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Introduction

Code completion is an important feature in an IDE to improve developers’
productivity.

Recent research on code completion focuses mostly on next-token
prediction, or aim to complete entire statements or blocks of code.

In this work, we specifically focus on synthesizing syntactic units at any
location.

This is especially useful for other general program synthesis tasks such as
automated program repair, test generation in automated testing, etc.,
which make use of one such code completion (CC) engine.
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Code statements are project-specific, thus rendering code mining and
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More recent large language model (LLM)-based approaches

> canrecommend syntactically incorrect or undefined code
> can invoke functions/methods outside the scope of the codebase.
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subtree

e integrates candidate syntactic verification into the process of learning
the expansion from a smaller AST subtree to a larger one, thus ensuring
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e concretizes syntactic templates with variable names.
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] ] Syntax Valid Expansion
Step 1. Training for . # e TS

If - E, S1,82

While ::= while E Stmt While —» E
While — E, Stmt

For =:= for Init E Update For — Init, E, Update

Stmt For — Init, E, Update, Stmt

Switch = switch E Case™ Switch - E

Def Switch — E, F with F € all Case combinations

Switch — E, Def
Switch — E, F, Def with F € all Case combs

Case ::= case E: Stmt Case = E
Case — E, Stmt
InfixOp := E1 Op E2 InfixOp — El, E2
EnhancedFor ::= VarDec, Ref, Stmt ForEach — VarDec, Ref
ForEach — VarDec, Ref, Stmt
Do ::= Stmt, Cond Do — Stmt, Cond
Try == try Block {Catches Try — Block, all combinations of Catches
| Finally} Try — Block, Finally
Try — Block , all comb. of Catches, Finally
Conditional == E1 ?E2: E3 Conditional — E1, E2, E3
Synchronized ::= Exp, Stmt Synchronized — Exp, Stmt
Labeled ::= Lit, Stmt Labeled — Lit, Stmt
Variable Dec. ::= TypeRef, VarSpec VarDec — TypeRef, VarSpec
Variable Spec. ::= Name, Init VarSpec — Name

VarSpec — Name, Init

Type Reference ::= TypeName, TypeArg | TypeRef — TypeName

TypeRef — TypeName, TypeArg
Other All combinations
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Step 1. Training for ASTLAN.

Step 2. Predicting /I Canaratineg tha tamnlata nf tha navt ‘7':11id AST subtree.
Algorithm 1 Concretizing Syntactic Template

Step 3. Variable n 1 function Man(templ, V) mplate.

candList = concretizeNext(templ,V, 0,1)
3: return candList

4: function CoNcRETIZE(templ,V ,curCandList,loc)

5 if loc > size(templ) then return curCandList
6: codeCands = ()

7 codeTokens = a(templ[loc],V)

8 if curCandList = () then

9: for all ¢t € codeTokens do

10: newCand = connect(EMPTY_TREE, t)

11: codeCands.adds(newCand)

12: else

13: for all ¢t € codeTokens do

14: for all cand € curCandList do
15: newCand = connect(cand, t)
16: codeCands.adds(newCand)

17: return Concretize(templ,V, codeCands, DFS.next(loc))
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Total methods 638,293
Total SLOCs 7,144,198
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Total distinctive fragments 36,608,102
Total distinctive AST nodes 302,367

e Evaluation Metrics

o ‘top-k Accuracy’ is defined as the ratio between the number of hits over the
total number of suggestions.

e [Experimental Results

O Top-1 | Top-2 | Top-3 | Top-4 | Top-5
33.2 42.6 43.7 50.6 62.1




2. Next Statement Code Completion

e [Experimental Results
(@)

Top1 | Top3 | Top 6 | Top 10
AutoSC [15] | 203 28.5 32.0 42.2
PCC [19] 289 | 511 | 548 | 593
AsTCC 35.1 59.0 67.8 80.7
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Syntactic Patterns Mining

Automated Program Repair
Using ASTCC in Automated Unit Test Generation
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...feel free to reach out to us if you've any questions :)

Anh Tuan Nguyen Aashish Yadavally Tien N. Nguyen
ntanhbk44@gmail.com aashish.yadavally@utdallas.edu tien.n.nguyen@utdallas.edu



