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❖ Code completion is an important feature in an IDE to improve developers’ 
productivity.

❖ Recent research on code completion focuses mostly on next-token 
prediction, or aim to complete entire statements or blocks of code.

❖ In this work, we specifically focus on synthesizing syntactic units at any 
location.

❖ This is especially useful for other general program synthesis tasks such as 
automated program repair, test generation in automated testing, etc., 
which make use of one such code completion (CC) engine. 
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❖ Program analysis (PA)-based approaches cannot rank the candidates 
based on occurrence likelihoods.

❖ Code statements are project-specific, thus rendering code mining and 
information retrieval (IR)-based approaches ineffective.

❖ More recent large language model (LLM)-based approaches
➢ can recommend syntactically incorrect or undefined code
➢ can invoke functions/methods outside the scope of the codebase.

Why is this useful?
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● is an AST-based statistical language model
● leverages ASTLAN to predict the next “expansion” of the current AST 

subtree
● integrates candidate syntactic verification into the process of learning 

the expansion from a smaller AST subtree to a larger one, thus ensuring 
the generated templates are syntactically valid

● concretizes syntactic templates with variable names.

Our Approach: ASTCC

[1]  A. T. Nguyen and T. N. Nguyen, "Graph-Based Statistical Language Model for Code," 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, 
2015, pp. 858-868, doi: 10.1109/ICSE.2015.336.
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We evaluate accuracy of ASTCC in: 
1. suggesting next syntactic-unit 
2. suggesting next statement

Preliminary 
Empirical 

Evaluation
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● Experimental Results
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2.   Next Statement Code Completion



1. Real-world Code Completion Benchmark and Human Studies.
2. Syntactic Patterns Mining
3. Automated Program Repair
4. Using ASTCC in Automated Unit Test Generation

Future Applications and Plan
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…feel free to reach out to us if you’ve any questions  :)
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