
Next Syntactic-Unit
Code Completion and Applications

Anh Tuan Nguyen
Axon

Tien N. Nguyen
Department of Computer Science

University of Texas at Dallas

Aashish Yadavally
Department of Computer Science

University of Texas at Dallas

❖ Code completion is an important feature in an IDE to improve
developers’ productivity.

Introduction

❖ Code completion is an important feature in an IDE to improve
developers’ productivity.

❖ Recent research on code completion focuses mostly on next-token
prediction, or aim to complete entire statements or blocks of code.

Introduction

❖ Code completion is an important feature in an IDE to improve developers’
productivity.

❖ Recent research on code completion focuses mostly on next-token
prediction, or aim to complete entire statements or blocks of code.

❖ In this work, we specifically focus on synthesizing syntactic units at any
location.

Introduction

❖ Code completion is an important feature in an IDE to improve developers’
productivity.

❖ Recent research on code completion focuses mostly on next-token
prediction, or aim to complete entire statements or blocks of code.

❖ In this work, we specifically focus on synthesizing syntactic units at any
location.

Introduction

❖ Code completion is an important feature in an IDE to improve developers’
productivity.

❖ Recent research on code completion focuses mostly on next-token
prediction, or aim to complete entire statements or blocks of code.

❖ In this work, we specifically focus on synthesizing syntactic units at any
location.

❖ This is especially useful for other general program synthesis tasks such as
automated program repair, test generation in automated testing, etc.,
which make use of one such code completion (CC) engine.

Introduction

❖ Program analysis (PA)-based approaches cannot rank the candidates
based on occurrence likelihoods.

Why is this useful?

❖ Program analysis (PA)-based approaches cannot rank the candidates
based on occurrence likelihoods.

❖ Code statements are project-specific, thus rendering code mining and
information retrieval (IR)-based approaches ineffective.

Why is this useful?

❖ Program analysis (PA)-based approaches cannot rank the candidates
based on occurrence likelihoods.

❖ Code statements are project-specific, thus rendering code mining and
information retrieval (IR)-based approaches ineffective.

❖ More recent large language model (LLM)-based approaches
➢ can recommend syntactically incorrect or undefined code
➢ can invoke functions/methods outside the scope of the codebase.

Why is this useful?

● is an AST-based statistical language model.

Our Approach: ASTCC

● is an AST-based statistical language model.
● leverages ASTLAN[1] to predict the next “expansion” of the current AST

subtree.

[1] A. T. Nguyen and T. N. Nguyen, "Graph-Based Statistical Language Model for Code," 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering,
2015, pp. 858-868, doi: 10.1109/ICSE.2015.336.

Our Approach: ASTCC

● is an AST-based statistical language model.
● leverages ASTLAN to predict the next “expansion” of the current AST

subtree.

Our Approach: ASTCC

[1] A. T. Nguyen and T. N. Nguyen, "Graph-Based Statistical Language Model for Code," 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering,
2015, pp. 858-868, doi: 10.1109/ICSE.2015.336.

● is an AST-based statistical language model.
● leverages ASTLAN to predict the next “expansion” of the current AST

subtree.

Our Approach: ASTCC

[1] A. T. Nguyen and T. N. Nguyen, "Graph-Based Statistical Language Model for Code," 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering,
2015, pp. 858-868, doi: 10.1109/ICSE.2015.336.

Ancestor AST Descendant AST

VAR1_Scanner

● is an AST-based statistical language model.
● leverages ASTLAN to predict the next “expansion” of the current AST

subtree.
● integrates candidate syntactic verification into the process of learning

the expansion from a smaller AST subtree to a larger one, thus ensuring
the generated templates are syntactically valid

Our Approach: ASTCC

[1] A. T. Nguyen and T. N. Nguyen, "Graph-Based Statistical Language Model for Code," 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering,
2015, pp. 858-868, doi: 10.1109/ICSE.2015.336.

● is an AST-based statistical language model
● leverages ASTLAN to predict the next “expansion” of the current AST

subtree
● integrates candidate syntactic verification into the process of learning

the expansion from a smaller AST subtree to a larger one, thus ensuring
the generated templates are syntactically valid

● concretizes syntactic templates with variable names.

Our Approach: ASTCC

[1] A. T. Nguyen and T. N. Nguyen, "Graph-Based Statistical Language Model for Code," 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering,
2015, pp. 858-868, doi: 10.1109/ICSE.2015.336.

Step 1. Training for ASTLAN.

Our Approach: ASTCC

Step 1. Training for ASTLAN.

Our Approach: ASTCC

Step 1. Training for ASTLAN.

Step 2. Predicting/Generating the template of the next valid AST subtree.

Our Approach: ASTCC

Step 1. Training for ASTLAN.

Step 2. Predicting/Generating the template of the next valid AST subtree.

Our Approach: ASTCC

Step 1. Training for ASTLAN.

Step 2. Predicting/Generating the template of the next valid AST subtree.

Step 3. Variable names’ concretization in the syntactic template.

Our Approach: ASTCC

Step 1. Training for ASTLAN.

Step 2. Predicting/Generating the template of the next valid AST subtree.

Step 3. Variable names’ concretization in the syntactic template.

Our Approach: ASTCC

We evaluate accuracy of ASTCC in:
1. suggesting next syntactic-unit
2. suggesting next statement

Preliminary
Empirical

Evaluation

● Data Collection
○

1. Next Syntactic-Unit Code Completion

● Data Collection
○

● Evaluation Metrics
○ ‘top-k Accuracy’ is defined as the ratio between the number of hits over the

total number of suggestions.
○

1. Next Syntactic-Unit Code Completion

● Data Collection
○

● Evaluation Metrics
○ ‘top-k Accuracy’ is defined as the ratio between the number of hits over the

total number of suggestions.
○

● Experimental Results
○

1. Next Syntactic-Unit Code Completion

○
● Experimental Results

○

2. Next Statement Code Completion

1. Real-world Code Completion Benchmark and Human Studies.
2. Syntactic Patterns Mining
3. Automated Program Repair
4. Using ASTCC in Automated Unit Test Generation

Future Applications and Plan

Summary

Summary

Summary

Summary

Summary

…feel free to reach out to us if you’ve any questions :)

 Anh Tuan Nguyen
ntanhbk44@gmail.com

Aashish Yadavally
aashish.yadavally@utdallas.edu

Tien N. Nguyen
tien.n.nguyen@utdallas.edu

