
PHRASE2SET: Phrase-to-Set Machine Translation
and Its Software Engineering Applications
Thanh V. Nguyen

Amazon
Seattle, Washington, USA

thanhng.cs@gmail.com

Aashish Yadavally
Computer Science Department

University of Texas at Dallas, USA
aashish.yadavally@utdallas.edu

Tien N. Nguyen
Computer Science Department

University of Texas at Dallas, USA
tien.n.nguyen@utdallas.edu

Abstract—Machine translation has been applied to software
engineering (SE) problems, e.g., software tagging, language mi-
gration, bug localization, auto program repair, etc. However, ma-
chine translation primarily supports only sequence-to-sequence
transformations and falls short during the translation/transfor-
mation from a phrase or sequence in the input to a set in the
output. An example of such a task is tagging the input text in a
software library tutorial or a forum entry text with a set of API
elements that are relevant to the input.

In this work, we propose PHRASE2SET, a context-sensitive
statistical machine translation model that learns to transform a
phrase of a mixture of code and texts into a set of code or text
tokens. We first design a token-to-token algorithm that computes
the probabilities of mapping individual tokens from phrases to
sets. We propose a Bayesian network-based statistical machine
translation model that uses these probabilities to decide a trans-
lation process that maximizes the joint translation probability. To
achieve that, we consider the context of the tokens in the source
side and that in the target side via their relative co-occurrence
frequencies. We evaluate PHRASE2SET in three SE applications:
1) tagging the fragments of texts in a tutorial with the relevant
API elements, 2) tagging the StackOverflow entries with relevant
API elements, 3) text-to-API translation. Our empirical results
show that PHRASE2SET achieves high accuracy and outperforms
the state-of-the-art models in all three applications. We also
provide the lessons learned and other potential applications.

Keywords-Machine Translation; Phrase-to-Set Translation;
Software Tagging; Text-to-Code, Code-to-Text Translation;

I. INTRODUCTION

In recent years, several approaches have been explored to
develop techniques for the translation/transformation between
texts and source code in software engineering (SE) applica-
tions. An important task in such applications is to derive the
set of code and text tokens that are relevant or correspond to
the given text or the mixture of code and texts. Specifically,
researchers tackled this problem with machine translation
(MT) approaches such as phrase-based MT [1], graph-based
MT [2], neural-network-based MT [3], and deep learning-
based encoder-decoder or transformer models [4].

Despite their successes, a key limitation of these approaches
is that they enforce the order of the tokens in the output. In
some applications, the API elements do not need to follow a
strict order. Consider the tutorial tagging task [5], [6], where,
given a fragment of texts from the tutorial of a software library,
the task is to tag it with relevant API elements that the texts
explain. In this application, the set of API elements need not be

ordered. Using a sequence-to-sequence (seq-to-seq) model for
a phrase-to-set application, one faces such an ordering issue.

During the training phase, a seq-to-seq model requires an
ordered set of output tokens T ={A,B, ...} for a training
sample. There are two ways to address this criterion. First, we
can enforce a specific order (e.g., alphabetical order) on the
output tokens for all samples. However, deciding which order
to use is not trivial. Different sequences of output tokens might
yield different training results, which affects the prediction
quality. Moreover, we cannot try all possible sequences due to
a combinatorial explosion. Second, we can pick a random or-
der for the output tokens of a sample. However, this leads to a
scenario where two samples with the same set of output tokens
have different output sequences, e.g., A,B, ... vs B,A, In
this case, the model treats both output sequences differently
and cannot apply information learned from one sample to the
other. This also results in low prediction quality. A specific
example where this issue is relevant is the bug localization
problem [7], where, given a bug report, a model needs to
derive the set of methods in a project that could be the buggy
locations needing fixing. In this application, the set of methods
that must all be fixed do not have a strict order.

We propose PHRASE2SET, a context-sensitive statistical
machine translation model that learns to transform a phrase
of a mixture of code and texts into a set of code and/or
text tokens. We first design a token-to-token algorithm that
computes the mapping probabilities for individual tokens in
phrases to sets. Our Bayesian network-based machine trans-
lation model uses these probabilities to decide a translation
process maximizing the joint translation probability.

PHRASE2SET has the following three novel components.
First, we design an unsupervised learning algorithm based on
expectation-maximization that learns the mapping probabilities
P (t|s) between each source token s (i.e., text or code token)
and a target token t (i.e., text or code token). The training
dataset for this algorithm is a parallel corpus of mixtures of
code and texts, and the corresponding sets of code tokens.

Second, our model uses these single token-to-token mapping
probabilities P (t|s) to derive a translation process for all the
source tokens s, while taking into account the context among
other source and target tokens. The next source token s′ is the
one having the highest relative co-occurrence frequency with
all of the already-translated tokens. This is justified because

502

2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)

978-1-6654-3786-8/22/$31.00 ©2022 IEEE
DOI 10.1109/SANER53432.2022.00068

the co-occurring tokens on the source side are most likely part
of a meaningful sentence. For example, consider the text-to-
API application with an input “send network message”. Each
of the text tokens in the input can be mapped to one or multiple
API elements. If “message” was already selected for transla-
tion into Message.compose, our model would pick “send” for
translation next, since the token “send” has the highest co-
occurrence frequency with “message” in the training dataset.
This choice will likely result in the API element Message.send.
Similarly, to select an API element among several alternatives,
we consider the already-generated API elements. The tokens
considered during the translation on both sides are referred to
as source context and target context. Finally, we develop an
inferring algorithm to derive the set of code or text tokens in
the target side that maximizes the joint translation probability
based on the token-to-token mapping probabilities P .

We conducted experiments to evaluate PHRASE2SET in
three applications: 1) [StackOverflow application] tagging
StackOverflow (SO) entries with relevant API elements, 2)
[Tutorial application] tagging fragments of texts in a tutorial
with the relevant API elements, and 3) [Text-to-API applica-
tion] deriving the set of APIs to implement the task described
in the given text. We trained PHRASE2SET on 236,919 pairs
of textual descriptions from SO and the corresponding sets
of API elements for the SO entries [2]. For the Stack-
Overflow application, our results show that PHRASE2SET
improves over the state-of-the-art approach seq2seq [8], an
RNN-based sequence-to-sequence translation model, by 9–
22% in precision and 15–24% in recall. For the Tutorial
application, we show that PHRASE2SET improves the state-of-
the-art technique [5] by about 25.5% in precision and 35.9%
in recall. For the text-to-API application, it also outperforms
the baselines in top-k accuracy.

In brief, the key contributions of this paper include:
1) PHRASE2SET [9], a phrase-to-set statistical machine

translation model that accepts a mixture of text and code
tokens, and returns the set of relevant text or code tokens.
This tool does not just grab specific relevant tokens from the
text, but also derives relevant tokens that it learns from the
dataset and do not appear in the given text.

2) An extensive evaluation to show PHRASE2SET’s better
performance than the baseline models in three SE applications.

3) Potential applications of PHRASE2SET are suggested.

II. MOTIVATING EXAMPLE AND APPROACH OVERVIEW

A. Real-World Example

Figure 1 shows a StackOverflow entry where a user posted a
question on how to make a copy of a file in Android. Based on
the data in [2], this entry is tagged with the APIs in Figure 2:
FileInputStream, FileOutputStream, FileInputStream.read, FileOutput-
Stream.write, FileInputStream.close, and FileOutputStream.close.

In this tagging application, the fundamental task is to accept
as input a given fragment of texts describing a functionality
or explaining the usage of some API elements, and to output
the set of API elements relevant to the texts. Earlier works ad-
dressed this problem via information retrieval [10], [11], [12],

Question 9292954
Title: How to make a copy of a file in Android
In my app I want to save a copy of a certain file with a
different name (which I get from user) Do I really need to
open the contents of the file and write it to another file? What
is the best way to do so?

Figure 1: StackOverflow Entry #9292954

FileInputStream, FileOutputStream, FileInputStream.read,
FileOutputStream.write, FileInputStream.close, and FileOutputStream.close

Figure 2: API Elements as the tag for the SO entry #9292954

[13], with the goal of searching for API code elements [14].
However, these IR approaches are not effective when the API
elements do not appear in the texts, e.g., in Figure 1. To
address this problem, several works discussed earlier [1], [2],
[15], [3] treated the application as a text-to-code translation
problem, and explored different statistical MT techniques.

For training a sequence-to-sequence model, we need to
ensure the set of API elements is in a total order. However,
API elements are not necessarily ordered. For example, in
Figure 2, the API corresponding to closing the first file
(via FileInputStream), and that to closing the second one (via
FileOutputStream) need not necessarily be in this order. If we
decide on a specific order (e.g., alphabetical order), we must
also consider other orderings as each might result in a different
trained model. Furthermore, since many such orderings are
possible, training different models for each is computationally
expensive. In contrast, in the case of random order, the model
would consider the same set of output tokens but in a different
sequence while training, thus affecting its accuracy.

B. Approach Overview

PHRASE2SET aims to translate a sequence of texts/code into
a set of texts/code. It works in two phases. To train the model,
having a parallel corpus C of pairs of phrases S and the corre-
sponding sets T is essential. First, our unsupervised learning
algorithm (Section III) learns from C the mapping probabilities
P (t|s) between every source token s and every target token t.
For this, the algorithm utilizes expectation-maximization tech-
nique, which considers the order of source tokens s in S, but
not for the target tokens t in T . In the illustration in Figure 3,
thicker the line, higher the mapping probability.

Next, for each source token s in the given sequence, we
create an ordered list of mapped target tokens Ls, ranked
based on the calculated P (t|s) values. A naive approach would
collect the top-1 mapped target tokens for the source tokens
from left-to-right to build the output set. However, this might
not maximize the translation probability for the entire phrase.

Thus, in the second phase, given the source tokens s1, s2, ...,
sn, we determine an order for translating the tokens depending
on P (t|s) (Section IV), and decide which target token in each
Ls is chosen (Section V). To do so, we use a novel Bayesian
network statistical MT model (Section IV) that maximizes the
joint translation probability on both sides by considering the

503

context among the source tokens and the target ones. Figure 4
illustrates the selection of a source token for translation at a
step i and many possibilities of the next token to be translated.
Along the way, the set of the target tokens in each translation
step are accumulated. Details will be explained next.

III. INDIVIDUAL TOKEN-TO-TOKEN MAPPING

A. Formulation

This section covers our mapping algorithm, which gener-
ates individual token mappings in the input and output. We
adapt our algorithm from a sequence-to-sequence mapping
algorithm [16] as follows. The input is a collection of pairs
of phrases and corresponding sets of tokens. Assume that LS

and LT are two sets that form the pairs, with s = s1s2...sm
(source sequence) in LS and t = {t1t2...tl} (target set) in
LT . The goal is to compute the probability P (s|t), i.e., the
probability that a sequence s corresponds to a set t, given an
observable set t. We consider s to be generated with respect
to t by the following generative process. First, the length m
of a sequence s is chosen with a probability P (m|t). For each
position i (i ≤ m), the algorithm chooses a token tj ∈ t and
generates a token si depending on tj . In this scenario, si is
said to align with tj , and such a mapping is denoted by the
mapping variable ai = j. A token si can also be generated
without considering any token in t. Here, si is considered to be
aligned with a special token null. The vector a = ⟨a1, a2, ...am⟩
where 0 ≤ ai ≤ l is called a mapping of s and t (ai = 0
indicates there is no mapping for si in t). Considering t is a
set, to compute P (s|t), we have:

1. The choice of length m of phrase s is dependent only on
the size l of the output set t, i.e., P (m|t) = λ(m, l);

2. The choice of the mapping ai = j depends only on the
position i, the sequence length m, and the size l of the target
set t, i.e., P (ai|i,m, t) = π(j, i,m, l);

3. The choice of token si = u in sequence s depends only
on the token tj = v that it aligns with, i.e., P (si|tai , i,m, t) =
τ(u, v). This is true because t is a set, meaning that tj’s have
no ordering dependence between each other.

Based on these independent choices, the model computes:

P (s, a|t) = λ(m, l)
m∏
i=1

(π(ai, i,m, l).τ(si, tai)) (1)

Also, P (s|t) is computed by summing over all training pairs:

P (s|t) =
∑
a

P (s, a|t) =
l∑

a1=0

...
l∑

am=0

P (s, ⟨a1, a2, ...am⟩|t)

(2)
The model considers (λ, π, τ) as its parameters, which are
learned via an Expectation-Maximization algorithm as follows.

B. Expectation-Maximization (EM) Algorithm

The algorithm takes as input a training corpus T and
returns the parameters (λ, π, τ). T contains the pairs (s, t)
of the phrases and corresponding sets. The algorithm begins
by randomly initializing the parameters. Then, it iteratively
learns these parameters, where each iteration has two steps:

send network messages files...

Message.send
Socket.openFile.send

File.open

A B C ED

C’B’

A’D’
E’

A C B F
...

Pair 1

Pair 2

Pair n

phrase:

set:

phrase:

set:

phrase:

set:

Figure 3: Individual Token-to-Token Single Mapping

expectation (E-step), and maximization (M -step). In the E-
step, it uses the estimated model parameters (λ, π, τ) to infer
the expected mappings for all pairs (s, t) in the corpus. In the
M -step, the count values collected from those mappings are
used to re-estimate the parameters.

Figure 3 shows an illustration. At first, the model attempts
all possible mappings. For each pair (s, t), the model initially
assigns a small weight for each pair of tokens in s and t.
For example, the pairs of (“network”, Socket.open), (“send”,
Message.send), (“files”, File) are assigned with some initial
weights. The same treatment is applied to all pairs of (s, t) in
LS and LT . At each iteration, the model adjusts the weights
of the mappings based on the occurrence frequencies of those
mappings appearing in the parallel corpus. It continues to
optimize the mappings in the corpus, until all alignments
are exhaustively found, or there is no further improvement
between iterations. The final mappings between the source
and target tokens are denoted by the lines in Figure 3. The
thicker the line, the higher the probability given to the mapping
between a source and target token. The result of this phase is
the mapping probabilities for all pairs of source and target
tokens, which are used in the inferring phase (Section IV).

Consideration of an Ordered Source, Unordered Target: In
the E-step, we estimate the parameters and infer the expected
mappings for all pairs in the corpus. In the M -step, the (co)-
occurrence count values are collected from those mappings
in the corpus to re-estimate (λ, π, τ). For the co-occurrence
counts of the tokens on the source side, the order of the con-
secutive tokens is considered since the input is a phrase. In
contrast, for the co-occurrence counts of the tokens on the
target side, we do not consider their order. We only count the
occurrences of the tokens in the same sets on the target side.

IV. PHRASE2SET: PHRASE-TO-SET STATISTICAL
MACHINE TRANSLATION MODEL

A. Key ideas

We first present our novel Bayesian network-based statis-
tical MT model that derives translation steps for the source
tokens considering the contexts on both sides. Next, we present
an inferring algorithm that uses these steps to collect the target
tokens for the output that maximizes the joint translation prob-
ability for the entire phrase. We use the following key ideas:

504

1. The order of the source tokens in the input phrase has
to be considered in the token-to-token mapping algorithm in
Section III. If we collect the mapped code tokens in the input
phrase from left-to-right, we will face two issues. First, the
translation might be inefficient as there will be a large numbers
of mapped tokens at each step. For example, let us consider
the texts “open a file” (S1) and “open a socket” (S2). If we
translate the first token “open” in both texts, we will need
to consider many possibilities for opening different types of
resources. In contrast, if “file” in S1 or “socket” in S2 is
selected first for translation, we can narrow the search space
for the potential translated API elements corresponding to the
token “open”. Second, if we choose the source tokens from
left-to-right, the resulting set might not have the maximum
joint translation probabilities for the entire phrase. In short,
we need an appropriate process to translate the source tokens
for efficiency and highest total translation probabilities.

2. Choosing the first source token is crucial. To achieve that,
we identify the pivotal target token t as the one that is mapped
to the most tokens in the input phrase S. It is most likely that
t is relevant to the query. For example, in the query containing
the tokens “open”, “contents”, “file”, the pivotal target token
mapped to “file” as well as to “open” and “contents” could
be FileInputStream.open or FileOutputStream.open. We then map
the pivotal target token back to the phrase S using the token-
to-token mapping to identify the pivotal source token s.

3. We consider the context among source tokens in S. At
each step, we select a source token s for translation based
on its dependence upon the already-translated ones. A direct
solution is to utilize the pairwise occurrence of s and a
translated token s′ within texts in the training data. Specifi-
cally, s must have the highest relative co-occurrence frequency
with all of the already-translated source tokens: scoreS(s) =
1

|Q|
∑

s′∈Q
N(s,s′)
N(s′) where Q is the set of already-translated to-

kens, N(s, s′) is the number of phrases that s and s′ co-occur
in the training corpus, and N(s′) is the number of phrases
having s′. The idea is that the co-occurring tokens s and s′

are likely part of a meaningful text, e.g.,“open” “file”.
4. We also consider the context among the target tokens in

T . The next target token to be chosen must have the highest
relative co-occurrence frequency with all the target tokens that
were already collected: scoreT (T) = 1

|T |
∑

t′∈T
N(t,t′)
N(t′) where

T is the set of currently selected target tokens, N(t, t′) is the
number of times t and t′ co-occur in a set of target tokens for a
description in the training corpus, and N(t′) is the number of
times t′ occurs. The idea is that t and t′ going together often
indicates a relation in the target set. The next target token must
be among the most likely mapped tokens (i.e., with highest
mapping scores) for the currently translated token s according
to the token-to-token mapping probabilities. For N , in S, we
count source phrases, however, in T , we count target sets.

B. Model Formulation

1) Notations: Remind that S is the sequence of source
tokens in the given input and T is the set of target tokens.
We formulate a probability model in which the target set is

...s1 si-1 si sn...

T1 Ti-1 Ti Tn
... ...

chosen
source token

set of target
tokens

Figure 4: Bayesian Network for Phrase-to-Set Translation

conditional on given sequence. Formally, we aim to find a sub-
set T ∗ of the superset of all target tokens that maximizes the
translation probability P (T |S). This conditional probability is

P (T |S) = P (T, S)∑
T P (T, S)

We focus on the joint probability P (T, S) in the numerator
because the marginal probability over S does not depend on T .

2) Formulation: In Figure 4, let us use s1, s2, ..., sn to
denote the sequence of all tokens in the source phrase S,
and Ti to represent the set of target tokens translated from
each token si. At the ith step for selecting a source token
for translation, we focus on the (i − 1) source tokens that
were already-translated. Let us call this set Si−1. We do not
need to follow the order of source tokens in the input. Thus,
Si−1 is not necessarily {s1, ..., si−1}. For each si, we use the
individual token-to-token mapping algorithm in Section III to
compute for si, a set Ti of most likely target tokens.

At the ith step for selecting a source token for translation,
we define T<i = ⟨T1, T2, .., Ti−1⟩. T<i is a set-valued vector
with (i − 1) dimensions. This random vector corresponds to
the translated sets for the first (i− 1) chosen source tokens.

The union of the vector components is statistically sufficient
for inferring pairwise occurrence frequency. Thus, we define
T<i = ∪j<iTj (i.e., the union set of the translated sets of
target tokens). We adopt the computation from APITran [17]
and leverage Bayes rule to compute P (T |S) as follows:

P (T, S) = P (T1, T2, ..., Tn, s1, s2, ..., sn)

= P (T1, s1)P (T2, s2|T1, s1)...

P (Tn, sn|T1, T2, ..., Tn−1, s1, s2, ..., sn−1)

=
∏
i

P (Ti, si|T<i, Si−1)

(3)

We aim to find the optimal order of selecting the source tokens
in the input sequence s1, s2, ..., sn that maximizes the transla-
tion probability P (T |S), i.e., P (T, S). However, considering
all possible orderings of the source tokens in S and all combi-
nations of target tokens to compute the probability will result
in a combinatorial explosion. Thus, we adopt APITran [17] in
the computation in Figure 4. The idea is that the translation
is optimized at every ith step where we find a token si and
a translated set Ti from si, given the previous resulting target
sets and already-translated tokens. Consequently, we maximize
stepwise each factor in the product in (3):

T ∗
i = argmaxTiP (Ti, si|T ∗

<i, Si−1), (4)

505

where T ∗
i is the translated set of target tokens at ith step; si is

the translated token. We can break down the right-hand side
of Equation (4) with the following independence assumptions:
i) Ti and Si−1 are conditionally independent given T ∗

<i and si,
ii) si is independent of T ∗

<i given Si−1.

P (Ti, si|T ∗
<i, Si−1) = P (Ti|T ∗

<i, si, Si−1) ∗ P (si|T ∗
<i, Si−1)

= P (Ti|T ∗
<i, si) ∗ P (si|Si−1)

(5)
Next, let us explain how we compute Equation 5:

Step 1. To compute P (Ti|T ∗
<i, si) in Equation 5, we build

a weighting function f(Ti, T
∗
i−1, si), convert it to probability

by exponentiating and normalizing over all possible subsets
translated by si:

P (Ti|T ∗
<i, si) =

exp f(Ti, T
∗
i−1, ti)∑

T
′
i
exp f(T

′
i , T

∗
i−1, si)

(6)

f(Ti, T
∗
i−1, si) ≡

∑
t∈Ti

scoreT∗
<i
(t) ∗ P (t|si), (7)

where scoreT is defined in Section IV-A while P (t|si) is
the lexical probability obtained from token-to-token mapping
probabilities. This formula is the formal treatment of our key
idea #4 in Section IV-A in the sense that it guarantees to
find Ti with high translation probability and high relative co-
occurrence frequency with the target tokens in T ∗

<i.
Step 2. P (si|Si−1) in Equation 5 (key idea #3) is computed

as
P (si|Si−1) =

exp scoreSi−1
(si)∑

s
′
i∈S\Si−1

exp scoreSi−1
(s

′
i)

(8)

Finally, the relevance score for each target token t in translated
set T is computed at each step i by

score(t, S) ≡ P ({t}, si|T ∗
<i, Si−1) (9)

V. TARGET-TOKENS INFERRING ALGORITHM

In Figure 5, we illustrate our algorithm to infer the set of
target tokens. It takes as input the token-to-token mapping
model (with the scores of all single mappings), and a phrase
S consisting of n tokens. We first select the pivotal token and
corresponding target token (lines 2 and 8). To do so, we make
use of the mapping model to find for each source token si,
a ranked list of target tokens (line 10). We then identify the
pivotal target token t that is mapped to as many source tokens
in S as possible (line 11). The pivotal source token s is the one
with highest mapping score with t (line 12). Next, based on the
pivotal source and target tokens, we include other target tokens
(lines 5 and 15). To search for the next token to be translated,
we process the remaining tokens in the phrase S, finding token
s that has the highest co-occurrence score scoreS(s) with
the set of already-translated tokens (line 17), which initially
contains only the pivotal token. From the selected token s to
be translated, we find the best target tokens to be included in
the resulting set by considering the contexts on both the source
and target sides (FindBestTargetTokensInContexts, not shown).

Formula 6 is considered as the formal objective function
for FindBestTargetTokensInContexts. This step also assigns

1 function InferSetOfTargetTokens(Phrase S, TokenMappingModel M)
2 (SourceToken s, TargetToken t) = ChoosePivotMapping();
3 Q = {s} // set of already−translated source tokens
4 T = {t} // set of output target tokens
5 ExpandTargetTokens();
6 return T
7

8 function ChoosePivotMapping()
9 foreach term si in S

10 Ti = M(si) // top−K list of target tokens for si from TokenMappingModel
11 Find a target token t ∈ ∪Ti mapped to the most source tokens in S
12 Find a source token s ∈ S having highest mapping score with t
13 return (s, t)
14

15 function ExpandTargetTokens()
16 while (S != ∅)
17 Find s ∈ S with highest relative co−occur score with translated toks in Q
18 T ′ = FindBestTargetTokensInContexts(s, T) // using Formula 5-9
19 T = T ∪ T ′, Q = Q ∪ {s}
20 S = S \ {s}
21 return T

Figure 5: Target-Tokens Inference Algorithm

a relevance score for the selected target token according to
Formula 9. Specifically, it first uses the mapping model to find
the target tokens with highest mapping scores with s. Among
them, it selects the elements with highest scores scoreT , i.e.,
highest relative co-occurrence frequency with all target tokens
that were already selected in the resulting set. For example,
if the current selected token s=“file”, which can be mapped
to either FileInputStream.close or FileOutStream.close. However,
the current set of already-derived target tokens contains File-
InputStream.new. Thus, we chose FileInputStream.close since File-
InputStream.new and FileInputStream.close co-occurs often in the
training set. We repeat until all the remaining source tokens are
covered (line 20). Finally, we derive all target tokens (line 6).

If the phrase S contains API elements, we treat them as piv-
otal target tokens, and use them to identify the pivotal tokens
before the expansion starts. Thus, the algorithm remains the
same except ChoosePivotMapping() is changed as explained.
Our design strategy aims to favor the coverage of target tokens
while maintaining a reasonably low number of them.

VI. EMPIRICAL EVALUATION

We evaluate PHRASE2SET’s accuracy and usefulness in
three applications and compare it with the existing approaches.

1) [StackOverflow application]: tagging SO entries with
the API elements relevant to the entries.

2) [Tutorial application]: producing the set of API ele-
ments relevant to a given fragment of texts in textual tutorial.

3) [Text-to-API application]: producing the set of API el-
ements that are used to realize a task described in the input.

We seek to answer the following research questions:
RQ1. How accurate is PHRASE2SET in tagging SO entries

with relevant API elements? How is it compared to the state-
of-the-art sequence-to-sequence translation in seq2seq [15]?

RQ2. How accurate is PHRASE2SET in creating API el-
ements relevant to a text fragment in tutorials? How is it
compared to the unsupervised learning approach, FRAPT [5]?

RQ3. How accurate is it in deriving API elements for the
task described in a given text? How is it compared to sequence-
to-sequence-based SWIM [1] and RNN-based DeepAPI [3]?

RQ4. What are PHRASE2SET’s time and space complexity?

506

Table I: StackOverflow (SO) Dataset
Number of entries 236,919
Avg. number of words per entry 132
Size of word dictionary 701,781
Size of API element dictionary 11,834
Avg. number of embedded API elements per entry 9.2

(1) When you’re writing an application in which you would like to
perform specialized drawing and/or control the animation of
graphics, you should do so by drawing through a Canvas.
(2) A Canvas works for you as a pretense, or interface, to the
actual surface upon which your graphics will be drawn.
(3) It holds all of your “draw” calls.
(4) Via the Canvas, your drawing is actually performed upon an
underlying Bitmap, which is placed into the window.
(5) In the event that you’re drawing within the onDraw() callback
method, the Canvas is provided for you...
(6) You can also acquire a Canvas from
SurfaceHolder.lockCanvas(), when dealing with a SurfaceView.
(7) If you need to create a new Canvas, then you must define the
Bitmap upon which drawing will actually be performed.
(8) The Bitmap is always required for a Canvas.
(9) You can set up a new Canvas...

Figure 6: A Text Fragment in Android Graphics Tutorial [6]

A. Data Collection

For the SO application, we used the StackOverflow dataset
from prior research [2] (Table I). The authors built the dataset
with the combination of the mining tool ACE [18] and manual
inspection. The dataset contains the ground truth of the API
elements as the tags for the SO entries. An entry contains
the texts of the title and question, however, the code snippets
(if any) and answers were removed. There are SO entries
that have only texts or mixtures of texts and API elements
embedded in texts. As seen in Table I, the dataset contains
very large numbers of entries, words, and API elements.

For the tutorial application [5], [19], [20], let us explain
the context. A fragment of text in a tutorial might contain
the names of the other “related” APIs, but not explanatory
information on API usages [5]. Non-explanatory sentences
contain the APIs for an overview of an entire API class or an
enumeration of related APIs. It is crucial to have an automated
technique to tag a given fragment of texts in a tutorial with the
relevant API elements [5], [19], [20]. This helps developers in
learning to properly use the API elements.

Figure 6 shows an example of a fragment in Android Graph-
ics Tutorial. Four APIs appear in the fragment: Canvas, Bitmap,
SurfaceHolder, and SurfaceView. According to the manual anno-
tation [5], Canvas and Bitmap are relevant to this fragment,
whereas SurfaceHolder and SurfaceView are not since the frag-
ment is not about those classes. Thus, a naive approach of
collecting all the APIs appearing the texts would not work.

We compare PHRASE2SET with the state-of-the-art unsu-
pervised approach FRAPT [5]. We used the same dataset as
in FRAPT [5] (Table II). We parsed the code and Javadoc to
produce the text fragments for the APIs in those libraries.

For text-to-API application, we trained the models on the

Table II: Library Tutorial Dataset [5], [6]

Library #APIs Explan. Non-Explan. Fragments Fragments
Tutorial Fragment Fragment with APIs w/o APIs

Joda Time 36 19 10 21 8
Math Lib 73 31 10 16 25
Col. Official 59 31 26 17 40
Col. Jenkov 28 34 35 42 27
Smack 40 42 5 31 16

SO dataset in RQ1, and conducted another experiment on
the same dataset of 30 queries used in DeepAPI [3] and in
SWIM [1] (Table V). These queries used as a testing data do
not appear in the training set as a whole.

B. Procedure and Metrics

1) SO Application: From the SO dataset, we randomly
selected 10K samples (about 10%) for testing, and used the
remaining samples for training. After running the token-to-
token mapping algorithm, each source token is mapped on
average to 14.6 API elements. This number shows that this step
is helpful since it allows API inferring algorithm to consider a
number of potential API elements much smaller than the size
of API element dictionary (11,834). A small number of API
elements for each source token also helps in reducing noises
and making our algorithm scalable.

We compared the inferred sets of API elements against
the sets of API elements that were used as tags for the SO
entries. We measured Recall and Precision. Recall is defined
as the ratio between the number of elements that appear in
both the actual and inferred sets of elements and the number
of actual elements. Precision is the ratio between the number
of elements that appear in both the actual and inferred sets
of elements and the number of inferred elements. We also
calculated the harmonic value F-score = 2×Precision×Recall

Precision+Recall .
2) Tutorial Application: For the tutorial application, we

compared PHRASE2SET against FRAPT [5]. FRAPT has two
modules: 1) fragmenting the texts of the tutorials, and 2)
searching the relevant API elements for the fragments. We
compared our tool with the searching module, thus, we used
the fragments provided as part of the ground truth in FRAPT
dataset [5]. We used FRAPT and PHRASE2SET to rank the
fragments and measured accuracy.

For comparison, we used the same setting, dataset, oracle,
parameters, and metrics as in FRAPT [5]. We split the data at
90% for training and 10% for testing. Specifically, precision
is the ratio between the number of correctly predicted relevant
fragment-API pairs over all the retrieved pairs. Recall is the
ratio between the number of the correctly predicted relevant
fragment-API pairs over all the pairs. F-score is the harmonic
mean between precision and recall.

3) Text-to-API Application: We ran our tool, SWIM [1]
(sequence-to-sequence SMT), and DeepAPI [3] (with RNN
Encoder-Decoder) on the 30 queries in DeepAPI paper. Similar
to [3], we computed two metrics: 1) FRank (FR) is the rank
of the first relevant/useful result in the returned list; and 2)

507

Table III: Accuracy in Tagging StackOverflow Entries with API Elements

Top-1 Top-2 Top-3 Top-4 Top-5
Base PHRASE2SET Base PHRASE2SET Base PHRASE2SET Base PHRASE2SET Base PHRASE2SET

Recall 44.5 72.9 60.3 89.3 66.3 97.1 74.8 97.8 79.8 98.7
Precision 68.2 77.8 60.7 74.3 53.9 70.2 46.4 67.3 43.2 65.9
F-score 53.7 75.3 60.5 81.1 59.5 81.5 57.3 79.7 56.1 79.0
#API Elements 4.7 6.6 8.2 11.2 12.3 15.8 16.6 19.7 19.3 23.6

Relevant ratio (RR) is the ratio between the number of relevant
results over all considered results. Both SWIM and DeepAPI
produce the result in term of a sequence. SWIM uses statistical
alignment with IBM Model and heuristics, while DeepAPI
uses RNN Encoder-Decoder. The ground truth result is given
in their paper. We used the pre-trained SWIM and DeepAPI
models, while we trained our model on the SO dataset [2].

VII. EMPIRICAL RESULTS ON
STACKOVERFLOW APPLICATION

Table III shows the accuracy of PHRASE2SET when the
value of K was varied, i.e., the top-K API elements with
the highest scores for each source token (line 10, Figure 5).
Columns Base are for the baseline seq2seq model [8].

In Table III, our algorithm achieves higher accuracy than
seq2seq. Recall is from 72.9–98.7%. With K=3 (each token
has 3 corresponding API elements), we can cover 97.1% of
the correct API elements with 15.8 elements for each entry
(in the SO dataset, each entry has on average 9.2 elements).
With K=5, we will have a total of 23 API elements being
inferred, and we can cover almost all correct API elements
(98.7% recall). Our precision is also reasonable from 65.9%–
77.8%. In other words, among an average of 9.2 elements in
a post, we can precisely predict 7–8 elements.

We also aim to measure how well our model can handle
the input in two different scenarios: the input contains only
texts, and the input contains a mixture of text and code
elements (e.g., “how to write to a file with FileOutputStream”).
Figure 7 shows the distribution of precision and recall for the
API elements for each entry through violin plots. A violin
plot combines a boxplot and a kernel density plot (shown
vertically). The boxplot is represented as the box in the middle
of the plot. The bottom of the box is the 25th percentile and
the top is the 75th. The horizontal line is the median. The
left side of each violin plot is precision, and the right side is
for recall. We executed on two kinds of input: pure text and
the text mixed with API elements (i.e., embedded code). Note
that, in both cases, code snippets are not included as the input.

In Figure 7, the shape of the violins shows the skewness
toward high precision and recall. For the inputs mixed of texts
and code, for over 3/4 of the cases, PHRASE2SET achieves
+80% recall, and over 1/2 of the cases, it achieves +98%. It
can also achieves high precision: over 25% of the cases, it has
+98% precision. The median precision is 66%. In the context
of this problem, if an SO entry is relevant to a median of
10 API elements, PHRASE2SET produces almost all of the
APIs. On average, it correctly infers 6.6 API elements and
users would remove +3 elements. Note that removing a few

Figure 7: Precision and Recall Distributions for Test Data

Question 22590206
Title: Display dates in multiple fragments
I’m having trouble trying to think of a way to display dates
in fragments. What I need to do is display today’s date at the
top of a fragment and then when the user slides or presses a
button a fragment will replace the previous one and display
tomorrows date then the next fragment will display the date
after tomorrow and so on.

1Calendar.new, Calendar.getInstance(..), Calendar.add(..)
2Calendar.getTime(..), Date.new, String.format (..)

Figure 8: StackOverflow Entry 22590206 and APIs as Tag

incorrect API elements in the result will cost less effort for
users than searching for additional API elements. For the 25%
of the cases with low accuracy, users just need to find one
additional API element. The accumulated average precision
and recall are 64.9% and 94.1% (not shown). PHRASE2SET
outperforms seq2seq in recall, up to 20% points higher.

The SO entry in Figure 8 is about displaying the dates
in multiple fragments in Android applications. Using the
input words, PHRASE2SET derives the relevant API elements
including the classes Calendar and Date. Note that the word
“calendar” is not mentioned in the text. However, the class
Calendar and its API elements appear together in multiple tags
with Date, thus, via the target context, PHRASE2SET is able
to suggest the API elements of the class Calendar.

In this application, the output is a set of API elements as a
tag that do not need to have a strict order. During training, two
samples with the same output set, e.g., T={A,B,C}, might be

508

encoded by seq2seq for learning as two different sequences,
e.g., T1={A,B,C} or T2={C,B,A}. This affects the quality
of the trained model because seq2seq cannot learn that the
two samples are the same, thus cannot learn from one sample
to apply to the other. An alternative is to enforce a specific
order on the samples, e.g., alphabetical order. However, we
have to consider all different possible orders for the tokens in
a set {t1, t2, ..., tn} because the quality of the trained model
for every order might be different, e.g., the alphabetical order
might not result in a better model than the reverse order.

VIII. EMPIRICAL RESULTS ON TUTORIAL APPLICATION

Table IV shows the comparison result on the tutorial ap-
plication. As seen, on average, PHRASE2SET (P2S) achieves
83.2% in precision, 94.5% in recall, and 88.1% in F-score.
In comparison, it relatively improves over FRAPT 12.2% in
precision, 10% in recall, and 11% in F-score. The largest rela-
tive improvements are 25.5% in precision, 35.9% in recall, and
21.9% in F-score. Since PHRASE2SET takes into consideration
both of the contexts in source and target sides and it does not
restrict the order, it can apply to learn from one instance to
another, leading to such improvements.

Table IV: Accuracy in Tutorial Application

Precision (%) Recall (%) F-score (%)

Tutorial FRAPT P2S FRAPT P2S FRAPT P2S
Joda Time 85.1 87.2 76.7 100 80.7 90.8
Math Lib 84.8 92.8 73.6 100 78.9 96.2
Col. Official 62.0 74.3 87.5 74.3 72.6 74.3
Col. Jenkov 61.2 67.7 97.6 98.2 75.2 80.1
Smack 77.9 97.8 94.6 100 85.5 98.9
Average 74.2 83.2 86.0 94.5 78.6 88.1

We further performed overlapping analysis between the re-
sults from PHRASE2SET and FRAPT. We found that there are
23.5% of the fragment-API pairs that PHRASE2SET correctly
detected but FRAPT did not (not shown). Meanwhile, FRAPT
correctly detected only 13.7% of the cases that our tool did
not. In conclusion, while both tools complement to each other,
PHRASE2SET achieves higher performance than FRAFT.

IX. EMPIRICAL RESULTS ON TEXT-TO-API APPLICATION

Table V shows the result for the comparative study on the
text-to-API application. As seen, PHRASE2SET performs bet-
ter than DeepAPI in terms of FR and RR5, while both perform
better than SWIM. To compare PHRASE2SET and SWIM, we
applied the Wilcoxon signed-rank test. The resulting p-value
is 0.01, i.e., smaller than 0.05, indicating that the differences
are statistically significant.

On average, PHRASE2SET ranks the first relevant API at
the position 1.2, while the other tools rank it at 4.2 and 1.6.
In the list of five candidate APIs, 84% of them on average
are relevant to the query. Thus, it produces mostly relevant
APIs. Among 30 results, 24 are deemed to be relevant (80%).
DeepAPI achieves usefulness/relevance for 23 top-ranked re-
sulting APIs (77%). For those 30 queries, SWIM’s top-ranked
resulting API sequences are relevant in only 14 of them (47%).

Table V: Relevance Evaluation (FR: Rank of 1st relevant one,
RR5 (%): top-5 relevance ratio, –: no relevance in top 10)

SWIM [1] DeepAPI [3] PHRASE2SET
Textual Query FR RR5 FR RR5 FR RR5
convert int to string 8 0 2 40 1 100
convert string to int 1 80 1 100 1 100
append strings 3 60 1 100 2 40
get current time 1 80 10 10 2 20
parse datetime from string 9 0 1 100 2 40
test file exists – 0 1 100 1 100
open a url 1 100 1 100 1 100
open file dialog – 0 1 100 1 100
get files in folder 2 40 3 40 1 100
match regular expressions 1 100 1 80 1 100
generate md5 hash code 1 60 1 100 1 100
generate random number 7 0 1 100 1 100
round a decimal value – 0 1 100 2 40
execute sql statement 2 80 1 80 1 100
connect to database 7 0 1 100 1 100
create file 10 0 3 40 2 60
copy file 1 100 2 20 1 100
copy a file and save it 1 20 1 100 1 100
to your dest. path
delete files and folders in a dir 1 100 1 100 1 100
reverse a string 3 20 2 60 2 40
create socket – 0 1 60 1 100
rename a file – 0 1 100 1 100
download file from url 2 60 1 100 1 100
serialize an object 1 100 3 60 1 100
read binary file 4 40 1 100 3 40
save an image to a file 1 20 1 80 1 100
write an image to a file 1 20 1 100 1 40
parse xml 1 100 1 80 1 100
play audio 1 100 1 60 1 100
play the audio clip at 1 40 1 100 1 100
specified absolute URL
Average >4.2 44 1.6 80.3 1.2 84

We also investigated the capability of the tools in handling
longer text inputs. We used 250 queries in the prior work,
T2API [2]. Each query has from 25 to 131 tokens. In the
results from PHRASE2SET, there are up to 23 APIs. In the
results from SWIM [1], the number of generated API elements
is from 1–3. For DeepAPI, their sequences are a list of
elements. Moreover, when we entered those 250 queries into
DeepAPI online tool [21], it took several minutes (due to its
high computation) and most of the results were irrelevant.

X. DISCUSSION

A. Limitations

PHRASE2SET currently has the following limitations. First,
as in any MT approaches, high-quality training data is crucial.
In NLP, where the corpora of parallel texts in two languages
have been (semi-)automatically or manually built with human
annotations and verification. We depend on large corpora. Less
common APIs might not fit with this approach. Our corpora
used in experiments were shared by the authors who have spent
effort to mine via an automated tool and human verification.

Accuracy could be improved much if we can integrate NLP
techniques to process the semantics of the texts. At the same
time, program analyses on the source code could also be
integrated to adjust the generation process of the elements.
Currently, there is no semantic analysis on both sides. The
rule-based approaches [22] that were successfully used in code
migration could be explored. For our tool, there are extra code
elements that the tool found were common but may not be

509

Table VI: Time and Space Complexity

Storage 3.6GBs/+100K texts
Training time 12hrs/+100K texts
Suggestion time 0.1 seconds/input

relevant to the input. Most of incorrect cases are caused by
the out-of-vocabulary issue (un-seen API elements in training).

B. Time and Space Complexity
Table VI shows PHRASE2SET’s complexity (measured on

a computer with AMD Phenom II X6 3.2GHz, 16GB RAM,
and Linux). Training time is quite extensive. However, one can
train PHRASE2SET offline for suggestion later. The suggestion
time for a query is only 0.1s. Storage cost is reasonable.

C. Threats to Validity
We cannot intrinsically evaluate our model via BLUE score,

because the metric is defined for the phrase-based translation.
We chose to extrinsically evaluate PHRASE2SET in three
SE applications, in which the parallel corpora are available.
We do not have a general-purpose parallel corpus in SE
as in NLP. We need to evaluate PHRASE2SET in other SE
applications as well, especially for code-to-text and text-to-
text ones. The performance was measured without the tool’s
usefulness, which might require a human study. Our collected
data set might not be representative. There is possible construct
bias as we chose Java and Android APIs.

D. Other Potential Applications
The fundamental contribution of the work is the phrase-to-

set statistical machine translation model, PHRASE2SET, which
arises from the need of SE applications. The model does
not just grab embedded APIs relevant to the output, it can
derive the API elements that it learns from the dataset and
did not appear in the given text (see tutorial application). It
also works well for the input of pure texts. PHRASE2SET can
potentially be used in other SE applications in which the output
of text/code elements does not have a strict order.

1) Bug Localization (Text-to-Code): The bug localization
(BL) problem can be formulated as follows. Given as input
a bug report with a mixture of text and code, a BL approach
needs to locate a set of methods in a project that are potentially
to be fixed for the bug(s) reported in the input text. To use
PHRASE2SET for BL, we can train it with a corpus consisting
of the pairs of a bug report and the corresponding set of the
methods that were fixed for the bug. For prediction, given
a bug report, the trained phrase-to-set model can be used to
suggest the set of methods for a new given bug report.

2) Recovering Links from Release Notes to Code
Changes (Text-to-Code): A release note often lists the new
features and functionality in a software. However, there is no
record to connect enhancements to the specific code changes
in the repositories. To use PHRASE2SET for this task, one
can train it with the dataset of the known release notes and
corresponding code changes, and then use it to derive a set of
methods/classes that were changed for a given release note.

3) Requirement Tracing to Source Code (Text-to-Code):
Requirement tracing [23] is an SE problem in which a sentence
or paragraph in the textual requirement document is traced to
the corresponding set of classes/methods implementing that
requirement. To use our model, one can train it with a parallel
corpus of the texts in the requirement and the set of methods
realizing the features described in the texts, then use it to
derive the set of methods for a given textual requirement.

4) Creating “See Also” in API Documentation (Text-
to-Code): The API documentation could include the set of
relevant API elements to the currently described API element.
To use our model, one can train it on a parallel corpus of the
pairs of API documentation and the set of the corresponding
relevant API elements. For prediction, we can run the trained
model on the new API documentation (as mixture of code/-
texts) to produce the set of relevant API elements.

5) Recovering the Links from Commit Logs to Bug
Reports (Text-to-Text): For the bug fixes, the changes and
commit logs, which are stored in a version control repository,
are not connected to the bug reports that describe the bug(s)
because the bug reports are often stored in the issue repository.
SE researchers have designed approaches to link a commit log
to the corresponding bug report [24], [25]. To use our model,
one could train it with the dataset consisting of the pairs of
the commit log (text) and the corresponding bug report (text).

6) Tagging Bug Reports with Topical Keywords (Text-
to-Text): It is useful to tag a bug report with the set of relevant
topics such as security, performance, privacy, vulnerability, etc.
To use PHRASE2SET, we can train the model by a parallel
corpus of bug reports and the corresponding topical keywords
as the tags. We then use the trained model for tagging.

7) Connecting Source Code to the Set of High-level
Functionality Keywords (Code-to-Text): A software system
has a set of high-level functionality. For tracing purpose, it is
useful to tag each method in a project with a set of keywords
describing high-level functionality. One can use our model
since the output of keywords needs not have a strict order.

8) Linking Code Changes to Keywords for System Fea-
tures (Code-to-Text): A useful tool is to link the committed
code changes to the keywords describing the new features
that were implemented by those changes. The output set of
keywords does not have a strict order. The model can be
trained by the parallel corpus of the committed changes and
the corresponding set of keywords for system features.

9) API Migration (Code-to-API): Given a code with
the API method calls, field accesses, and class usages, API
migration aims to derive the set of API elements in another
program language that can be used to implement the same
functionality as the original code. In this problem, the output
is a set of APIs that do not need to have a strict order. One
could train PHRASE2SET on a parallel corpus of the code in
a language, e.g., Java, and the corresponding sets of APIs in
another language, e.g., C#. For migration, given a Java code,
the trained model derives the set of API elements in C# to be
used to realize the same functionality in the Java code.

510

10) Exception Handling Suggestion (Code-to-Code):
Given a method, a tool could suggest a set of Exceptions
that need to be handled due to the usage of certain API
elements in the method. For example, for file opening, a code
needs to catch the Exception on FileNotFoundException. To use
PHRASE2SET, one can train it on the corpus of the pairs of
the source code and the exceptions that were handled. For a
new given method, the trained model can suggest the set of
Exceptions that need to be handled. In this case, the output is
the set of Exceptions without a strict order among them.

XI. RELATED WORK

PHRASE2SET is related to APITran [17], which generates
the API elements relevant to a given textual query in English.
Similar to PHRASE2SET, APITran is also based on Bayesian
Network and during translation, the contexts of both texts
and code are considered. However, there are key advances
of PHRASE2SET over APITran. First, APITran supports only
API code elements in the target side because it relies on
the individual mappings between textual tokens to API code
tokens. In PHRASE2SET, we develop a general token-to-token
mapping algorithm in which the occurrence-counts are based
on the set of text and/or code tokens, rather than API elements.
Second, APITran’s formulation is defined for sequence-based
output. When estimating the probabilities by counting, APITran
performs occurrence-counts on the sequences. PHRASE2SET’s
formulation is extended from APITran to support general target
tokens including text and code tokens, and support the output
set (instead of sequences). Third, because the goal of APITran
is to derive the list of API elements relevant to English texts,
it does not have the inferring algorithm to derive the output
set. In PHRASE2SET, we also develop the inferring algorithm
to collect the target tokens into a set.

PHRASE2SET is also related to T2API [2], which uses
GraLan [26], a graph-based language model to derive a set
of API elements relevant to a query. While PHRASE2SET
produces a set of target tokens, T2API uses GraSyn [2], a
graph-based synthesis algorithm to produce an output graph of
API elements. PHRASE2SET’s individual token-to-token map-
ping algorithm is extended from the API mapping algorithm
in StaMiner [16], which focuses only on mappings a sequence
of API elements in Java to another sequence of elements in
C#. In PHRASE2SET, the occurrence-counts for probabilities
are based on set, rather than on sequences as in StaMiner.

SWIM [1] translates a sequence of texts into a code se-
quence of API elements. SWIM uses IBM Model for word-to-
API single mappings and then uses rules to synthesize code.
PHRASE2SET is also related to DeepAPI [3], which uses a
neural-network-based machine translation model with RNN
from text to APIs. In comparison, DeepAPI uses sequences
for both sides. Desai et al. [27] synthesize domain-specific
languages (DSL) from English. A user is required to map key
terms in English to the terminals in the DSL. Nguyen et al. [6]
enhance Word2Vec to represent API in API documentation.
They also apply their model in the tutorial application. How-
ever, they do not aim to translate phrases to sets.

Buse and Weimer [28] use path sensitive data-flow analysis,
clustering, and pattern abstraction to synthesize API usages
from code examples. They do not handle textual queries. Oth-
ers explore structure relations [29], call graphs (FACG [30])
and program dependencies (MAPO [31], Altair [32]).

Statistical learning has been used in SE applications. They
include code suggestion [33], [34], code convention [35],
name suggestion [36], API suggestions [37], large-scale code
mining [38], etc. Maddison and Tarlow [39] present a gen-
erative model for source code, which is based on AST-based
syntactic structures. TBCNN [40] uses tree information for
suggest next code tokens. Allamanis et al. [41] introduce a
jointly probabilistic model short natural language utterances
and source code snippets. They want a joint model for both
sides, a a tree-based representation is used for code and texts.
While their approach uses advanced bimodal modeling (e.g.,
image+text, text+code), we treat code synthesis as a machine
translation problem, allowing different language models for
texts and source code. Anycode [42] uses a probabilistic
context free grammar with trees for Java constructs and API
calls to synthesize small Java expressions.

Typical applications for domain-specific code synthesis are
string analysis [43], bit vector processing [44], [45], structure
manipulation [46], finite programs with sketches [47], [48],
spreadsheet transformations [49], geometry constructions [50],
and hardware design [51].

Semantic code search engines use IR-based techniques in
text matching [52], [53], [54], [29], [55]. Others enhance
IDE with code search [56], [57]. Other group of IR-based
code search approaches considers the relations among API
elements [13], [58], [59], [55], [11], [10], [12].

XII. CONCLUSION

We propose PHRASE2SET, a context-sensitive statistical
machine translation model that learns to transform a phrase of
code/texts into a set of code/text tokens. We design a Bayesian-
Network-based SMT model that determines a translation order
for the source tokens maximizing the joint translation probabil-
ity. As to determine such order, we consider the context of the
tokens in the source side and that in the target side via their
relative co-occurrence frequencies. Our empirical evaluation
was on three applications: 1) tagging the StackOverflow posts
with relevant API elements, 2) tagging the fragments of texts
in a tutorial with the relevant API elements, and 3) text-to-
API application. Our empirical results show that PHRASE2SET
achieves high accuracy and outperforms the baseline models
in those tasks. We also provide a lesson learned from our
experience and a list of potential applications that can benefit
from PHRASE2SET. In future, we aim to provide set-to-phrase
translation, which might have other SE applications. We also
explore other applications as explained in Section X-D.

ACKNOWLEDGMENT

This work was supported in part by the US National Science
Foundation (NSF) grants CNS-2120386, CCF-1723215, CCF-
1723432, TWC-1723198, CCF-1518897, and CNS-1513263.

511

REFERENCES

[1] M. Raghothaman, Y. Wei, and Y. Hamadi, “SWIM: Synthesizing What I
Mean - Code Search and Idiomatic Snippet Synthesis,” in Proceedings of
the 38th IEEE/ACM International Conference on Software Engineering
(ICSE), 2016, pp. 357–367.

[2] A. T. Nguyen, P. C. Rigby, T. Nguyen, D. Palani, M. Karanfil, and
T. N. Nguyen, “Statistical Translation of English Texts to API Code
Templates,” in Proceedings of the 34th IEEE International Conference
on Software Maintenance and Evolution (ICSME’18), 2018, pp. 194–
205.

[3] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep API Learning,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. FSE 2016. New York,
NY, USA: Association for Computing Machinery, 2016, p. 631–642.
[Online]. Available: https://doi.org/10.1145/2950290.2950334

[4] H. Phan and A. Jannesari, “Statistical machine translation outperforms
neural machine translation in software engineering: Why and
how,” in Proceedings of the 1st ACM SIGSOFT International
Workshop on Representation Learning for Software Engineering
and Program Languages. New York, NY, USA: Association
for Computing Machinery, 2020, pp. 3–12. [Online]. Available:
https://doi.org/10.1145/3416506.3423576

[5] H. Jiang, J. Zhang, Z. Ren, and T. Zhang, “An unsupervised approach
for discovering relevant tutorial fragments for APIs,” in Proceedings
of the 39th International Conference on Software Engineering,
ser. ICSE’17. IEEE Press, 2017, p. 38–48. [Online]. Available:
https://doi.org/10.1109/ICSE.2017.12

[6] T. Nguyen, N. Tran, H. Phan, T. Nguyen, L. Truong, A. T. Nguyen,
H. A. Nguyen, and T. N. Nguyen, “Complementing Global and
Local Contexts in Representing API Descriptions to Improve API
Retrieval Tasks,” in Proceedings of the 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE’18. Association
for Computing Machinery, 2018, pp. 551–562. [Online]. Available:
https://doi.org/10.1145/3236024.3236036

[7] A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, D. Lo, and C. Sun,
“Duplicate bug report detection with a combination of information
retrieval and topic modeling,” in Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE
2012. New York, NY, USA: Association for Computing Machinery,
2012, pp. 70–79.

[8] D. Britz, A. Goldie, T. Luong, and Q. Le, “Massive Exploration of
Neural Machine Translation Architectures,” ArXiv e-prints, Mar. 2017.

[9] “Phrase2Set,” https://github.com/phrase2set-submission/phrase2set.
[10] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu,

“Portfolio: Finding relevant functions and their usage,” in Proceedings
of the 33rd International Conference on Software Engineering, ser. ICSE
’11. ACM, 2011, pp. 111–120.

[11] C. McMillan, D. Poshyvanyk, and M. Grechanik, “Recommending
Source Code Examples via API Call Usages and Documentation,” in
Proceedings of the 2nd International Workshop on Recommendation
Systems for Software Engineering, ser. RSSE ’10. ACM, 2010, pp.
21–25.

[12] W.-K. Chan, H. Cheng, and D. Lo, “Searching Connected API Subgraph
via Text Phrases,” in Proceedings of the 20th International Symposium
on the Foundations of Software Engineering, ser. FSE ’12. ACM, 2012,
pp. 10:1–10:11.

[13] W. Zheng, Q. Zhang, and M. Lyu, “Cross-library API Recommendation
Using Web Search Engines,” in Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of
Software Engineering, ser. ESEC/FSE ’11. ACM, 2011, pp. 480–483.

[14] E. Duala-Ekoko and M. P. Robillard, “Using structure-based recommen-
dations to facilitate discoverability in APIs,” in Proceedings of the 25th
European Conference on Object-oriented Programming, ser. ECOOP’11.
Springer-Verlag, 2011, pp. 79–104.

[15] G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. Rush, “OpenNMT:
Open-source toolkit for neural machine translation,” in Proceedings of
ACL 2017, System Demonstrations. Vancouver, Canada: Association
for Computational Linguistics, Jul. 2017, pp. 67–72. [Online]. Available:
https://www.aclweb.org/anthology/P17-4012

[16] A. T. Nguyen, H. A. Nguyen, T. T. Nguyen, and T. N. Nguyen,
“Statistical Learning Approach for Mining API Usage Mappings for
Code Migration,” in Proceedings of the 29th ACM/IEEE International

Conference on Automated Software Engineering, ser. ASE ’14. New
York, NY, USA: Association for Computing Machinery, 2014, pp.
457–468. [Online]. Available: https://doi.org/10.1145/2642937.2643010

[17] T. V. Nguyen and T. N. Nguyen, “Inferring API Elements Relevant to
an English Query,” in Proceedings of the 40th International Conference
on Software Engineering: Companion Proceeedings, ser. ICSE ’18.
New York, NY, USA: Association for Computing Machinery, 2018, p.
167–168. [Online]. Available: https://doi.org/10.1145/3183440.3195079

[18] P. C. Rigby and M. P. Robillard, “Discovering essential code elements
in informal documentation,” in Proceedings of the 2013 International
Conference on Software Engineering, ser. ICSE ’13. IEEE Press, 2013,
pp. 832–841.

[19] H. Jiang, J. Zhang, X. Li, Z. Ren, and D. Lo, “A more accurate model
for finding tutorial segments explaining APIs,” in Proceedings of the
23rd IEEE International Conference on Software Analysis, Evolution,
and Reengineering (SANER’16), vol. 1, March 2016, pp. 157–167.

[20] G. Petrosyan, M. P. Robillard, and R. De Mori, “Discovering information
explaining API types using text classification,” in Proceedings of the
37th International Conference on Software Engineering - Volume 1, ser.
ICSE ’15. IEEE Press, 2015, pp. 869–879.

[21] “Deep API Learning,” http://bda-codehow.cloudapp.net:88/.
[22] “Java2CSharp,” http://sourceforge.net/projects/j2cstranslator/.
[23] J. Cleland-Huang, O. C. Z. Gotel, J. Huffman Hayes, P. Mäder, and

A. Zisman, “Software traceability: Trends and future directions,” in
Future of Software Engineering Proceedings, ser. FOSE 2014. New
York, NY, USA: Association for Computing Machinery, 2014, pp.
55–69. [Online]. Available: https://doi.org/10.1145/2593882.2593891

[24] A. T. Nguyen, T. T. Nguyen, H. A. Nguyen, and T. N. Nguyen,
“Multi-layered approach for recovering links between bug reports
and fixes,” in Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering, ser. FSE ’12.
New York, NY, USA: Association for Computing Machinery, 2012.
[Online]. Available: https://doi.org/10.1145/2393596.2393671

[25] A. Bachmann, C. Bird, F. Rahman, P. Devanbu, and A. Bernstein,
“The missing links: Bugs and bug-fix commits,” in Proceedings of the
Eighteenth ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ser. FSE ’10. New York, NY, USA: Association
for Computing Machinery, 2010, pp. 97–106. [Online]. Available:
https://doi.org/10.1145/1882291.1882308

[26] A. T. Nguyen and T. N. Nguyen, “Graph-based statistical language
model for code,” in Proceedings of the 37th International Conference
on Software Engineering - Volume 1, ser. ICSE ’15. IEEE Press, 2015,
p. 858–868.

[27] A. Desai, S. Gulwani, V. Hingorani, N. Jain, A. Karkare, M. Marron,
S. R, and S. Roy, “Program synthesis using natural language,” in Pro-
ceedings of the 38th International Conference on Software Engineering,
ser. ICSE ’16. ACM, 2016, pp. 345–356.

[28] R. P. L. Buse and W. Weimer, “Synthesizing API Usage Examples,” in
Proceedings of the 34th International Conference on Software Engineer-
ing, ser. ICSE ’12. IEEE Press, 2012, pp. 782–792.

[29] S. Bajracharya, T. Ngo, E. Linstead, Y. Dou, P. Rigor, P. Baldi, and
C. Lopes, “Sourcerer: A search engine for open source code supporting
structure-based search,” in Object-oriented Programming Systems, Lan-
guages, and Applications, ser. OOPSLA ’06. ACM, 2006, pp. 681–682.

[30] Q. Zhang, W. Zheng, and M. R. Lyu, “Flow-augmented Call Graph: A
New Foundation for Taming API Complexity,” in Proceedings of the
14th International Conference on Fundamental Approaches to Software
Engineering, ser. FASE’11/ETAPS’11. Springer-Verlag, 2011, pp. 386–
400.

[31] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei, “MAPO: Mining
and Recommending API Usage Patterns,” in Proceedings of the 23rd
European Conference on Object-Oriented Programming. Springer,
2009, pp. 318–343.

[32] F. Long, X. Wang, and Y. Cai, “API Hyperlinking via Structural
Overlap,” in Proceedings of the ACM SIGSOFT Symposium on The
Foundations of Software Engineering, ser. ESEC/FSE ’09. ACM, 2009,
pp. 203–212.

[33] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the
naturalness of software,” in Proceedings of the 2012 International
Conference on Software Engineering, ser. ICSE 2012. IEEE Press,
2012, pp. 837–847.

[34] M. White, C. Vendome, M. Linares-Vasquez, and D. Poshyvanyk,
“Toward deep learning software repositories,” in Proceedings of 12th
IEEE Working Conference on Mining Software Repositories (MSR’15).
IEEE CS, May 2015.

512

[35] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Learning natural
coding conventions,” in Proceedings of the International Symposium on
Foundations of Software Engineering, ser. FSE 2014. ACM, 2014, pp.
281–293.

[36] ——, “Suggesting accurate method and class names,” in Proceedings of
the 10th Joint Meeting on Foundations of Software Engineering,
ser. ESEC/FSE 2015. New York, NY, USA: Association
for Computing Machinery, 2015, p. 38–49. [Online]. Available:
https://doi.org/10.1145/2786805.2786849

[37] V. Raychev, M. Vechev, and E. Yahav, “Code completion with statistical
language models,” in Proceedings of the 35th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, ser. PLDI
’14. ACM, 2014, pp. 419–428.

[38] M. Allamanis and C. Sutton, “Mining source code repositories at
massive scale using language modeling,” in Proceedings of the 10th
Working Conference on Mining Software Repositories, ser. MSR ’13.
IEEE Press, 2013, p. 207–216.

[39] C. J. Maddison and D. Tarlow, “Structured generative models of natural
source code,” in Proceedings of the 31st International Conference on
Machine Learning - Volume 32, ser. ICML’14. JMLR.org, 2014, p.
II–649–II–657.

[40] L. Mou, G. Li, Z. Jin, L. Zhang, and T. Wang, “TBCNN: A
tree-based convolutional neural network for programming language
processing,” CoRR, vol. abs/1409.5718, 2014. [Online]. Available:
http://arxiv.org/abs/1409.5718

[41] M. Allamanis, D. Tarlow, A. D. Gordon, and Y. Wei, “Bimodal mod-
elling of source code and natural language,” in Proceedings of the
32nd International Conference on Machine Learning - Volume 37, ser.
ICML’15. JMLR.org, 2015, p. 2123–2132.

[42] T. Gvero and V. Kuncak, “Synthesizing java expressions from
free-form queries,” in Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, ser. OOPSLA 2015. New York,
NY, USA: ACM, 2015, pp. 416–432. [Online]. Available:
http://doi.acm.org/10.1145/2814270.2814295

[43] S. Gulwani, “Automating string processing in spreadsheets using input-
output examples,” in Proceedings of the 38th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ser.
POPL ’11. New York, NY, USA: ACM, 2011, pp. 317–330. [Online].
Available: http://doi.acm.org/10.1145/1926385.1926423

[44] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari, “Oracle-guided
component-based program synthesis,” in Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering, ser.
ICSE ’10. ACM, 2010, pp. 215–224.

[45] A. Solar-Lezama, L. Tancau, R. Bodı́k, S. A. Seshia, and V. A. Saraswat,
“Combinatorial sketching for finite programs,” in Proceedings of the
12th International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS, 2006, pp. 404–415.

[46] R. Singh and A. Solar-Lezama, “Synthesizing data structure manipula-
tions from storyboards,” in Proceedings of the 19th ACM SIGSOFT

Symposium and the 13th European Conference on Foundations of
Software Engineering, ser. ESEC/FSE ’11. ACM, 2011, pp. 289–299.

[47] A. Solar-Lezama, G. Arnold, L. Tancau, R. Bodik, V. Saraswat, and
S. Seshia, “Sketching stencils,” in Proceedings of the 28th ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion, ser. PLDI ’07. ACM, 2007, pp. 167–178.

[48] A. Solar-Lezama, C. G. Jones, and R. Bodik, “Sketching concurrent
data structures,” in Proceedings of the 29th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’08.
ACM, 2008, pp. 136–148.

[49] W. R. Harris and S. Gulwani, “Spreadsheet table transformations from
examples,” in Proceedings of the 32Nd ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’11.
New York, NY, USA: ACM, 2011, pp. 317–328. [Online]. Available:
http://doi.acm.org/10.1145/1993498.1993536

[50] S. Gulwani, V. A. Korthikanti, and A. Tiwari, “Synthesizing geometry
constructions,” in Proceedings of the 32Nd ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’11.
ACM, 2011, pp. 50–61.

[51] A. Raabe and R. Bodik, “Synthesizing hardware from sketches,” in
Proceedings of the 46th Annual Design Automation Conference, ser.
DAC ’09. ACM, 2009, pp. 623–624.

[52] “Black Duck Open Hub,” http://code.openhub.net/.
[53] “Codase,” http://www.codase.com/.
[54] K. Inoue, R. Yokomori, H. Fujiwara, T. Yamamoto, M. Matsushita, and

S. Kusumoto, “Component rank: Relative significance rank for software
component search,” in Proceedings of the 25th International Conference
on Software Engineering, ser. ICSE ’03. IEEE, 2003, pp. 14–24.

[55] D. Puppin and F. Silvestri, “The Social Network of Java Classes,” in
Proceedings of the 2006 ACM Symposium on Applied Computing, ser.
SAC ’06. ACM, 2006, pp. 1409–1413.

[56] N. Sawadsky, G. C. Murphy, and R. Jiresal, “Reverb: Recommending
Code-related Web Pages,” in Proceedings of the 2013 International
Conference on Software Engineering, ser. ICSE ’13. IEEE Press, 2013,
pp. 812–821.

[57] J. Brandt, M. Dontcheva, M. Weskamp, and S. R. Klemmer, “Example-
centric Programming: Integrating Web Search into the Development
Environment,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ser. CHI ’10. ACM, 2010, pp. 513–
522.

[58] M. Grechanik, C. Fu, Q. Xie, C. McMillan, D. Poshyvanyk, and
C. Cumby, “A search engine for finding highly relevant applications,”
in Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering - Volume 1, ser. ICSE ’10. ACM, 2010, pp.
475–484.

[59] Z. M. Saul, V. Filkov, P. Devanbu, and C. Bird, “Recommending
random walks,” in Proceedings of the ACM SIGSOFT Symposium on
The Foundations of Software Engineering, ser. ESEC-FSE ’07. ACM,
2007, pp. 15–24.

513

