ﬁl-D THE UNIVERSITY OF TEXAS AT DALLAS

Next Syntactic-Unit
Code Completion and Applications

Anh Tuan Nguyen Aashish Yadavally Tien N. Nguyen
Axon Department of Computer Science Department of Computer Science
University of Texas at Dallas University of Texas at Dallas

Introduction

/7

% Code completion is an important feature in an IDE to improve
developers’ productivity.

Introduction

Code completion is an important feature in an IDE to improve
developers’ productivity.

Recent research on code completion focuses mostly on next-token
prediction, or aim to complete entire statements or blocks of code.

Introduction

Code completion is an important feature in an IDE to improve developers’
productivity.

Recent research on code completion focuses mostly on next-token
prediction, or aim to complete entire statements or blocks of code.

In this work, we specifically focus on synthesizing syntactic units at any
location.

Introduction

Code completion is an important feature in an IDE to improve developers’

productivity.

Recent research on code completion focuses mostly on next-token
prediction, or aim to comnlete entire statements or blocks of code.

In this work, we
location.

T o
2 while (textFile.hasNextLine())
3 {

4 String line; [l
Sit}

—

1 o
2 while (textFile.hasNextLine())
3

String line;

..................

o n b
B
=
®
o
=
o
&
o
=
-3
g
&

actic units at any

Introduction

Code completion is an important feature in an IDE to improve developers’
productivity.

Recent research on code completion focuses mostly on next-token
prediction, or aim to complete entire statements or blocks of code.

In this work, we specifically focus on synthesizing syntactic units at any
location.

This is especially useful for other general program synthesis tasks such as
automated program repair, test generation in automated testing, etc.,
which make use of one such code completion (CC) engine.

Why is this useful?

% Program analysis (PA)-based approaches cannot rank the candidates
based on occurrence likelihoods.

Why is this useful?

Program analysis (PA)-based approaches cannot rank the candidates

based on occurrence likelihoods.
Code statements are project-specific, thus rendering code mining and
information retrieval (IR)-based approaches ineffective.

Why is this useful?

Program analysis (PA)-based approaches cannot rank the candidates

based on occurrence likelihoods.
Code statements are project-specific, thus rendering code mining and
information retrieval (IR)-based approaches ineffective.

More recent large language model (LLM)-based approaches

> canrecommend syntactically incorrect or undefined code
> can invoke functions/methods outside the scope of the codebase.

Our Approach: ASTCC

e is an AST-based statistical language model.

Our Approach: ASTCC

e is an AST-based statistical language model.
e leverages ASTLAN!" to predict the next “expansion” of the current AST
subtree.

[1] A.T.Nguyen and T. N. Nguyen, "Graph-Based Statistical Language Model for Code," 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering,
2015, pp. 858-868, doi: 10.1109/ICSE.2015.336.

Our Approach: ASTCC

e isan AST-based: [T
2 while (textFile.hasNextLine()) 2 while (textFile.hasNextLine())
384 384
o leverages ASTLA] |} suinginen —> [T e current AST
53 5
subtree. 6)
KAST While \
P Block
Method Block Statement
Invocation Statement
e] Added
. hasNext| | Variable S “
Variable : N
Line Declaration| | §y :
i If Statement | !
- [satement] |
E Cond Break E

L

Expr | [Statement

[1] A. T.Nguyen and T. N. Nguyen, "Graph-Based Statistical Language Model for Code," 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering,
2015, pp. 858-868, doi: 10.1109/ICSE.2015.336.

Our Approach: ASTCC

_ VAR1_Scanner

e isan AST-based: - >N

1 .. i e
2 while (textFile.hasNextLine()) 2 while (textFile.hasNextLine())
34 3 {
o leverages ASTLA] |} suinginen —> [T e current AST
51 5 ‘:'
subtree. 6)
r i
KAST While \
3 Block
Method Block Statement
Invocation Statement
e] Added
. hasNext Variable —
Ancestor AST A Variable | | "5 | |peclaration | 0 % rDescendant AST
{ If Statement | !
N
E Cond Break E
\ '| Expr | [Statement]|;
] J

[1] A. T.Nguyen and T. N. Nguyen, "Graph-Based Statistical Language Model for Code," 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering,
2015, pp. 858-868, doi: 10.1109/ICSE.2015.336.

Our Approach: ASTCC

e is an AST-based statistical language model.

e leverages ASTLAN to predict the next “expansion” of the current AST
subtree.

e integrates candidate syntactic verification into the process of learning
the expansion from a smaller AST subtree to a larger one, thus ensuring
the generated templates are syntactically valid

[1] A.T.Nguyen and T. N. Nguyen, "Graph-Based Statistical Language Model for Code," 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering,
2015, pp. 858-868, doi: 10.1109/ICSE.2015.336.

Our Approach: ASTCC

e is an AST-based statistical language model

e leverages ASTLAN to predict the next “expansion” of the current AST
subtree

e integrates candidate syntactic verification into the process of learning
the expansion from a smaller AST subtree to a larger one, thus ensuring
the generated templates are syntactically valid

e concretizes syntactic templates with variable names.

[1] A.T.Nguyen and T. N. Nguyen, "Graph-Based Statistical Language Model for Code," 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering,
2015, pp. 858-868, doi: 10.1109/ICSE.2015.336.

Our Approach: ASTCC

Step 1. Training for ASTLAN.

Our Approach: ASTCC

]] Syntax Valid Expansion
Step 1. Training for . # e TS

If - E, S1,82

While ::= while E Stmt While —» E
While — E, Stmt

For =:= for Init E Update For — Init, E, Update

Stmt For — Init, E, Update, Stmt

Switch = switch E Case™ Switch - E

Def Switch — E, F with F € all Case combinations

Switch — E, Def
Switch — E, F, Def with F € all Case combs

Case ::= case E: Stmt Case = E
Case — E, Stmt
InfixOp := E1 Op E2 InfixOp — El, E2
EnhancedFor ::= VarDec, Ref, Stmt ForEach — VarDec, Ref
ForEach — VarDec, Ref, Stmt
Do ::= Stmt, Cond Do — Stmt, Cond
Try == try Block {Catches Try — Block, all combinations of Catches
| Finally} Try — Block, Finally
Try — Block , all comb. of Catches, Finally
Conditional == E1 ?E2: E3 Conditional — E1, E2, E3
Synchronized ::= Exp, Stmt Synchronized — Exp, Stmt
Labeled ::= Lit, Stmt Labeled — Lit, Stmt
Variable Dec. ::= TypeRef, VarSpec VarDec — TypeRef, VarSpec
Variable Spec. ::= Name, Init VarSpec — Name

VarSpec — Name, Init

Type Reference ::= TypeName, TypeArg | TypeRef — TypeName

TypeRef — TypeName, TypeArg
Other All combinations

Our Approach: ASTCC

Step 1. Training for ASTLAN.
Step 2. Predicting/Generating the template of the next valid AST subtree.

Our Approach: ASTCC

Step 1. Training for ASTLAN.

Step 2. Predictir\n /IClanaratinag tha tamnlata nf tha navt Valid AST Subtree.
Pr(C(t)|Ctxt) = Pr((t,N*,E*)|ts, .., tn)

o #methods(11,C(t))+a #methods(t(;_y).C(1))+a
- #melhod(C}t))+a.tmethods """ #me thod(C(‘t})+a.#me thods "
#methods(t,C(t)) #methods(t) #methods(t,,C(t))+a

#methods(t) ~ #methods “ #method(C(t))+atmethods

Our Approach: ASTCC

Step 1. Training for ASTLAN.
Step 2. Predicting/Generating the template of the next valid AST subtree.

Step 3. Variable names’ concretization in the syntactic template.

Our Approach: ASTCC

Step 1. Training for ASTLAN.

Step 2. Predicting /I Canaratineg tha tamnlata nf tha navt ‘7':11id AST subtree.
Algorithm 1 Concretizing Syntactic Template

Step 3. Variable n 1 function Man(templ, V) mplate.

candList = concretizeNext(templ,V, 0,1)
3: return candList

4: function CoNcRETIZE(templ,V ,curCandList,loc)

5 if loc > size(templ) then return curCandList
6: codeCands = ()

7 codeTokens = a(templ[loc],V)

8 if curCandList = () then

9: for all ¢t € codeTokens do

10: newCand = connect(EMPTY_TREE, t)

11: codeCands.adds(newCand)

12: else

13: for all ¢t € codeTokens do

14: for all cand € curCandList do
15: newCand = connect(cand, t)
16: codeCands.adds(newCand)

17: return Concretize(templ,V, codeCands, DFS.next(loc))

Pre lim in a ry We evaluate accuracy of ASTCC in:

1. suggesting next

Em irica l 2. suggesting next
Evaluation

1. Next Syntactic-Unit Code Completion

e Data Collection

O Total projects 1,000
Total classes 104,645
Total methods 638,293
Total SLOCs 7,144,198
Total valid AST’s fragments | 1,047,614,720
Total distinctive fragments 36,608,102
Total distinctive AST nodes 302,367

1. Next Syntactic-Unit Code Completion

e Data Collection

o Total projects 1,000
Total classes 104,645
Total methods 638,293
Total SLOCs 7,144,198
Total valid AST’s fragments | 1,047,614,720
Total distinctive fragments 36,608,102
Total distinctive AST nodes 302,367

e Evaluation Metrics

o ‘top-k Accuracy’ is defined as the ratio between the number of hits over the
total number of suggestions.

1. Next Syntactic-Unit Code Completion

e Data Collection

@) Total projects 1,000
Total classes 104,645
Total methods 638,293
Total SLOCs 7,144,198
Total valid AST’s fragments | 1,047,614,720
Total distinctive fragments 36,608,102
Total distinctive AST nodes 302,367

e Evaluation Metrics

o ‘top-k Accuracy’ is defined as the ratio between the number of hits over the
total number of suggestions.

e [Experimental Results

O Top-1 | Top-2 | Top-3 | Top-4 | Top-5
33.2 42.6 43.7 50.6 62.1

2. Next Statement Code Completion

e [Experimental Results
(@)

Top1 | Top3 | Top 6 | Top 10
AutoSC [15] | 203 28.5 32.0 42.2
PCC [19] 289 | 511 | 548 | 593
AsTCC 35.1 59.0 67.8 80.7

S

Future Applications and Plan

Real-world Code Completion Benchmark and Human Studies.
Syntactic Patterns Mining

Automated Program Repair
Using ASTCC in Automated Unit Test Generation

Summary

Our Approach: ASTCC Our Approach: ASTCC

is an AST-based statistical language model
leverages ASTLAN to predict the next “expansion” of the current AST subtree
e integrates candidate syntactic verification into the process of learning the
expansion from a smaller AST subtree to a larger one, thus ensuring the
generated templates are syntactically valid
e concretizes syntactic templates with variable names.

while (textFile.hasNextLine0)
¢

“ewn

String line; Il
}

= o]
Method Block.

Invocation|

Variable
Declaration

1] A.T.Nguyenand T.N. Nguyen, "Graph-Based Statistical Language Model for Code,"” 2015 IEEE/ACM 37th IEEE ional C Soft
2015, pp. 858-868, doi: 10.1109/ICSE.2015.336.

Our Approach: ASTCC

while (textFile.hasNextLine0)
¢

“ewn

String line; Il
}

= o]
Method Block.

Invocation|

Variable
Declaration

Preliminary Empirical Evaluation

AstCC can correctly suggest the next syntactic unit in 33% of the cases, and in
62% of the cases, it correctly suggests within five candidates

AstCC can correctly suggest the next statement in 35% of the cases, and in
80% of the cases, it correctly suggests within ten candidates

Our Approach: ASTCC

is an AST-based statistical language model

leverages ASTLAN to predict the next “expansion” of the current AST subtree

e integrates candidate syntactic verification into the process of learning the
expansion from a smaller AST subtree to a larger one, thus ensuring the
generated templates are syntactically valid

°

concretizes syntactic templates with variable names.

[1] A. T.Nguyen and T.N. Nguyen, "Graph-Based Statistical Language Model for Code,” 2015 IEEE/ACM 37th IEEE ional C Software
2015, pp. 858-868, doi: 10.1109/ICSE.2015.336.

Our Approach: ASTCC

while (textFile hasNextLine()
«

while (textFile-hasNextLine()

}

“ewn

{
String line; Il
}

= o]
Method Block.

Invocation|

St
if

onawn =

Variable
Declaration

Preliminary Empirical Evaluation

AstCC can correctly suggest the next syntactic unit in 33% of the cases, and in
62% of the cases, it correctly suggests within five candidates

AstCC can correctly suggest the next statement in 35% of the cases, and in
80% of the cases, it correctly suggests within ten candidates

1] A.T.Nguyenand T.N. Nguyen, "Graph-Based Statistical Language Model for Code,"” 2015 IEEE/ACM 37th IEEE
2015, pp. 858-868, doi: 10.1109/ICSE.2015.336.

00N

Our Approach: ASTCC

is an AST-based statistical language model

leverages ASTLAN to predict the next “expansion” of the current AST subtree
integrates candidate syntactic verification into the process of learning the
expansion from a smaller AST subtree to a larger one, thus ensuring the
generated templates are syntactically valid

concretizes syntactic templates with variable names.

C Software

Future Applications and Plan

Real-world Code Completion Benchmark and Human Studies.
Syntactic Patterns Mining

Automated Program Repair

Using ASTCC in Automated Unit Test Generation

Our Approach: ASTCC

while (textFile hasNextLine() while (textFile hasNextLine())

String line; I

Variable
Declaration

Preliminary Empirical Evaluation

< AstCC can correctly suggest the next syntactic unit in 33% of the cases, and in
62% of the cases, it correctly suggests within five candidates

< AstCC can correctly suggest the next statement in 35% of the cases, and in
80% of the cases, it correctly suggests within ten candidates

[1] A. T.Nguyen and T.N. Nguyen, "Graph-Based Statistical Language Model for Code,” 2015 IEEE/ACM 37th IEEE

Our Approach: ASTCC

is an AST-based statistical language model

leverages ASTLAN to predict the next “expansion” of the current AST subtree
integrates candidate syntactic verification into the process of learning the
expansion from a smaller AST subtree to a larger one, thus ensuring the
generated templates are syntactically valid

concretizes syntactic templates with variable names.

Confe Software

2015, pp. 858-868, doi: 10.1109/ICSE.2015.336.

00N

Future Applications and Plan

Real-world Code Completion Benchmark and Human Studies.
Syntactic Patterns Mining

Automated Program Repair

Using ASTCC in Automated Unit Test Generation

...feel free to reach out to us if you've any questions :)

Anh Tuan Nguyen Aashish Yadavally Tien N. Nguyen
ntanhbk44@gmail.com aashish.yadavally@utdallas.edu tien.n.nguyen@utdallas.edu

