ﬁl— THE UNIVERSITY OF TEXAS AT DALLAS

(Partial) Program Dependence

L '
Aashish Yadavally and Tien N. Nguyen Wenbo Wang and Shaohua Wang
Computer Science Department Department of Informatics

The University of Texas at Dallas New Jersey Institute of Technology

Background

** Given complete program units, one can utilize different tools to help build program representations such as
abstract syntax trees (ASTs)

‘ while ‘

‘ compare
op: >

variable constant
name: b value: 0

branch ‘

Background

** Given complete program units, one can utilize different tools to help build program representations such as
abstract syntax trees (ASTs), control-flow and program dependence graphs (CFGs & PDGs), etc.

‘ char dataBuffer[100];

. * dataBuffer
‘ while ‘ data = dataBuffer;

data

data = badSource(data);

m[sm =m
data
\\ / }j‘,st

‘ branch ‘ ’ strncat(dest, data, strlen(data));
- data

‘ compare
op: >

variable constant
name: b value: 0

dest

’ dest[50-1]1="0";

printLine(data);

Background

** Given complete program units, one can utilize different tools to help build program representations such as
abstract syntax trees (ASTs), control-flow and program dependence graphs (CFGs & PDGs), etc.

‘ char dataBuffer[100];

* dataBuffer

data = dataBuffer;
data

data = badSource(data);

m[SO] ="
data
\\ / }j‘,st

’ strncat(dest, data, strlen(data));

data dest

’ dest[50-1]1="0";

printLine(data);

** In contrast, analyzing code fragments from online forums is difficult as they are often incomplete, unparseable,
contain declaration/reference ambiguity, and are interspersed between user comments.

Let us call this partial program dependence analysis.

Why is this useful?

An Empirical Study of C++ Vulnerabilities in
Crowd-Sourced Code Examples

Morteza Verdi, Ashkan Sami, Jafar Akhondali, Foutse Khomh, Gias Uddin, and Alireza Karami Motlagh

Abstract—Software developers share programming solutions in Q&A sites like Stack Overflow, Stack Exchange, Android forum, and
so on. The reuse of crowd-sourced code snippets can facilitate rapid prototyping. However, recent research shows that the shared
code snippets may be of low quality and can even contain vulnerabilities. This paper aims to understand the nature and the
prevalence of security vulnerabilities in crowd-sourced code examples. To achieve this goal, we investigate security vulnerabilities in
the C++ code snippets shared on Stack Overflow over a period of 10 years. In collaborative sessions involving multiple human coders,
we manually assessed each code snippet for security vulnerabilities following CWE (Common Weakness Enumeration) guidelines.
From the 72,483 reviewed code snippets used in at least one project hosted on GitHub, we found a total of 99 vulnerable code
snippets categorized into 31 types. Many of the investigated code snippets are still not corrected on Stack Overflow. The 99
vulnerable code snippets found in Stack Overflow were reused in a total of 2859 GitHub projects. To help improve the quality of code
snippets shared on Stack Overflow, we developed a browser extension that allows Stack Overflow users to be notified for
vulnerabilities in code snippets when they see them on the platform.

Index Terms—Stack Overflow, Software Security, C++, SOTorrent, Vulnerability Migration, GitHub, Vulnerability Evolution

Why is this useful?

** Some existing approaches build CFG/PDGs for partial code via manual intervention (e.g., by wrapping around
method signature) in a best-effort manner, often at the cost of several misses.

Why is this useful?

+* Some existing approaches build CFG/PDGs for partial code via manual intervention (e.g., by wrapping around
method signature) in a best-effort manner, often at the cost of several misses.

1 string subTag(string s, string a, string b) {

2 std::string lower_s;

3 std::transform(s.begin(), s.end(), lower_s.begin(),
tolower) ;

4 std::transform(a.begin(), a.end(), a.begin(), ::tolower);

5 auto position = lower_s.find(a);

6

In the above code listing, due to the unknown data type string on line 2 and APl element transformon
lines 3 and 4, traditional program analysis tools ignore all CFG/PDG edges to/from these statements. However,

this listing is vulnerable on line 3, automated detection of which is not possible due to the missing edges.

Motivating Examples

. 1 i 1 PR ;

Observat'on 1 2 {i;d(! pj;ZfeieiE:‘:F'I'glER;Oi'?e](popen(cmd e]

3 [char butffer[128];]
5 o : 4 |std :: string result = "";

Partial program o{epen.dence an_alys:s_/s desirable for . [wme e T]

the software engineering tasks in which completely ¢ it foets (puffer , 126, pipe.get()) != NULL)
; [result += buffer; |

}

analyzable code is not available.

lllustration 1: Incomplete S/O code snippet
to execute a command within a C++ program,
that is prone to OS Command Injection.

Motivating Examples

Observation 1

Partial program dependence analysis is desirable for
the software engineering tasks in which completely
analyzable code is not available.

1 #include <cstdio>
2 #include <iostream>
3 #include <memory>
4 #include <stdexcept>
5 #include <string>
6 #include <array>
7
8 std::string exec(const char* cmd) {
9 [std::array<char, 128> bufferj
10 std::string result;
11 std::unique ptr<FILE, decltype (&pclose)> pipe (popen (cmd,
[W2y pclose)J
12 if (!pipe) {
13 throw std::runtime error ("popen () failed!");}
14 }
15 [while (fgets (buffer.data(), buffer.size()q
pipe.get ()) != nullptr) {
16 [result += buffer.data()ﬂ
17 }
18 return result;
19 }
lllustration 2: Complete code example with the same
POSIX elements as in lllustration 1. Here, similar
statement blocks are highlighted with same color.

1 [std :: shared ptr<FILE> pipe (popen (cmd,"zr"), pclose)ﬂ
2 [if (! pipe) return ”ERROR";]

3 (char buffer([128];

4 Ltd :: string result = "",]

5 (while (! feof (pipe.get())) {

6 [if (fgets (buffer , 128, pipe.get()) !'= NULL)

7 [result += buffer; |

8

lllustration 1: Incomplete S/O code snippet
to execute a command within a C++ program,
that is prone to OS Command Injection.

Observation 2

(Inter-statement dependence analysis of partial code

can be derived from the patterns learned from such
analyses of entire programs in existing code corpora.

Key Ideas

s PDGs are repetitive!

Nguyen et al. [1] reported that among 17.5M PDGs with 1.6B PDG subgraphs, 14.3% of the
PDGs have all of their subgraphs repeated across different projects. Furthermore, in 15.6% of
the PDGs, at least 90% of their subgraphs are likely to have appeared before in other projects.

[1] Anh Tuan Nguyen, Hoan Anh Nguyen, and Tien N. Nguyen. 2016. A large-scale study on repetitiveness, containment, and composability of routines in open-source projects.
In Proceedings of the 13th International Conference on Mining Software Repositories (MSR '16). Association for Computing Machinery, New York, NY, USA, 362-373.

Key Ideas

s PDGs are repetitive!
+* We can leverage a pattern learning-based approach to partial program dependence analysis.

[1] Anh Tuan Nguyen, Hoan Anh Nguyen, and Tien N. Nguyen. 2016. A large-scale study on repetitiveness, containment, and composability of routines in open-source projects.
In Proceedings of the 13th International Conference on Mining Software Repositories (MSR '16). Association for Computing Machinery, New York, NY, USA, 362-373.

Key Ideas

s PDGs are repetitive!
+* We can leverage a pattern learning-based approach to partial program dependence analysis.
¢ |s this even possible?

[1] Anh Tuan Nguyen, Hoan Anh Nguyen, and Tien N. Nguyen. 2016. A large-scale study on repetitiveness, containment, and composability of routines in open-source projects.
In Proceedings of the 13th International Conference on Mining Software Repositories (MSR '16). Association for Computing Machinery, New York, NY, USA, 362—373.

** PDGs are !
** We can leverage a pattern learning-based approach to partial program dependence analysis.
¢ Is this even possible?

root

@ nmod

mod
Y

I prefer the morning flight through Denver

[1] Anh Tuan Nguyen, Hoan Anh Nguyen, and Tien N. Nguyen. 2016. A large-scale study on repetitiveness, containment, and composability of routines in open-source projects.
In Proceedings of the 13th International Conference on Mining Software Repositories (MSR '16). Association for Computing Machinery, New York, NY, USA, 362—373.

General Overview

1
3
4
6
7
8
9

private boolean isValidUntil (Until annotation) {

}

if (annotation != null) {

double annotationVersion = annotation.value();

if (annotationVersion <= version) {
return false;

return true;

Training Process

% From complete code corpora, build CFG/PDGs to utilize as
ground-truth.

% Train a model to predict the presence of a CFG/PDG edge

between two statements in a specific code context.

Code Snippet

Inference

% Given partial/complete code snippet, predict the presence
of a CFG/PDG edge between each statement pair.

+» Combination of all such CFG/PDG edges can be realized as a

CFG/PDG of the code snippet.

NEURALPDA: Neural Network-Based Program Dependence Analysis

Intra-Statement Inter-Statement Pairwise Dependence
Context Learning Context Learning Decoding

Ny :
—» True :

Self-Attention :
—> True

A

—>False :

NEURALPDA: Neural Network-Based Program Dependence Analysis

Helps relay the syntactic and semantic relationships between the
tokens in a statement to other statements in the code snippet.

Intra-Statement Inter-Statement Pairwise Dependence

Context Learning Context Learning Decoding
% Ny
: ~{ocee) ¢

Ny g A AR N 2 o

: » Add & Norm 7%“37'(. Irue
. . FG
. Feed

Self-Attention A > -

| ! > True

. [2 > ! MLPPDG rue
@ » Add & Norm >
: . Y
. Multi-Head 5
: False
. Attention A MLPCFG False
: A A A
. >{ecee) | >

NEURALPDA: Neural Network-Based Program Dependence Analysis

Inter-Statement
Context Learning

.............................

~> Add & Norm |

Feed
Forward

- ®! A > »

> ' E) MLI)PDG >
" : ~ Add & Norm 50000
: ; : —‘—>|: |

Multi-Head :)
: Attention : a MLP ..
- A .

> . .

5

The goal of this component is to /learn latent representations for each
statement that model the inter-statement dependencies.

NEURALPDA: Neural Network-Based Program Dependence Analysis

The combination of all the CFG/PDG edges extracted via such an arc-
factored approach is realized as the CFG/PDG for the given program.

Pairwise Dependence
Decoding

........................

Ny

> > :
» .
—> True
> >
\ A
: > »> . ' q —>True :
A A A
| > > ——
—>False :

.........................

Empirical Evaluation (Intrinsic)

P/L Graph | Accuracy | Precision | Recall | F1-Score
Java CFG 99.79 98.31 98.58 08.44
PDG 08.87 89.89 87.53 88.70
Overall 99.33 94.75 93.83 94.29
CFG 99.50 96.76 96.56 96.66
C/C++ PDG 98.55 83.55 90.01 86.66
Overall 99.02 91.10 93.87 92.46

Table 1: Performance of NEURALPDA on complete code
from Java and C/C++ (Intrinsic Evaluation)

P/L | Graph | Accuracy | Precision | Recall | F1-Score F1-Score (in %)
Java | CFG 99.79 0831 | 9858 | 98.44 ¥ Java CIC++
PDG 08.87 80.89 87.53 88.70 CFG PDG Overall CFG PDG Overall
Overall 09.33 94.75 03.83 94.29 3] 99.70 | 93.24 G717 98.39 | 91.10 96.01
4 9941 92.51 96.61 98.33 90.18 95.28
CrG 99.50 96.76 96.56 | 96.66 519926 | 91.23 | 9596 | 97.91 | 89.10 | 94.37
C/C++ | PDG 98.55 83.55 | 90.01 86.66 6 | 99.04 | 9036 | 95.40 | 97.14 | 87.91 | 9331
Overall |~ 99.02 91.10 | 93.87 | 92.46 7 | 9875 | 8945 | 9482 | 9669 | 86.45 | 92.39
Table 1: Performance of NeuraLPDA on code A 242D 96.06 | 86.66 92.46
from Java and C/C++ (Intrinsic Evaluation) Table 2: Performance of NEURALPDA on code from

Java and C/C++ (Intrinsic Evaluation)

Empirical Evaluation (Extrinsic)

PDG from NEURALPDA ﬁ

0 < VD{PDG"} < VD{PDG"}

PDG from Program Analysis tool

Empirical Evaluation (Extrinsic)

PDG from NEURALPDA ﬁ

0 < VD{PDG"} < VD{PDG"}

PDG from Program Analysis tool

The PDGs predicted by NEURALPDA approximates the performance of those generated by
program analysis tools for vulnerability detection on complete code by 98.98% .

Empirical Evaluation (Extrinsic)

PDG from NEURALPDA ﬁ

0 < VD{PDG"} < VD{PDG"}

PDG from Program Analysis tool

The PDGs predicted by NEURALPDA approximates the performance of those generated by
program analysis tools for vulnerability detection on complete code by 98.98% .

For the vulnerability detection task on partial code, the PDGs predicted by NEURALPDA
helps an automated tool discover 14 real-world vulnerable code fragments.

Table 3: Performance of NEURALPDA on for Java (left) and C/C++ (right) code.

Graph Edge Type % C Graph Edge Type % C

CFG sequential 99.54 CFG sequential 98.91
if-else 95.52 if-else i

PDG data dependence 82.78 PDG data dependence 88.21

control dependence | 96.33 control dependence | 94.65

Building CFG/PDG with NEURALPDA: An Illustration

®

S9

if (annotation != null) { ’

1 private boolean isValidUntil (Until annotation) {

2 if (annotation != null) {

3 double annotationVersion = annotation.value();

4 if (annotationVersion <= version) {

5 return false;

6 }

r) o
8 return true; s7
9}

S5 Q

S6

Figure 1: Java code listing (left) and its corresponding CFG/PDG (right) predicted by NeURALPDA

** NEURALPDA is the first neural network tool to predict program dependencies in complete as well as partial
programs, which are accurate as well as 380x faster to generate.

¢ This work leads to a direction for improving program analysis (PA) for partial programs by combining
pattern learning-based approaches with top-down PA techniques.

Conclusion

'l‘:'_ll@ Scan QR code to access the

[Tl]-) THE UNIVERSITY OF TEXAS AT DALLAS 1735 N replication package, data, and
2 el supplementary material.

Why is this useful?

1 °
< Some existing approaches build CFG/PDGs for partial code via manual intervention (e.g., by wrapping around . S 1 O
method signature) in a best-effort manner, often at the cost of several misses.

1 string subTag(string s, string a, string b) {

2 std::string lower_s;

3 std::transform(s.begin(), s.end(), lower_s.begin(), ::
tolower);

4 std::transform(a.begin(), a.end(), a.begin(), ::tolower);

5 auto position = lower_s.find(a);

6

In the above code listing, due to the unknown data type string on line 2 and APl element transformon
lines 3 and 4, traditional program analysis tools ignore all CFG/PDG edges to/from these statements. However,
this listing is vulnerable on line 3, automated detection of which is not possible due to the missing edges.

.11@ Scan QR code to access the

ﬁl-D THE UNIVERSITY OF TEXAS AT DALLAS J’ "H'! replication package, data, and
supplementary material.

Why is this useful?

< Some existing approaches build CFG/PDGs for partial code via manual intervention (e.g., by wrapping around
method signature) in a best-effort manner, often at the cost of several misses.

NEURALPDA: Neural Network-Based Program Dependence Analysis

Helps relay the syntactic and semantic relationships between the
tokens in a statement to other statements in the code snippet.

E Intra-Statement
Context Learning

The combination of all the CFG/PDG edges extracted via such an arc-

factored approach is realized as the CFG/PDG for the given program.

Inter-Statement

Pairwise Dependence

1 string subTag(string s, string a, string b) { Context Learning Decoding
2 std::string lower_s; o \} """"""""""""""""
3 std::transform(s.begin(), s.end(), lower_s.begin(), . : :

tolower) ;

transform(a.begin(), a.end(), a.begin(), ::tolower); Add & Norm

position = lower_s.find(a);

Feed
Forward

2dd & Norm
=
Multi-Head
Attention

‘ Self-Attention

In the above code listing, due to the unknown data type string on line 2 and APl element transformon
lines 3 and 4, traditional program analysis tools ignore all CFG/PDG edges to/from these statements. However,
this listing is vulnerable on line 3, automated detection of which is not possible due to the missing edges.

The goal of this component is to learn latent representations for each
statement that model the inter-statement dependencies.

EI 11@ Scan QR code to access the
replication package, data, and
supplementary material.

ﬁl— THE UNIVERSITY OF TEXAS AT DALLAS

Why is thi ful? NEURALPDA: Neural Network-Based Program Dependence Analysis
y 18 1S useruis

Helps relay the syntactic and semantic relationships between the
tokens in a statement to other statements in the code snippet.

E Intra-Statement
Context Learning

The combination of all the CFG/PDG edges extracted via such an arc-

< Some existing approaches build CFG/PDGs for partial code via manual intervention (e.g., by wrapping around factored h is realized as the CFG/PDG for the gi
‘actored approach iIs realizea as the 'or the given program.

method signature) in a best-effort manner, often at the cost of several misses.

Inter-Statement

Pairwise Dependence
Decoding

1 string subTag(string s, string a, string b) {
2 std::string lower_s;

Context Learn;

3 std::transform(s.begin(), s.end(), lower_s.begin(),

tolower);
4 std::transform(a.begin(), a.end(), a.begin(), ::tolower); Add & Norm
5 auto position = lower_s.find(a);

6

Feed
Forward

2dd & Norm
=
Multi-Head
Attention

‘ Self-Attention

In the above code listing, due to the unknown data type string on line 2 and APl element transformon
lines 3 and 4, traditional program analysis tools ignore all CFG/PDG edges to/from these statements. However,
this listing is vulnerable on line 3, automated detection of which is not possible due to the missing edges.

The goal of this component is to learn latent representations for each
statement that model the inter-statement dependencies.

Empirical Evaluation

P/L Graph | Accuracy | Precision | Recall | F1-Score F1-Score (in %)
Taa | CFG 99.79 9831 9858 | 9844 k Java C/C++
PDG 98.87 89.89 87.53 88.70 CFG PDG Overall CFG PDG Overall
Overall 9933 94.75 93.83 94.29 3 99.70 | 93.24 97.17 98.39 | 91.10 96.01
4| 9941 | 9251 | 9661 | 9833 | 90.18 | 95.28
CFG 99.50 96.76 | 96.56 | 96.66 5] 9926 | 9123 | 9596 | 9791 | 89.10 | 94.37
CiC++ | PDG 98.55 83.55 | 9001 | 86.66 6 | 99.04 | 9036 | 9540 | 97.14 | 87.91 | 9331
Overall | 9902 9110 | 9387 | 9246 7| 9875 | 8945 | 94.82 | 96.69 | 8645 | 92.39
Table 1: Performance of NeuraLPDA on complete code 8 | 9844 | 8370 9429 96.66 | 86.66 9246

from Java and C/C++ (Intrinsic Evaluation)

Table 2: Performance of NEuraLPDA on partial code from

Java and C/C++ (Intrinsic Evaluation)

’ The PDGs predicted by NEURALPDA approximates the performance of those generated by program
analysis tools for vulnerability detection on complete code by 98.98% (Extrinsic Evaluation)

automated tool discover 14 real-world vulnerable code fragments (Extrinsic Evaluation)

For the vulnerability detection task on partial code, the PDGs predicted by NEurRALPDA helps an

l
J

11@ Scan QR code to access the
replication package, data, and
supplementary material.

DALLAS

ﬁl— THE UNIVERSITY OF TEXAS

Why is thi ful? NEURALPDA: Neural Network-Based Program Dependence Analysis
y 18 1S useruis

Helps relay the syntactic and semantic relationships between the
tokens in a statement to other statements in the code snippet.

E Intra-Statement
Context Learning

The combination of all the CFG/PDG edges extracted via such an arc-

< Some existing approaches build CFG/PDGs for partial code via manual intervention (e.g., by wrapping around factored h is realized as the CFG/PDG for the gi
‘actored approach iIs realizea as the 'or the given program.

method signature) in a best-effort manner, often at the cost of several misses.

Inter-Statement

Pairwise Dependence
Decoding

1 string subTag(string s, string a, string b) {

2 std::string lower_s;

Context Learning

\.
3 std::transform(s.begin(), s.end(), lower_s.begin(), :
tolower);
transform(a.begin(), a.end(), a.begin(), ::tolower);

Add & Norm
Feed
Forward

2dd & Norm
=
Multi-Head
Attention

position = lower_s.find(a);

‘ Self-Attention

In the above code listing, due to the unknown data type string on line 2 and APl element transformon
lines 3 and 4, traditional program analysis tools ignore all CFG/PDG edges to/from these statements. However,
this listing is vulnerable on line 3, automated detection of which is not possible due to the missing edges.

The goal of this component is to learn latent representations for each
statement that model the inter-statement dependencies.

Empirical Evaluation Key Takeaways

«» NEURALPDA is the first neural network tool to predict program dependencies in complete as well as partial

i F1-Score (in % .
JIZ\{; Gcr;pgh Acgcgu ;Z“y Pr;;‘illon ‘;;“2‘;‘ Flggs Z‘Zre k Java) CIC++ programs, which are accurate as well as 380x faster to generate.
PDG 93.87 2989 | 87.53 | 8870 CFG PDG Overall | CFG PDG _ Overall
Overall | 9933 9473 9383 | 9429 i 33'}? g;'ﬁ Zg'éf §§'§§ 33;‘; 322; ¢ This work leads to a direction for improving program analysis (PA) for partial programs by combining
CFG 99.50 96.76 96.56 96.66 5| 9926 | 9123 | 9596 | 9791 | 89.10 | 9437 pattern learning-based approaches with top-down PA techniques.
CiCr+ | PDG | 9855 8355 | 9001 | 86.06 6 | 99.04 | 9036 | 9540 | 97.14 | 87.91 | 9331
Overall | 2902 L1 | 9387 | 9246 7| 9875 | 89.45 | 9482 | 9669 | 86.45 | 92.39
Table 1: Performance of NeuraLPDA on complete code 8 | 9844 | 8370 94.29 96.66 | 86.66 9246

from Java and C/C++ (Intrinsic Evaluation) Table 2: Performance of NeuraLPDA on partial code from

Java and C/C++ (Intrinsic Evaluation)

analysis tools for vulnerability detection on complete code by 98.98% (Extrinsic Evaluation)

For the vulnerability detection task on partial code, the PDGs predicted by NEurRALPDA helps an
automated tool discover 14 real-world vulnerable code fragments (Extrinsic Evaluation)

’ The PDGs predicted by NEURALPDA approximates the performance of those generated by program J

EI 11@ Scan QR code to access the
replication package, data, and
supplementary material.

ﬁl— THE UNIVERSITY OF TEXAS AT DALLAS

Conclusion

Scan QR code to access the

lTl-D THE UNIVERSITY OF TEXAS AT DALLAS replication package, data, and
supplementary material.

EXTRA SLIDES

NEURALPDA: Neural Network-Based Program Dependence Analysis

Helps relay the syntactic and semantic relationships between the The combination of all the CFG/PDG edges extracted via such an arc-
tokens in a statement to other statements in the code snippet. factored approach is realized as the CFG/PDG for the given program.

Intra-Statement Inter-Statement Pairwise Dependence

. Context Learning Context Learning Decoding 4
: . o :
Ny ~» Add & Norm : " > True
Feed
Forward
Self-Attention y

—> True :

A

~» Add & Norm
1
Multi-Head
Attention
A

—>False :

The goal of this component is to /learn latent representations for each
statement that model the inter-statement dependencies.

Building CFG/PDG with NEURALPDA: An Illustration

.
S2
List<Game> allGames = gameMapper.getAllGamesByLeague(league);
I List<Game> allGames = gameMapper.getAllGamesByLeague(league); /
> for (Game game : allGames) { (
3 game.getTeam1().setGame(game); \ , _)
4 game.getTeam2().setGame(game); S6
5 S3
6 Collections. sort(allGames, new GameComparator());
S4
b
»,
N
S5

Figure 1: Partial Java code listing (left) and its corresponding CFG/PDG (right) predicted by NEURALPDA

Empirical Evaluation

P/L | Graph | Accuracy | Precision | Recall | F1-Score F1-Score (in %)
Java | CFG 99.79 0831 | 9838 | 98.44 k Java C/C++
PDG 08.87 89 .89 87.53 88 70 CFG PDG Overall CFG PDG Overall
Overall 99 .33 94.75 03.83 94.29 3 1 99.70 | 93.24 97.17 98.39 | 91.10 96.01
4 | 9941 | 9251 | 9661 | 9833 | 90.18 | 95.28
CFG 99.50 96.76 96.56 | 96.60 51 9926 | 91.23 | 9596 | 97.91 | 89.10 | 94.37
C/C++ | PDG 98.55 83.55 | 90.0L | 86.66 6 | 99.04 | 9036 | 9540 | 97.14 | 87.91 | 9331
Overall | 99.02 91.10 | 93.87 | 92.46 7 | 9875 | 8945 | 9482 | 9669 | 86.45 | 92.39
Table 1: Performance of NEURALPDA on complete code 6 | Do | 6040 94.29 96.66 | 86.66 92.46

from Java and C/C++ (Intrinsic Evaluation) Table 2: Performance of NEURALPDA on partial code from
Java and C/C++ (Intrinsic Evaluation)

The PDGs predicted by NEURALPDA approximates the performance of those generated by program
analysis tools for vulnerability detection on complete code by 98.98% (Extrinsic Evaluation)

For the vulnerability detection task on partial code, the PDGs predicted by NEURALPDA helps an
automated tool discover 14 real-world vulnerable code fragments (Extrinsic Evaluation)

** NEURALPDA is the first neural network tool to predict program dependencies in complete as well as partial
programs, which are accurate as well as 380x faster to generate.

¢ This work leads to a direction for improving program analysis (PA) for partial programs by combining
pattern learning-based approaches with top-down PA techniques.

. E All code, data, and

; X supplementary

B4 material are available
through this QR code.

ﬁl-D THE UNIVERSITY OF TEXAS AT DALLAS

