

# Commit-Level, Neural Vulnerability Detection and Assessment

Yi Li<sup>1</sup> Aashish Yadavally<sup>2</sup>

Jiaxing Zhang<sup>1</sup>

Shaohua Wang<sup>1</sup>

Tien N. Nguyen<sup>2</sup>

<sup>1</sup> Department of Informatics, New Jersey Institute of Technology
 <sup>2</sup> Computer Science Department, The University of Texas at Dallas





#### statement-level, method-level, file-level

漸



commit-level



```
// .../jsoup/parser/HtmlTreeBuilderState.java
boolean process (Token t, HtmlTreeBuilder tb) {
  if (t.isCharacter() && inSorted(
    tb.currentElement().normalName(), InTableFoster)) {
      . . .
      return tb.process(t);
    } else
      tb.popStackToClose(name);
       tb.resetInsertionMode();
       if (tb.state() == InTable) {
       if (!tb.resetInsertionMode()) {
+
        tb.insert(startTag);
        return true;
      return tb process(t, InHead);
      . . .
```

Figure. Code change in jsoup at Version 1.12.1 for CVE 2021-37714

#### Vulnerability Details: CVE-2021-37714

**1. Description**: jsoup is a Java library for working with HTML. Those using jsoup versions prior to 1.14.2 to parse untrusted HTML or XML may be vulnerable to DOS attacks. If the parser is run on user supplied input, an attacker may supply content that causes the parser to get stuck (loop indefinitely until cancelled), to complete more slowly than usual, or to throw an unexpected exception. This effect may support a denial of service attack. The issue is patched in version 1.14.2. There are a few available workarounds. Users may rate limit input parsing, limit the size of inputs based on system resources, and/or implement thread watchdogs to cap and timeout parse runtimes. Publish Date : 2021-08-18 Last Update Date : 2022-02-07

2. Vulnerability Type(s): Denial Of Service

3. CVSS Score: ...

#### 4. Detailed CVSS Grades:

| t |
|---|
|   |
|   |
|   |
| y |
| • |
|   |

# Motivating Example





// .../jsoup/parser/HtmlTreeBuilderState.java
boolean process(Token t, HtmlTreeBuilder tb) {
 if (t.isCharacter() && inSorted(

#### Observation

Joint Learning of Vulnerability Detection and Assessment (VD + VA, i.e., VDA)





// .../jsoup/parser/HtmlTreeBuilderState.java
boolean process(Token t, HtmlTreeBuilder tb) {
 if (t.isCharacter() && inSorted(

#### Observation

Joint Learning of Vulnerability Detection and Assessment (VD + VA, i.e., VDA)

#### Key Idea - I

#### Commit-Level VDA with Multi-Task Learning

```
if (tb.state() == InTable) {
    if (!tb.resetInsertionMode()) {
      tb.insert(startTag);
    return true;
}
```

return tb.process(t, InHead);

# Motivating Example



# Motivating Example





// .../jsoup/parser/HtmlTreeBuilderState.java
boolean process(Token t, HtmlTreeBuilder tb) {
 if (t.isCharacter() && inSorted(

#### Observation

**[Program Dependencies]** To detect and assess a vulnerability, a model needs to consider the program dependencies among the statements.





// .../jsoup/parser/HtmlTreeBuilderState.java
boolean process(Token t, HtmlTreeBuilder tb) {

if (t.isCharacter() && inSorted(

#### Observation

**[Program Dependencies]** To detect and assess a vulnerability, a model needs to consider the program dependencies among the statements.

#### Key Idea - II

*Capture program dependencies in Code Change Representation Learning via a Graph Neural Network* 

if (!tb.resetInsertionMode()) {

return true;

return tb.process(t, InHead);

# Motivating Example



# **Motivating Example**

// .../jsoup/parser/HtmlTreeBuilderState.java
boolean process(Token t, HtmlTreeBuilder tb) {
 if (t.isCharacter() && inSorted(

#### Observation

**[Context]** Same/similar changes occurring in different surrounding contexts might cause different effects.

# } else { tb.popStackToClose(name); tb.resetInsertionMode(); if (tb.state() == InTable) { if (!tb.resetInsertionMode()) { tb.insert(startTag); return true; } return tb.process(t, InHead);



// .../jsoup/parser/HtmlTreeBuilderState.java
boolean process(Token t, HtmlTreeBuilder tb) {
 if (t.isCharacter() && inSorted(

#### Observation

**[Context]** Same/similar changes occurring in different surrounding contexts might cause different effects.

#### Key Idea - III

*Leverage multi-version graph and graph-based representation learning for obtaining contextualized embeddings for code changes.* 

if (!tb.resetInsertionMode()) {

return true;

return tb.process(t, InHead);

#### CAT: Architecture Overview



## CAT: Architecture Overview



Code Change

# Step I: Representing Code Changes with Multi-Version PDG



#### CAT: Architecture Overview



















#### CAT: Architecture Overview



Step III: Multi-Task Learning

\* Task 1. Vulnerability Detection

Step III: Multi-Task Learning

\* Task 1. Vulnerability Detection

Tasks 2 – 8. Vulnerability Assessment Type Prediction

Step III: Multi-Task Learning

Task 1. Vulnerability Detection

Tasks 2 – 8. Vulnerability Assessment Type Prediction

(1) **Confidentiality**: None; Partial; Complete

(2) **Integrity**: None; Partial; Complete

(3) Availability: None; Partial; Complete

(4) Access Vector: Local; Network

(5) Access Complexity: Low; Medium; High

(6) **Authentication**: None; Single

(7) **Severity**: Low; Medium; High

#### **Empirical Evaluation**

(RQ1) Comparison of Learning-Based Vulnerability Detection Approaches on C/C++ Dataset

# Empirical Evaluation (RQ1)

| Datasets                                          | BigVul (C) | CVAD (Java) |
|---------------------------------------------------|------------|-------------|
| # of Projects                                     | 303        | 246         |
| # of Vulnerabilities                              | 3336       | 542         |
| <pre># of Vulnerability Introducing Commits</pre> | 7851       | 1229        |

Table 1. Dataset Statistics

## Empirical Evaluation (RQ1)

| Approach            | Precision | Recall | F-score |
|---------------------|-----------|--------|---------|
| VCCFinder [39]      | 0.28      | 0.13   | 0.18    |
| VulDeePecker [31]   | 0.55      | 0.77   | 0.64    |
| SySeVR [30]         | 0.54      | 0.74   | 0.63    |
| Russell et al. [42] | 0.54      | 0.72   | 0.62    |
| Devign [49]         | 0.56      | 0.73   | 0.63    |
| Reveal [10]         | 0.62      | 0.69   | 0.65    |
| IVDetect [28]       | 0.54      | 0.77   | 0.65    |
| CAT                 | 0.69      | 0.85   | 0.76    |

 Table 2. Comparative Study on Vulnerability Detection

#### Empirical Evaluation (RQ1)

| Approach          | Precision | Recall | F-score |
|-------------------|-----------|--------|---------|
| VCCFinder [39]    | 0.28      | 0.13   | 0.18    |
| VulDeePecker [31] | 0.55      | 0.77   | 0.64    |
| SySeVR [30]       | 0.54      | 0.74   | 0.63    |

CAT improves over the state-of-the-art approaches for **vulnerability detection** by **11.3% - 146%** in Precision, **10.4% - 553%** in Recall, and **13.4% - 322%** in F1-Score.

| IVDetect [28] | 0.52 | 0.09 | 0.65 |  |
|---------------|------|------|------|--|
| CAT           | 0.69 | 0.85 | 0.76 |  |

Table 2. Comparative Study on Vulnerability Detection

# **Empirical Evaluation**

(RQ1) Comparison of Learning-Based Vulnerability Detection Approaches on C/C++ Dataset

#### (RQ2) Comparison of Vulnerability Assessment Type Prediction on C/C++ Dataset

#### Empirical Evaluation (RQ2)

| CVSS Matria         | Evoluction Matric | Mo           | del                           |
|---------------------|-------------------|--------------|-------------------------------|
| CV35 Metric         |                   | DeepCVA [34] | CAT                           |
| Confidentiality     | macro F1-score    | 0.50         | 0.65                          |
| Connuentianty       | MCC               | 0.23         | 0.31                          |
| Integrity           | macro F1-score    | 0.42         | 0.55                          |
| integrity           | MCC               | 0.24         | 0.33                          |
| Availability        | macro F1-score    | 0.47         | 0.63                          |
| Availability        | MCC               | 0.28         | 0.34                          |
| Access Vector       | macro F1-score    | 0.58         | 0.69                          |
|                     | MCC               | 0.22         | 0.31                          |
| A access Commission | macro F1-score    | 0.49         | 0.66                          |
| Access Complexity   | MCC               | 0.26         | 0.35                          |
| Authentication      | macro F1-score    | 0.67         | 0.72                          |
| Authentication      | MCC               | 0.36         | 0.39                          |
| Soverity            | macro F1-score    | 0.44         | 0.58                          |
| Jevenity            | MCC               | 0.23         | 0.28                          |
| Average             | macro F1-score    | 0.51         | 0.64 ( <b><b>↑</b>25.5%</b> ) |
| Average             | MCC               | 0.20         | 0.33 ( <b>↑26.9</b> %)        |

# Empirical Evaluation (RQ2)

| OVCC Matrice    | Evoluction Matric | Мо           | del  |
|-----------------|-------------------|--------------|------|
| CV55 Metric     | Evaluation Metric | DeepCVA [34] | CAT  |
| Confidentiality | macro F1-score    | 0.50         | 0.65 |
| Confidentiality | MCC               | 0.23         | 0.31 |
| Intocrity       | macro F1-score    | 0.42         | 0.55 |
| Integrity       | MCC               | 0.24         | 0.33 |

• CAT *improves over the state-of-the-art* DeepCVA by **25.5%** *in macro F1-Score and* **26.9%** *in multi-class MCC.* 

Ο

| Soverity | macro F1-score | 0.44 | 0.58                   |
|----------|----------------|------|------------------------|
| Seventy  | MCC            | 0.23 | 0.28                   |
| Averago  | macro F1-score | 0.51 | 0.64 ( <b>↑25.5</b> %) |
| Average  | MCC            | 0.20 | 0.33 ( <b>↑26.9</b> %) |

# Empirical Evaluation (RQ2)

| CVSS Matria      | VCC Matria        |              | lel  |
|------------------|-------------------|--------------|------|
| C v 55 Ivieti ic | Evaluation Metric | DeepCVA [34] | CAT  |
| Confidentiality  | macro F1-score    | 0.50         | 0.65 |
| onndentianty     | MCC               | 0.23         | 0.31 |
| Intoquity        | macro F1-score    | 0.42         | 0.55 |
| Integrity        | MCC               | 0.24         | 0.33 |

- CAT *improves over the state-of-the-art* DeepCVA by **25.5%** *in macro* F1-Score and **26.9%** *in multi-class MCC*.
- The largest relative improvement is observed in Access Complexity and Access Vector metrics, which, more often than not, are extensively checked for in the changed code context, which is well represented in CAT and not DeepCVA.

| Sourity | macro F1-score | 0.44 | 0.58                   |
|---------|----------------|------|------------------------|
| Seventy | MCC            | 0.23 | 0.28                   |
| Azorogo | macro F1-score | 0.51 | 0.64 ( <b>↑25.5</b> %) |
| Average | MCC            | 0.20 | 0.33 ( <b>↑26.9</b> %) |

# **Empirical Evaluation**

(RQ1) Comparison of Learning-Based Vulnerability Detection Approaches on C/C++ Dataset

(RQ2) Comparison of Vulnerability Assessment Type Prediction on C/C++ Dataset

**(RQ4)** Studying Relevant Classification Features in the Context of Program Dependencies

| ÷ | <u></u>    |           |       |           |          |      |          |      |
|---|------------|-----------|-------|-----------|----------|------|----------|------|
|   | Confidence | Integrity | Avail | AccessVec | AccCompl | Auth | Severity | Avg  |
|   | 63         | 84        | 81    | 72        | 93       | 93   | 81       | 81.4 |

Empirical Evaluation (RQ4)

**Table 4.** Percentage (%) of commits in which CAT **correctly** uses the vulnerable statements/dependencies as the key features in VDA.

#### **Empirical Evaluation (RQ4)**

- 1 private: Status DoCompute(OpKernelContext\* ctx) { ...
- 2 + DatasetBase\* finalized\_dataset;
- 3 + TF\_RETURN\_IF\_ERROR(FinalizeDataset(ctx, dataset, &finalized\_dataset));
- 4 std::unique\_ptr<IteratorBase> iterator;
- 5 TF\_RETURN\_IF\_ERROR(dataset->MakeIterator(&iter\_ctx,/\*parent=\*/nullptr,.));
- 6 + TF\_RETURN\_IF\_ERROR(finalized\_dataset->MakeIterator(&iter\_ctx,/\*parent=\*.));
- std::vector<Tensor> components;

10

}

- 8 components.reserve(dataset->output\_dtypes().size());
- 9 + components.reserve(finalized\_dataset->output\_dtypes().size()); ...

**Figure.** Contributions of different statements in an example for which CAT correctly identifies the presence of vulnerability, and all vulnerability assessment types.

# **Empirical Evaluation**

(RQ1) Comparison of Learning-Based Vulnerability Detection Approaches on C/C++ Dataset

(RQ2) Comparison of Vulnerability Assessment Type Prediction on C/C++ Dataset

(RQ4) Studying Relevant Classification Features in the Context of Program Dependencies

(RQ6) Generalizability: Comparison of Vulnerability Assessment Type Prediction on Java Dataset

## Empirical Evaluation (RQ6)

| Datasets                               | BigVul (C) | CVAD (Java) |
|----------------------------------------|------------|-------------|
| # of Projects                          | 303        | 246         |
| # of Vulnerabilities                   | 3336       | 542         |
| # of Vulnerability Introducing Commits | 7851       | 1229        |

Table 4. Dataset Statistics

## Empirical Evaluation (RQ6)

| CVSS MetricEvaluation MetricModelConfidentialitymacro F1-score0.440.55MCC0.270.32Macro F1-score0.430.52Integritymacro F1-score0.430.52MCC0.250.27Availabilitymacro F1-score0.430.54MCC0.270.270.27Availabilitymacro F1-score0.430.54MCC0.270.270.27Access Vectormacro F1-score0.550.59MCC0.130.170.17Access Complexitymacro F1-score0.460.53MCC0.240.260.240.26MuhenticationMCC0.350.38Severitymacro F1-score0.420.51MCC0.210.220.21Averagemacro F1-score0.450.59 (\f) 31.0%MCC0.240.32 (\f) 33.3%Vulnerability DetectionF-score0.240.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |                   |           |                              |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------|-----------|------------------------------|--|--|
| Cv35 Metric         Evaluation Metric         DeepCVA         CAT $Confidentiality$ macro F1-score         0.44         0.55 $MCC$ 0.27         0.32 $Integrity$ macro F1-score         0.43         0.52 $Integrity$ macro F1-score         0.43         0.52 $Availability$ macro F1-score         0.43         0.54 $Access Vector$ macro F1-score         0.55         0.59 $Access Complexity$ macro F1-score         0.46         0.53 $Authentication$ macro F1-score         0.46         0.68 $MCC$ 0.35         0.38         0.38 $Severity$ macro F1-score         0.42         0.51 $MCC$ 0.21         0.22         0.22 $Average$ macro F1-score         0.45         0.59 ( $\uparrow 31.0 \%$ ) $MCC$ 0.24         0.32 ( $\restriction 33.3$                                                                           | CVSS Metric             | Evaluation Metric | Model     |                              |  |  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |                   | DeepCVA   | CAT                          |  |  |
| MCC $0.27$ $0.32$ Integrity         macro F1-score $0.43$ $0.52$ Availability         macro F1-score $0.43$ $0.54$ Availability         macro F1-score $0.43$ $0.54$ Availability         macro F1-score $0.43$ $0.54$ Availability         MCC $0.27$ $0.27$ Access Vector         macro F1-score $0.55$ $0.59$ Access Complexity         macro F1-score $0.46$ $0.53$ Authentication         macro F1-score $0.46$ $0.53$ Severity         macro F1-score $0.66$ $0.68$ MCC $0.35$ $0.38$ Severity         macro F1-score $0.42$ $0.51$ MCC $0.21$ $0.22$ $0.22$ Average         macro F1-score $0.45$ $0.59$ ( $\uparrow 31.0\%$ )           MCC $0.24$ $0.32$ ( $\restriction 33.3\%$ ) $MCC$ $0.24$ $0.32$ ( $\restriction 33.3\%$ )                                                                                                                                                                                                                                                                      | Confidentiality         | macro F1-score    | 0.44      | 0.55                         |  |  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Connuentianty           | MCC               | 0.27      | 0.32                         |  |  |
| Mcgnry         MCC         0.25         0.27           Availability         macro F1-score         0.43         0.54           MCC         0.27         0.27           Access Vector         macro F1-score         0.55         0.59           MCC         0.13         0.17           Access Complexity         macro F1-score         0.46         0.53           Access Complexity         MCC         0.24         0.26           Muthentication         macro F1-score         0.66         0.68           MCC         0.35         0.38         0.51           Severity         Macro F1-score         0.42         0.51           MCC         0.21         0.22         0.51           McC         0.21         0.22         0.51           McC         0.24         0.59 ( $\uparrow$ 31.0%)           McC         0.24         0.59 ( $\uparrow$ 31.0%)           McC         0.24         0.32 ( $\uparrow$ 33.3%)           Vulnerability Detection         F-score         0.24         0.76      | Integrity               | macro F1-score    | 0.43      | 0.52                         |  |  |
| Availability         macro F1-score         0.43         0.54           MCC         0.27         0.27           Access Vector         macro F1-score         0.55         0.59           MCC         0.13         0.17           Access Complexity         macro F1-score         0.46         0.53           Access Complexity         macro F1-score         0.46         0.53           Authentication         macro F1-score         0.66         0.68           MCC         0.35         0.38         0.38           Severity         macro F1-score         0.42         0.51           MCC         0.21         0.22         0.51           Average         macro F1-score         0.45         0.59 ( $\uparrow$ 31.0%)           MCC         0.24         0.51         0.52           MCC         0.21         0.22         0.51           MCC         0.45         0.59 ( $\uparrow$ 31.0%)         0.32 ( $\dag$ 33.3%)           Vulnerability Detection         F-score         0.24         0.76 | Integrity               | MCC               | 0.25      | 0.27                         |  |  |
| Availability         MCC $0.27$ $0.27$ Access Vector         macro F1-score $0.55$ $0.59$ Access Complexity         macro F1-score $0.46$ $0.53$ Access Complexity         macro F1-score $0.46$ $0.53$ Access Complexity         MCC $0.24$ $0.26$ Authentication         macro F1-score $0.66$ $0.68$ Severity         macro F1-score $0.42$ $0.51$ MCC $0.35$ $0.38$ Severity         macro F1-score $0.42$ $0.51$ MCC $0.21$ $0.22$ Average         macro F1-score $0.45$ $0.59 (\uparrow 31.0\%)$ MCC $0.24$ $0.32 (\uparrow 33.3\%)$ $MCC$ $0.24$ $0.32 (\uparrow 33.3\%)$                                                                                                                                                                                                                                                                                                                                                                                                                               | Availability            | macro F1-score    | 0.43      | 0.54                         |  |  |
| Access Vector         macro F1-score         0.55         0.59           MCC         0.13         0.17           Access Complexity         macro F1-score         0.46         0.53           MCC         0.24         0.26           Authentication         macro F1-score         0.66         0.68           MCC         0.35         0.38           Severity         macro F1-score         0.42         0.51           MCC         0.35         0.38           Average         macro F1-score         0.42         0.51           MCC         0.21         0.22           MCC         0.24         0.32 ( $\uparrow$ 31.0%)           MCC         0.24         0.32 ( $\uparrow$ 33.3%)                                                                                                                                                                                                                                                                                                                   |                         | MCC               | 0.27      | 0.27                         |  |  |
| MCC         0.13         0.17           Access Complexity         macro F1-score         0.46         0.53           Access Complexity         MCC         0.24         0.26           Authentication         macro F1-score         0.66         0.68           Authentication         MCC         0.35         0.38           Severity         macro F1-score         0.42         0.51           MCC         0.21         0.22           Average         macro F1-score         0.45         0.59 ( $\uparrow$ 31.0%)           MCC         0.24         0.32 ( $\uparrow$ 33.3%)         MCC         0.24         0.32 ( $\uparrow$ 33.3%)           Vulnerability Detection         F-score         0.24         0.76                                                                                                                                                                                                                                                                                     | Access Vector           | macro F1-score    | 0.55      | 0.59                         |  |  |
| $\begin{array}{l lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Access vector           | MCC               | 0.13      | 0.17                         |  |  |
| Access complexity         MCC $0.24$ $0.26$ Authentication         macro F1-score $0.66$ $0.68$ Authentication         MCC $0.35$ $0.38$ Severity         macro F1-score $0.42$ $0.51$ Average         macro F1-score $0.42$ $0.51$ Average         macro F1-score $0.45$ $0.59$ ( $\uparrow$ 31.0%)           Vulnerability Detection         F-score $0.24$ $0.76$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Access Complexity       | macro F1-score    | 0.46      | 0.53                         |  |  |
| Macro F1-score         0.66         0.68           MCC         0.35         0.38           Severity         macro F1-score         0.42         0.51           MCC         0.21         0.22           Average         macro F1-score         0.45         0.59 ( <b>↑31.0%</b> )           MCC         0.24         0.32 ( <b>↑33.3%</b> )           Vulnerability Detection         F-score         0.24         0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Access Complexity       | MCC               | 0.24      | 0.26                         |  |  |
| Muthemication         MCC         0.35         0.38           Severity         macro F1-score         0.42         0.51           MCC         0.21         0.22           Average         macro F1-score         0.45         0.59 ( <b>†31.0</b> %)           MCC         0.24         0.32 ( <b>†33.3</b> %)           Vulnerability Detection         F-score         0.24         0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Authentication          | macro F1-score    | 0.66      | 0.68                         |  |  |
| Severity         macro F1-score         0.42         0.51           MCC         0.21         0.22           Average         macro F1-score         0.45         0.59 ( <b>\$\$31.0\$\$</b> )           MCC         0.24         0.32 ( <b>\$\$33.3\$\$</b> )           Vulnerability Detection         F-score         0.24         0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         | MCC               | 0.35      | 0.38                         |  |  |
| MCC         0.21         0.22           Average         macro F1-score         0.45         0.59 ( <b>†31.0%</b> )           MCC         0.24         0.32 ( <b>†33.3%</b> )           Vulnerability Detection         F-score         0.24         0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Soverity                | macro F1-score    | 0.42      | 0.51                         |  |  |
| Average         macro F1-score         0.45         0.59 ( <b>†31.0%</b> )           MCC         0.24         0.32 ( <b>†33.3%</b> )           Vulnerability Detection         F-score         0.24         0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | MCC               | 0.21      | 0.22                         |  |  |
| AverageMCC0.240.32 ( <b>†33.3</b> %)Vulnerability DetectionVCCFinderCATF-score0.240.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Average                 | macro F1-score    | 0.45      | 0.59 ( <b><b>↑31.0</b>%)</b> |  |  |
| Vulnerability DetectionVCCFinderCATF-score0.240.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Average                 | MCC               | 0.24      | 0.32 ( <b><b>↑33.3</b>%)</b> |  |  |
| F-score 0.24 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Vulnarability Datastian |                   | VCCFinder | CAT                          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | F-score           | 0.24      | 0.76                         |  |  |

## Empirical Evaluation (RQ6)

| OVER Matria     | Evoluction Matric | Model   |      |  |
|-----------------|-------------------|---------|------|--|
| C v 55 Metric   | Evaluation Methe  | DeepCVA | CAT  |  |
| Confidentiality | macro F1-score    | 0.44    | 0.55 |  |
|                 | MCC               | 0.27    | 0.32 |  |
| Integrity       | macro F1-score    | 0.43    | 0.52 |  |
|                 | MCC               | 0.25    | 0.27 |  |
| Amilability     | macro F1-score    | 0.43    | 0.54 |  |
| Availability    | MCC               | 0.27    | 0.27 |  |
|                 |                   |         |      |  |

CAT *improves over the state-of-the-art* DeepCVA by **31%** *in macro F1-Score and* **33.3%** *in multi-class MCC*.

| Authentication          | macro F1-score | 0.66      | 0.68                         |  |
|-------------------------|----------------|-----------|------------------------------|--|
| Authentication          | MCC            | 0.35      | 0.38                         |  |
| Corrowitzz              | macro F1-score | 0.42      | 0.51                         |  |
| Sevenity                | MCC            | 0.21      | 0.22                         |  |
| Average                 | macro F1-score | 0.45      | 0.59 ( <b><b>↑31.0</b>%)</b> |  |
|                         | MCC            | 0.24      | 0.32 ( <b>↑33.3</b> %)       |  |
| Vulnerability Detection |                | VCCFinder | CAT                          |  |
|                         | F-score        | 0.24      | 0.76                         |  |

#### Conclusion





| r working with HT.<br>HTML or XML may<br>d input, an attacke<br>itely until cancelled<br>ption. This effect m<br>ion 1.14.2. There ar<br>ursing, limit the size<br>logs to cap and tim |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| d input, an attacke<br>itely until cancelled<br>ption. This effect n<br>ion 1.14.2. There ar<br>vrsing, limit the siz-<br>logs to cap and tin                                          |
| eption. This effect n<br>ion 1.14.2. There ar<br>ursing, limit the size<br>logs to cap and tim                                                                                         |
| ion 1.14.2. There ar<br>irsing, limit the size<br>logs to cap and tim                                                                                                                  |
| ursing, limit the size<br>logs to cap and tim                                                                                                                                          |
| logs to cap and tin                                                                                                                                                                    |
|                                                                                                                                                                                        |
| e : 2022-02-07                                                                                                                                                                         |
| vice                                                                                                                                                                                   |
|                                                                                                                                                                                        |
|                                                                                                                                                                                        |
| Description                                                                                                                                                                            |
| No impact to the                                                                                                                                                                       |
| No impact to the i                                                                                                                                                                     |
| There is reduced                                                                                                                                                                       |
| interruptions in a                                                                                                                                                                     |
| specialized access                                                                                                                                                                     |
| Little knowledge                                                                                                                                                                       |
| Authentication is                                                                                                                                                                      |
| to exploit the vulr                                                                                                                                                                    |
| No gained access                                                                                                                                                                       |
| The vulnerability                                                                                                                                                                      |
| DNNTinSpeciAttNT                                                                                                                                                                       |



ML. Those using jsoup y be vulnerable to DOS r may supply content that d), to complete more slowly may support a denial of tre a few available e of inputs based on system neout parse runtimes. confidentiality integrity performance or vailability s conditions or mstances do not exist is required to exploit not required nerability with the vulnerability is in the local parser





#### CAT: Architecture Overview

|      |                                                                       | vulnerability Details: C       | VE-2021-377     | 14 de la companya de |
|------|-----------------------------------------------------------------------|--------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------|
| 11 . | /isoup/parser/HtmlTreeBuilderState.java                               | 1. Description: jsoup is a     | fava library f  | or working with HIML. Those using jsoup                                                                        |
|      |                                                                       | versions prior to 1.14.2 to pe | irse unirusieu  | ind input on AML may be vulnerable to DOS                                                                      |
| bool | ean process (Token t, HtmlTreeBuilder tb) {                           | causes the parser to get stud  | k (loop indefi  | nitely until cancelled) to complete more slowly                                                                |
| if   | (t.isCharacter() && inSorted(                                         | than usual or to throw an a    | nexpected ex    | ception This effect may support a denial of                                                                    |
|      | <pre>tb.currentElement().normalName(), InTableFoster)) {</pre>        | service attack The issue is t  | atched in ver   | sion 1 14.2 There are a few available                                                                          |
|      |                                                                       | workarounds Users may rat      | e limit inout e | parsing limit the size of inputs based on system                                                               |
|      | return tb.process(t);                                                 | resources, and/or implemen     | t thread watch  | hdogs to cap and timeout parse runtimes.                                                                       |
|      | 1                                                                     | Publish Date : 2021-08-18 L    | ast Undate Da   | ute : 2022-02-07                                                                                               |
|      |                                                                       | 2. Vulnerability Type(s):      | Denial Of Se    | rvice                                                                                                          |
|      | } else {                                                              | 3. CVSS Score:                 |                 |                                                                                                                |
|      | tb.popStackToClose(name);                                             | 4. Detailed CVSS Grades        | :               |                                                                                                                |
| -    | <pre>tb.resetInsertionMode();</pre>                                   | Vulner. Assess. Type           | Value           | Description                                                                                                    |
| -    | <pre>if (tb.state() == InTable) {</pre>                               | Confidentiality Impact         | None            | No impact to the confidentiality                                                                               |
| +    | <pre>if (!tb.resetInsertionMode()) {</pre>                            | Integrity Impact               | None            | No impact to the integrity                                                                                     |
|      | <pre>tb.insert(startTag);</pre>                                       | Availability Impact            | Complete        | There is reduced performance or                                                                                |
|      | return true;                                                          |                                |                 | interruptions in availability                                                                                  |
|      |                                                                       | Access Complexity              | Low             | Specialized access conditions or                                                                               |
|      | <pre>return tb.process(t, InHead);</pre>                              |                                |                 | extenuating circumstances do not exist                                                                         |
|      |                                                                       |                                |                 | Little knowledge is required to exploit                                                                        |
| }    |                                                                       | Authentication                 | Not Req         | Authentication is not required                                                                                 |
|      | · · · · · · · · · · · · · · · · · · ·                                 | Coincil Assess                 | Name            | to exploit the vulnerability                                                                                   |
| Fig  | ure. Code change in <i>jsoup</i> at Version 1.12.1 for CVE 2021-37714 | Gained Access                  | None            | The endeened access with the vulnerability                                                                     |
|      |                                                                       | Access vector                  | Local           | The vulnerability is in the local parser                                                                       |







| CAT: / | Architecture ( | Overview |
|--------|----------------|----------|
|        |                |          |

|                                                                                                                                                                                                             | Vulnerability Details: CV                                                                                                                                                                                                                                      | Æ-2021-377                                                                                                                              | 14                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ///jsoup/parser/HtmlTreeBuilderState.java                                                                                                                                                                   | 1. Description: jsoup is a 3<br>versions prior to 1.14.2 to pa                                                                                                                                                                                                 | ava library f<br>rse untrusted                                                                                                          | or working with HTML. Those using jsoup<br>HTML or XML may be vulnerable to DOS                                                                                                                                                                                                                                                                                             |
| <pre>boolean process(Token t, HtmlTreeBuilder tb) {     if (t.isCharacter() &amp;&amp; inSorted(         tb.currentElement().normalName(), InTableFoster)) {          return tb.process(t);     }    </pre> | attacks. If the parser is run of<br>causes the parser to get stuck<br>than usual, or to throw an u<br>service attack. The issue is p<br>workarounds. Users may ratu<br>resources, and/or implement<br>Publish Date : 2021-08-18 L<br>2. Vulnerability Type(s): | on user suppli<br>k (loop indefii<br>nexpected ex-<br>atched in ver<br>e limit input f<br>thread watci<br>ist Update Da<br>Denial Of Se | ITTINE OF SULTI MP VOUNTE SALE VOUNTE SALE VOUD<br>de lippel, an attacker may supply content that<br>nitely until cancelled), to complete more slowly<br>explort. This effect may support a denial of<br>sion 1.14.2. There are a few available<br>arraing, limit the size of inputs based on systen<br>hdogs to cap and timeout parse runtimes.<br>It : 2022-02-07<br>vice |
| ) else (                                                                                                                                                                                                    | 3. CVSS Score:                                                                                                                                                                                                                                                 |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                             |
| <pre>tb.popStackToClose(name);</pre>                                                                                                                                                                        | 4. Detailed CV33 Grades:                                                                                                                                                                                                                                       | Value                                                                                                                                   | Description                                                                                                                                                                                                                                                                                                                                                                 |
| - tD.resetInsertionMode();                                                                                                                                                                                  | Confidentiality Impact                                                                                                                                                                                                                                         | None                                                                                                                                    | No impact to the confidentiality                                                                                                                                                                                                                                                                                                                                            |
| - II (LD.State() Infable) {                                                                                                                                                                                 | Integrity Impact                                                                                                                                                                                                                                               | None                                                                                                                                    | No impact to the integrity                                                                                                                                                                                                                                                                                                                                                  |
| + if (!tb.resetinsertionMode()) {                                                                                                                                                                           | Availability Impact                                                                                                                                                                                                                                            | Complete                                                                                                                                | There is reduced performance or                                                                                                                                                                                                                                                                                                                                             |
| <pre>return true; } return tb.process(t, InHead);</pre>                                                                                                                                                     | Access Complexity                                                                                                                                                                                                                                              | Low                                                                                                                                     | interruptions in availability<br>Specialized access conditions or<br>extenuating circumstances do not exist<br>little browledra is required to ampleit                                                                                                                                                                                                                      |
| }                                                                                                                                                                                                           | Authentication                                                                                                                                                                                                                                                 | Not Req                                                                                                                                 | Authentication is not required<br>to exploit the vulnerability                                                                                                                                                                                                                                                                                                              |
| Figure. Code change in <i>jsoup</i> at Version 1.12.1 for CVE 2021-37714                                                                                                                                    | Gained Access<br>Access Vector                                                                                                                                                                                                                                 | None<br>Local                                                                                                                           | No gained access with the vulnerability<br>The vulnerability is in the local parser                                                                                                                                                                                                                                                                                         |



#### **Empirical Evaluation**

(RQ1) Comparison of Learning-Based Vulnerability Detection Approaches on C/C++ Dataset

(RQ2) Comparison of Vulnerability Assessment Type Prediction on C/C++ Dataset

(RQ4) Studying Relevant Classification Features in the Context of Program Dependencies

(RQ6) Generalizability: Comparison of Vulnerability Assessment Type Prediction on Java Dataset

#### **Key Takeaways**

CAT improves over the state-of-the-art approaches for vulnerability detection by 11.3% - 146% in Precision, 10.4% - 553% in Recall, and 13.4% - 322% in F1-Score.

CAT improves over the state-of-the-art DeepCVA by 25.5% in macro F1-Score and 26.9% in multi-class MCC.

CAT successfully utilizes the vulnerable statements towards correctly predicting the presence of vulnerability, as well as its assessment types.

CAT improves over the state-of-the-art DeepCVA by 31% in macro F1-Score and 33.3% in multi-class MCC.





|                                                                                                                                                                                                                                                 | Vulnerability Details: CVE-20<br>1. Description: jsoup is a Java li                                                                                                                                                                                                                                            | 021-37714<br>library for work                                                                                                                                 | ing with HTML. Those using isoup                                                                                                                                                                                                                                                        | (Y/N)                            | (non, partial, complete)     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------|
| <pre>///jsoup/parser/HtmlTreeBuilderState.java boolean process(Token t, HtmlTreeBuilder tb) (     if (t.isCharacter() %&amp; inSorted(         tb.currentElement().normalName(), InTableFoster)) {          return tb.process(t);     } }</pre> | versions prior to 1.14.2 to parse ur<br>attacks. If the parser is run on use<br>causes the parser to get stuck (loog<br>than usual, or to throw an unexpp<br>service attack. The issue is patche<br>workarounds. Users may rate limit<br>resources, and/or implement three<br>Publish Date: 2021-08-18 Last Up | ntrusted HTML<br>ser supplied inpu<br>op indefinitely u<br>oected exception<br>ed in version 1. i<br>it input parsing,<br>ead watchdogs t<br>pdate Date : 202 | or XML may be vulnerable to DOS<br>t, an attacker may supply content that<br>tril cancelled), to complete more slowly<br>This effect may support a denial of<br>4.2. There are a few available<br>limit the size of inputs based on system<br>cap and limeout parse runtimes.<br>-02-07 | Vul. Detection<br>Classification | Assessment<br>Classification |
|                                                                                                                                                                                                                                                 | 2. Vulnerability Type(s): Denia                                                                                                                                                                                                                                                                                | ial Of Service                                                                                                                                                |                                                                                                                                                                                                                                                                                         | Step 2 1                         |                              |
| <pre>} else {    tb.popStackToClose(name);</pre>                                                                                                                                                                                                | 3. CVSS Score:<br>4. Detailed CVSS Grades:                                                                                                                                                                                                                                                                     |                                                                                                                                                               |                                                                                                                                                                                                                                                                                         | Code Change                      | Code Change                  |
| <pre>- tb.resetInsertionMode();<br/>- if (tb state() == InTable) {</pre>                                                                                                                                                                        | Vulner. Assess. Type Valu<br>Confidentiality Impact Non                                                                                                                                                                                                                                                        | ue Desci<br>ne No in                                                                                                                                          | iption<br>mact to the confidentiality                                                                                                                                                                                                                                                   | Learning                         | Learning                     |
| + if (!tb.resetInsertionMode()) {                                                                                                                                                                                                               | Integrity Impact Non<br>Availability Impact Con                                                                                                                                                                                                                                                                | ne No in                                                                                                                                                      | pact to the integrity                                                                                                                                                                                                                                                                   | Task 1                           | Task 2                       |
| return true;                                                                                                                                                                                                                                    | Access Complexity                                                                                                                                                                                                                                                                                              | interi<br>w Speci                                                                                                                                             | uptions in availability<br>dized access conditions or                                                                                                                                                                                                                                   |                                  |                              |
| <pre> return tb.process(t, InHead); </pre>                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                | exten                                                                                                                                                         | uating circumstances do not exist<br>knowledge is required to exploit                                                                                                                                                                                                                   |                                  | Step 1 Multi-version         |
|                                                                                                                                                                                                                                                 | Authentication Not                                                                                                                                                                                                                                                                                             | t Req Authorito exi                                                                                                                                           | ntication is not required<br>loit the vulnerability                                                                                                                                                                                                                                     |                                  |                              |
| Figure. Code change in <i>jsoup</i> at Version 1.12.1 for CVE 2021-37714                                                                                                                                                                        | Gained Access Non<br>Access Vector                                                                                                                                                                                                                                                                             | ne No ga                                                                                                                                                      | ined access with the vulnerability                                                                                                                                                                                                                                                      |                                  | Code Change                  |



#### Key Takeawa

Multi-task Learning

#### **Empirical Evaluation**

(RQ1) Comparison of Learning-Based Vulnerability Detection Approaches on C/C++ Dataset

(RQ2) Comparison of Vulnerability Assessment Type Prediction on C/C++ Dataset

(RQ4) Studying Relevant Classification Features in the Context of Program Dependencies

(RQ6) Generalizability: Comparison of Vulnerability Assessment Type Prediction on Java Dataset

CAT improves over the state-of-the-art approaches for vulnerability detection by 11.3% - 146% in Precision, 10.4% - 553% in Recall, and 13.4% - 322% in F1-Score.

CAT improves over the state-of-the-art DeepCVA by **25.5%** in macro F1-Score and **26.9%** in multi-class MCC.

CAT successfully utilizes the vulnerable statements towards correctly predicting the presence of vulnerability, as well as its assessment types.

CAT improves over the state-of-the-art DeepCVA by **31%** in macro F1-Score and **33.3%** in multi-class MCC.







Look – Creative Theme

#### **Motivating Example**



Key Takeaways

CAT improves over the state-of-the-art approaches for **vulnerability detection** by **11.3% - 146%** in Precision, **10.4% - 553%** in Recall, and **13.4% - 322%** in F1-Score.

CAT *improves over the state-of-the-art* DeepCVA *by* **25.5%** *in macro F1-Score and* **26.9%** *in multi-class MCC*.

CAT successfully utilizes the vulnerable statements towards correctly predicting the presence of vulnerability, as well as its assessment types.

CAT *improves over the state-of-the-art* DeepCVA by **31%** *in macro F1-Score and* **33.3%** *in multi-class MCC*.