Dependence Analysis



NEURALPDA: Neural Network-Based Program Dependence Analysis

Helps relay the syntactic and semantic relationships between the 
tokens in a statement to other statements in the code snippet.



NEURALPDA: Neural Network-Based Program Dependence Analysis

The goal of this component is to learn latent representations for each 
statement that model the inter-statement dependencies.



NEURALPDA: Neural Network-Based Program Dependence Analysis

The combination of all the CFG/PDG edges extracted via such an arc-
factored approach is realized as the CFG/PDG for the given program.
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PDG from NEURALPDA

PDG from Program Analysis tool

The PDGs predicted by NEURALPDA approximates the performance of those generated by 
program analysis tools for vulnerability detection on complete code by 98.98% .

For the vulnerability detection task on partial code, the PDGs predicted by NEURALPDA 
helps an automated tool discover 14 real-world vulnerable code fragments.



Empirical Evaluation (Qualitative)

Table 3: Performance of NEURALPDA on different types of CFG/PDG edges for Java (left) and C/C++ (right) code.



Building CFG/PDG with NEURALPDA: An Illustration

Figure 1: Java code listing (left) and its corresponding CFG/PDG (right) predicted by NEURALPDA



27

Key Takeaways

v NEURALPDA is the first neural network tool to predict program dependencies in complete as well as partial 
programs, which are accurate as well as 380× faster to generate.

v This work leads to a direction for improving program analysis (PA) for partial programs by combining 
pattern learning-based approaches with top-down PA techniques.
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NEURALPDA: Neural Network-Based Program Dependence Analysis

Helps relay the syntactic and semantic relationships between the 
tokens in a statement to other statements in the code snippet.

The combination of all the CFG/PDG edges extracted via such an arc-
factored approach is realized as the CFG/PDG for the given program.

The goal of this component is to learn latent representations for each 
statement that model the inter-statement dependencies.



Building CFG/PDG with NEURALPDA: An Illustration

Figure 1: Partial Java code listing (left) and its corresponding CFG/PDG (right) predicted by NEURALPDA



Empirical Evaluation

Table 1: Performance of NEURALPDA on complete code 
from Java and C/C++   (Intrinsic Evaluation) Table 2: Performance of NEURALPDA on partial code from 

Java and C/C++   (Intrinsic Evaluation)

The PDGs predicted by NEURALPDA approximates the performance of those generated by program 
analysis tools for vulnerability detection on complete code by 98.98%   (Extrinsic Evaluation)

For the vulnerability detection task on partial code, the PDGs predicted by NEURALPDA helps an 
automated tool discover 14 real-world vulnerable code fragments   (Extrinsic Evaluation)
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Conclusion

All code, data, and 
supplementary 
material are available 
through this QR code.

v NEURALPDA is the first neural network tool to predict program dependencies in complete as well as partial 
programs, which are accurate as well as 380× faster to generate.

v This work leads to a direction for improving program analysis (PA) for partial programs by combining 
pattern learning-based approaches with top-down PA techniques.


