
A Learning-Based Approach to Static Program Slicing

AASHISH YADAVALLY, University of Texas at Dallas, USA
YI LI, University of Texas at Dallas, USA
SHAOHUA WANG, Central University of Finance and Economics, China
TIEN N. NGUYEN, University of Texas at Dallas, USA

Traditional program slicing techniques are crucial for early bug detection and manual/automated debugging
of online code snippets. Nevertheless, their inability to handle incomplete code hinders their real-world
applicability in such scenarios. To overcome these challenges, we present NS-Slicer, a novel learning-based
approach that predicts static program slices for both complete and partial code. Our tool leverages a pre-trained
language model to exploit its understanding of fine-grained variable-statement dependencies within source
code. With this knowledge, given a variable at a specific location and a statement in a code snippet, NS-Slicer
determines whether the statement belongs to the backward slice or forward slice, respectively.

We conducted a series of experiments to evaluate NS-Slicer’s performance. On complete code, it predicts
the backward and forward slices with an F1-score of 97.41% and 95.82%, respectively, while achieving an
overall F1-score of 96.77%. Notably, in 85.20% of the cases, the static program slices predicted by NS-Slicer
exactly match entire slices from the oracle. For partial programs, it achieved an F1-score of 96.77%–97.49% for
backward slicing, 92.14%–95.40% for forward slicing, and an overall F1-score of 94.66%–96.62%. Furthermore,
we demonstrate NS-Slicer’s utility in vulnerability detection (VD), integrating its predicted slices into an
automated VD tool. In this setup, the tool detected vulnerabilities in Java code with a high F1-score of 73.38%.
We also include the analyses studying NS-Slicer’s promising performance and limitations, providing insights
into its understanding of intrinsic code properties such as variable aliasing, leading to better slicing.
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1 INTRODUCTION

Online forums, such as StackOverflow (S/O), are a trove of knowledge for developers, offering
excellent resources for those seeking solutions to technical challenges. However, the standard
practice of software reuse via copy-and-paste is limited, as the copied code fragment can possess
vulnerabilities (i.e., exploitable defects) — potentially posing significant risks to the applications
that adopt them. For instance, [Verdi et al. 2022] studied the code snippets extracted from 1,325 S/O
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answers and reported 99 vulnerable ones that subsequently migrated to 2,589 GitHub repositories.
[Hong et al. 2021] collected 1,958,283 S/O posts tagged with C, C++, and Android. They found 12,458
insecure posts (14,719 insecure code snippets) and confirmed that the latest versions of 151 out of
2,000 popular C/C++ open-source software contain at least one of these insecure S/O code snippets.
Another study revealed that 15.4% of 1.3 million Android applications contain security-related
S/O code snippets [Fischer et al. 2017]. Ragkhitwetsagul et al. [Ragkhitwetsagul et al. 2021] also
reported that the code snippets imported from S/O into the Github projects could contain issues
including defects, vulnerabilities, performance bottlenecks, copyright issues, etc.
Detecting errors and vulnerabilities in S/O code snippets at an early stage offers numerous

benefits. First, early detection can help prevent the costs associated with fixing vulnerable code
later in the development cycle (say, after deployment or when in production). Second, it promotes
proactive risk mitigation while enabling an efficient development workflow. Here, developers
can address issues without disrupting the ongoing projects. Consider the alternative of detecting
errors/vulnerabilities after adopting the code snippet. If found error-prone, the efforts of integrating
the S/O code into existing code repositories would be lost. Furthermore, one cannot identify whether
the error arises due to the code snippet, the existing source code, or the combination of both.
Recognizing the need to detect errors early, security researchers have introduced several man-

ual and automated approaches for vulnerability detection (VD). Some of these leverage static
and dynamic program analysis tools [Ayewah et al. 2008; Checkmarx 2023], using which, for
instance, one can alert developers of potential synchronization issues that might lead to unsafe
thread interactions. Nonetheless, these tools are often limited to specific vulnerabilities, e.g., buffer
overflow [CWE-120 2023], SQL injection [CWE-89 2023], cross-site scripting [CWE-79 2023], au-
thentication bypass [CWE-290 2023], etc. More importantly, since these approaches are program
analysis-based, they necessitate that the code is complete. Besides, those based on dynamic analysis
techniques also require the setting up of dedicated, operational test environments.
Alternatively, some machine and deep learning (ML & DL)-based VD approaches attempt to

implicitly learn the vulnerability patterns, relying on program representations such as static program
slices (VulDeePecker [Li et al. 2018]), program dependence graphs (VulCNN [Wu et al. 2022]), etc.
In particular, [Li et al. 2018] draw inspiration from how developers manually attempt to locate such
errors, often narrowing down the source code to its essential elements by constructing the static
program slices (i.e., backward/forward) for the variables. In this context, the backward slice of a
variable at a program location consists of the statements that can impact the value of that variable,
and the forward slice includes statements that might be affected by changes to the variable.
Program slicing is also useful in both manual and automated debugging. [Francel and Rugaber

2001] reported that slicing-aided debugging helps the developer focus on the minimal subprogram
containing program faults, improving code understanding, and ability to fix program faults. For
instance, consider the C++ program in Fig. 1, which inputs a list of integers interactively and:
(1) counts the number of non-negative integers in the list, (2) finds the maximum and minimum
negative integers in the list. Here, once the developer determines that the output value for exactly
one value is incorrect (i.e., currentMaximum on line 35), the following can be omitted from the fault
area: lines 5, 6, 19, 21, 24, 25, 29, 30, 33, 35 – thus decreasing the fault area from the original by 28%.

The state-of-the-art approaches for static program slicing, however, require access to the source
code as complete program units, at the very least, at the method-level granularity. As a result, their
applicability in detecting vulnerabilities in S/O code snippets is hindered. First, the program analysis
(PA)-based approaches, such as JavaSlicer [Galindo et al. 2022], rely on the construction of a system
dependence graph (SDG), which is only feasible for complete code. In the case of incomplete code,
they fail due to the presence of undeclared variables and unknown types. The next alternative
could be to build a more local representation such as the PDG and extract the slices by conducting a
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1 #include<iostream:h>

2 int main() {

3 int currentValue ;

4 int currentMaximum;

5 int currentMinimum; ...

19 currentMinimum = 0;

20 currentMaximum = 0;

21 nonNegativeCount = 0; ...

32 cout << end1 <<end1 <<end1;

33 cout <<"The number of non−negative numbers in the list was " << nonNegativeCount << end1;

34 cout << "The maximum negative number in the list was " << currentMaximum << end1;

35 cout << "The minimum negative number in the list was " << currentMinimum << end1;

36 }

Fig. 1. A buggy C++ program (fault area: line 20) [Francel and Rugaber 2001]

data-flow analysis. However, due to the missing declared data types, missing variable declarations,
the absence of external library imports, etc., most PA tools fail to build PDGs for incomplete code.
When wrapped around dummy method signatures, some tools like [Joern 2023] construct PDGs in
a best-effort manner, however, at the cost of several misses. We conducted a preliminary empirical
study analyzing the reasons behind such misses (see Section 3). Finally, another alternative would
be to use a deep learning-based PDG-building tool, such as NeuralPDA [Yadavally et al. 2023],
which works for incomplete code. However, it only operates at the statement-level and does not
provide fine-grained dependencies among the variables, a prerequisite for extracting slices.

In this paper, we present NS-Slicer, a neural network-based static program slicing approach that
produces program slices for variables within (in)complete code snippets. Our tool leverages a pre-
trained language model (PLM) to capture the interactions between a variable at a specific location
and all other statements in the given program, as well as the elements within those statements.
With this knowledge, during the training phase, NS-Slicer learns to predict whether a program
statement belongs to the backward or forward slice. During inference, the sequential nature of the
PLM within NS-Slicer enables it to be applied to both complete and incomplete code.

The rationale behind the use of PLMs for our problem is the nature of their pre-training tasks, such
as, masked language modeling (MLM) [Feng et al. 2020], edge prediction and node alignment [Guo
et al. 2021], which have shown to help them learn the syntactic structure in code [Hernández López
et al. 2023], and the data-flow information [Guo et al. 2021]. Furthermore, there is an inherent
difference in the nature of a backward slice and a forward slice, each of which contain the set of
statements that either affect, or are affected by a variable at a program location, respectively. To
capture this nuance, we incorporate distinct components within the static slice decoding phase in
NS-Slicer, such that, for a variable at a given program location, they predict whether a program
statement belongs to the set of statements in the backward or forward slice, respectively. Let us
use the term variable-statement dependency to refer such dependency between a variable at a
program location and a statement in a static slice. That is, a statement is said to have a variable-

statement dependency with a variable 𝑣 at a location if either that statement has potential influence
on the value of 𝑣 (backward slicing) or the value of the statement has potential to be affected
by 𝑣 (forward slicing). Given that PLMs have demonstrated proficiency in capturing program
dependencies at the statement level [Guo et al. 2021; Yadavally et al. 2023], we posit that they
possess the ability to learn and predict variable-statement dependencies at a finer token level for
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static slicing. In fact, our empirical evaluation (Section 6) substantiates this hypothesis, affirming
our finding on the PLMs’ capacity to capture variable-statement dependencies for static slicing.
In essence, program slicing can be viewed as a semantic knowledge-probing downstream task

for the PLMs. Accordingly, we conduct an extensive evaluation – assessing the performance of NS-
Slicer on both complete and partial programs. We note that on complete code, our tool predicts the
backward and forward slices with an F1-score of 97.41% and 95.82%, respectively, while recording
an overall F1-score of 96.77%. Moreover, in 85.20% of the cases, the program slices predicted by
NS-Slicer exactly match the ground-truth static program slices, and are executable. In the case of
partial programs, it records an F1-score of 96.77%–97.49% for backward slicing, 92.14%–95.40% for
forward slicing, and an overall F1-score of 94.66%–96.62%.
NS-Slicer empowers program analysis approaches, which, traditionally rely on static program

slicing and require complete code, to operate on partial code. We explore this utility via an extrinsic
evaluation of NS-Slicer on vulnerability detection. In this experiment, we plugged our tool within
VulDeePecker [Li et al. 2018] such that it makes use of the predicted static program slices to train
the model and then detect the presence of vulnerabilities. The motivation behind such a design is
that VulDeePecker is unusable for predicting vulnerabilities in partial code due to the failure of its
inherent program slicing tool. We observed that our tool achieved an overall F1-score of 73.38%,
improving over the baseline by 15.1%. Finally, we conducted a qualitative evaluation of NS-Slicer,
aiming to analyze its understanding of intrinsic code properties such as variable aliasing. In this
case, we note that the performance of our tool dropped by only 12.31%. We validated this probe
with case studies, studying our tool’s promising performance and limitations.

In brief, this paper makes the following major contributions:

(1) NS-Slicer is the first learning-based approach to static program slicing with a high accuracy,
which extends the applicability of slicing techniques to incomplete code.

(2) A new finding that PLMs are capable of capturing the variable-statement dependencies for the
purpose of static program slicing.

(3) We conduct a comprehensive evaluation, providing an in-depth analysis of model performance,
including ablation studies, qualitative probes, and case studies.

(4) We demonstrate NS-Slicer’s utility in detecting vulnerabilities in incomplete code.

2 MOTIVATING EXAMPLE

In this section, let us study a real-world example to illustrate the problem and motivate our solution.

2.1 Early Detection of Vulnerabilities in StackOverflow Code Snippets

Fig. 2 illustrates a code snippet that is part of an answer to the question in StackOverflow post
#16180130. The goal of this code snippet is to split a file and read the actual bytes from the
corresponding file. As reported in the empirical study by [Ragkhitwetsagul et al. 2021], this code
snippet was later copied and incorporated into the class LineRecordReader.java of the Hadoop project.
The program crashed with a Null Pointer Exception (NPE) on line 13 when the variable in was

null, i.e., not pointing to any object, and the method readLine was called on in. The NPE can occur
in two cases in which the variable in was not initialized properly: either on line 2 or line 10. Note
that both occurrences refer to the parameter fileIn. In the case of line 2, in could be null due to
a failed attempt at opening the file associated with the initialization of fileIn. In the case of line
10, this could be due to the same failed file opening, or for seeking the incorrect file on lines 7–8.
The subsequent migration of this StackOverflow code snippet resulted in the incorrect file seeking
vulnerability to be exhibited in the Hadoop project. Therefore, an early detection of vulnerabilities in

StackOverflow code snippets, before their adoption into code repositories is desirable.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 97. Publication date: April 2024.



A Learning-Based Approach to Static Program Slicing 97:5

1 if ( codec != null )

2 in = new LineReader ( codec.createInputStream ( fileIn ), job );

3 end = Long.MAX_VALUE;

4 } else {

5 if ( start != 0 )

6 skipFirstLine = true;

7 –start;

8 fileIn.seek ( start );

9 }

10 in = new LineReader ( fileIn, job );

11 }

12 if ( skipFirstLine )

13 start += in . readLine ( new Text () , 0,

14 ( int ) Math.min ( ( long ) Integer .MAX_VALUE, end − start ) ) ;

15 }

Fig. 2. A code snippet in StackOverflow post #16180130

2.2 Program Slicing for Incomplete Code Snippets

To detect vulnerabilities either manually or automatically, it is helpful to focus only on the important
statements that can impact the value of any variable of interest, e.g., the variable in on line 13. This is
referred to as the slicing criterion, and the set of all such statements as the backward slice. In contrast,
the forward slice contains the set of statements which might be affected by a change to the slicing
criterion. Since we focus on static analysis, the backward slice includes both the NPE-inducing
statements, i.e., lines 2 and 10. Moreover, since the related statements are control-dependent on the
if-statement, the backward slice for variable in on line 13 contains lines 12, 10, 8, 7, 6, 5, 2, and 1.

The approaches to program slicing for incomplete code are limited. First, the traditional program
slicing tools, e.g., JavaSlicer [Galindo et al. 2022], leverage a system dependence graph (SDG)
to extract program slices. However, this requires access to complete code along with all of their

dependencies. In Section 3, we attempted to build the program slices for incomplete code snippets
from S/O using JavaSlicer. We noticed that it did not produce any slices for code snippets that
contain third-party API elements from unknown libraries, or undeclared variables and types.
Second, an alternative solution is to use an automated tool to construct a program dependence

graph (PDG) and then perform data/control flow analysis on the PDG to extract the program slice.
We conducted an empirical study on applying the state-of-the-art program analysis tool, named
Joern [Joern 2023], on incomplete code snippets. We set this up by wrapping the code snippets
with method signatures and including additional input parameters when required. However, we
noticed that Joern either did not work or produced incomplete PDGs, mainly for the following
reasons: (1) missing declared data types, (2) missing variable declarations, (3) certain data types are
unresolved due to the missing imports for external libraries, (4) references to undeclared libraries,
(5) inability to process templates. We present this study in more detail in Section 3.

Finally, one could also build a PDG using a learning-based approach as in NeuralPDA [Yadavally
et al. 2023], which works well for code snippets. By construction, it operates at the statement
level, only providing information about inter-statement dependencies. It does not: (1) distinguish
between the data and control dependence edges at the fine-grained level, (2) identify the variable
upon which the data dependence edge is being predicted. However, the follow-up data/control-flow
analysis to extract the program slices from a PDG requires fine-grained variable/argument-specific
dependencies. Hence, it is not possible to use NeuralPDA for this purpose.
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3 PRELIMINARY EMPIRICAL STUDY

In this section, we present our preliminary empirical study aiming to qualitatively probe the program
dependence graphs constructed by traditional program analysis tools like [Joern 2023] for incomplete

code snippets. The rationale for this study is rooted in the role that program dependence analysis
plays in program comprehension as well as facilitating manual/automated debugging.

RQ. How reliable are the PDGs produced by Joern for incomplete code?

3.1 Dataset

In this study, we utilized a dataset provided by [Verdi et al. 2022], which consists of 99 incomplete
code snippets from StackOverflow spanning 31 different vulnerability types. These snippets were
subsequently incorporated into 2,589 GitHub repositories. Our primary objective is to evaluate the
effectiveness of Joern in producing the PDGs for these S/O code snippets.

3.2 Procedure

To better understand Joern’s efficacy in handling partial code and the conditions resulting in its
failure to capture dependencies, we: (a) first, ran Joern on the 99 S/O code snippets (when needed,
some instances were wrapped around dummy method signatures); (b) manually inspected the
generated CFG/PDGs. We conducted a fine-grained analysis for all 99 instances.

3.3 Empirical Results

Based on our analysis, we grouped Joern outputs for these code snippets into four categories, listing
the root causes for its failure in each category 1:
(1) Incorrect Outputs: In 47 cases, Joern either misses or incorrectly predicts multiple control-flow,

or data and control-dependence edges.
(2) Erroneous Instances: In 30 cases, Joern produces error messages, typically of the form “Could

not find type member. type=XYZ, member=abc.”. Here, 𝑋𝑌𝑍 is a type name and 𝑎𝑏𝑐 is the
corresponding identifier (i.e., the name of a variable or field) in the code snippet. Note that
Joern can produce multiple such errors in a single code snippet. Moreover, running Joern on the
incomplete code snippets directly without wrapping them with such dummy method signatures
increases the number of such erroneous instances to 49.

(3) Empty CFG, PDG, or both: In 7 of the cases, Joern does not produce any nodes/edges for
either the CFG, PDG, or both.
Broadly, the reasons for the cases in (1)–(3) can be summarized as follows:
• All data dependencies related to a parameter with unknown parameter type are ignored.
• For an unresolved external API class/method/field or an unresolved external data type,
dependencies to/from the statements referencing it are ignored.

• All edges related to objects constructed with unresolved/undeclared class are ignored.
• Inaccessible header files leads to undeclared variables, and all dependencies concerning the
undeclared variables are missed.

• Missing variable declarations.
• Missing declared data types; unresolved data types from missing external library imports.
• Due to missing class hierarchies, Joern fails to recognize the inherited attributes and skips
the corresponding data dependencies.

• Unresolved API references result in Joern skipping edges to/from these statements.
• Joern cannot handle templates, typedef declarations, etc.

1Refer to our project website for the complete, fine-grained analysis results: https://github.com/aashishyadavally/ns-slicer/
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1 string subTag( string s , string a, string b) {

2 std::string lower_s;

3 std::transform(s .begin () , s . end() , lower_s .begin () , :: tolower) ;

4 std::transform(a.begin () , a .end() , a .begin () , :: tolower) ;

5 auto position=lower_s. find (a) ;

6 while( position !=−1) {

7 s . replace ( position , a . size () , b) ;

8 position=lower_s. find (a) ;

9 }

10 return s ;

11 }

Fig. 3. A code snippet in StackOverflow post #40577390

(4) Correct Outputs: Joern produces correct CFG/PDGs in 15 of the cases, mainly because:
• Some of the instances are complete methods, classes, or files.
• In some cases where the code snippet is incomplete, all the declarations are available, or the
variables use primitive data types.

• Some code snippets possess no dependencies as it is just a group of structure definitions (i.e.,
group of struct objects).

3.4 An Illustrating Example

Let us consider the code snippet in Fig. 3 which corresponds to StackOverflow answer ID 40577390
(snippet9 in the dataset). This code snippet was identified as vulnerable when lower_s and s do
not have the same size as being used in the transform function. To capture such a vulnerability,
it is imperative to be aware of the data dependencies of s and lower_s from the statements 1 and
2 respectively, to the statement 3. However, since transform is an external API, Joern does not
recognize it and skips the dependencies for all statements to/from the ones using it. Therefore, the
CFG/PDG produced via Joern for this example is not useful for a systematic analysis.

3.5 Conclusion

From Section 3.3, we can see that Joern lacks the ability to construct PDGs, or produces severely
under-representative PDGs for incomplete code. In Section 3.4, we highlight the effect such under-
representative PDGs can have for the automatic detection of vulnerabilities in incomplete code.
Therefore, to establish early bug detection, as well as to facilitate debugging in incomplete code, we
observe a need for alternative approaches to derive such dependencies and the subsequent static
program slices.

Conclusion. Our findings highlight the inadequacies of traditional program analysis tools in
effectively capturing the program dependencies in incomplete code and helping manual and
automated debugging.

4 KEY IDEAS

To improve program slicing for incomplete code, we propose NS-Slicer, a neural network-based
partial program slicing framework that learns to derive the program slices for any criterion (i.e.,
any variable at any location in an incomplete code snippet). NS-Slicer for (in)complete code can
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be useful for tasks that can tolerate a low level of errors and imprecision, gaining scale and time
efficiency as a trade-off. In designing NS-Slicer, we have the following key ideas:

4.1 [Key Idea 1] Neural Network-Based Partial Program Slicing

Traditional program analysis approaches fail to build program slices for incomplete code (Observa-
tion 2.2). Thus, we present an alternative learning-based approach for static program slicing that
learns to analyze the fine-grained dependencies among the variables in and across the statements
within a complete program in open-source projects (e.g., GitHub) – enabling its application to predict

program slices for (in)complete code snippets. Our intuition for such a formulation is driven by: (1)
traditional program slicing [Galindo et al. 2022] techniques work well for complete code, enabling
us to build the training data, i.e., ⟨Program, Slicing Criterion, Backward/Forward Slices⟩ tuples; (2)
independence of PLM approaches on the completeness of the program due to their sequence-based
nature, i.e., due to taking in a sequence of tokens as input, which can easily be extracted for both
complete and incomplete code.

In this work, we aim to imitate the process of building a static program slice from the program
dependence graphs. In the traditional approach, for a specific slicing criterion: first, one would build
the PDG; second, apply data-flow analysis to determine which variables influence, or are influenced
by the slicing criterion; third, leverage the data-flow analysis to traverse the PDG and identify the
statements that influence, or are influenced by the slicing criterion, respectively.

4.2 [Key Idea 2] Pre-Trained Language Model for Variable-Statement Dependency

Learning

Previous studies [Guo et al. 2021; Hernández López et al. 2023] have demonstrated the ability
of PLMs in learning both syntactic and semantic properties in source code. Furthermore, Neu-
ralPDA [Yadavally et al. 2023] reinforces the potential of attention-based models to learn program
dependencies at the statement level (i.e., among statements). On this basis, we posit that PLMs
can be leveraged to discern the variable-statement dependencies for program slicing. Given its data
flow-specific learning objectives, we opted for GraphCodeBERT [Guo et al. 2021] as the PLM in
NS-Slicer. We expect that GraphCodeBERT, within NS-Slicer, will leverage this knowledge to
apply flow analyses across all statements to identify the variable-statement dependencies for slicing,
i.e., to identify the statements that influence, or are influenced by the slicing criterion. In fact, we
present in Section 6.4.3 a case study to probe and validate such a dependency learning.

4.3 [Key Idea 3] Mimic Program Slice Construction with Dedicated Multi-Pass

Classifiers

The PLM in NS-Slicer contextualizes source code tokens to produce syntax and semantics-aware
token representations, which also encapsulate the knowledge of the variables across statements
that either influence, or are influenced by the slicing criterion. By pooling together the token
representations of the individual tokens that make up the variable at the slicing criterion and all
statements in a given program, we can obtain the corresponding slicing criterion and program
statement representations.

Next, we mimic the PDG traversal by designing dedicated multi-pass classifiers, which, for each
program statement, utilize the corresponding pooled statement representation to ascertain whether
the statement belongs to the backward or forward slice, respectively. Two fundamental factors drive
the design of such distinct classifiers. First, backward and forward slices are inherently different, as
each comprises statements that either affect or are affected by a slicing criterion. We need distinct
slicing classifiers to capture this nuance effectively. Second, static slicing considers all possible paths
to/from the slicing criterion. To probe all such paths, we need to inspect the set of all statements
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that either precede or follow the specified criterion. However, the cardinality of these statement sets
is not constant and is determined by the location of the criterion within the program. Therefore,
we need a multi-pass classifier, where each pass involves considering the criterion variable and
a statement from the backward/forward statement sets – to determine whether that statement
belongs corresponding slice or not. Note that such a design is not suitable for dynamic slicing, in
which case, one would explore only one path to/from the slicing criterion.

5 NS-SLICER: NEURAL NETWORK-BASED STATIC PROGRAM SLICING

Fig. 4. Overview of NS-Slicer, a learning-based approach to static program slicing

5.1 An Overview of NS-Slicer

In Fig. 4, we present a general overview of NS-Slicer, a learning-based approach to static program
slicing, which primarily has two phases: training and inference. The training phase yields a neural
model that, given a complete/partial program and a slicing criterion, predicts the corresponding
backward and forward slices. To this end, we train the model on ⟨Program, Slicing Criterion,
Backward/Forward Slice⟩ tuples, wherein, the ground-truth program slices are extracted using a
traditional static program slicing tool. Thus, the training phase necessitates that the collected
programs are complete. During inference/prediction, possibly incomplete code snippets can be
input to NS-Slicer.
Given a program, in both training and inference phases, we: first, split the source code into a

sequence of sub-tokens; second, identify the variable-statement dependencies that encapsulate the
knowledge of the variables across statements that either influence, or are influenced by the slicing
criterion; third, construct the static program slices by discarding the irrelevant statements in the
program – identifying the sets of statements that affect, or are affected by the slicing criterion.

5.2 Model Architecture

Given a complete or partial program and a variable at a specific location as the slicing criterion,
NS-Slicer predicts the set of all statements that affect the variable in the requested criterion as the
backward slice, and the set of all statements that can be affected by the variable as the forward slice.
Fig. 5 illustrates the architecture of NS-Slicer, which has the following essential components:

5.2.1 Variable-Statement Dependency Learning. Several source code-specific PLMs [Feng et al.
2020; Guo et al. 2021] have emerged in recent time, which treat source code as a sequence of tokens.
There are multiple benefits to incorporating PLMs into our framework. Firstly, prior research [Guo
et al. 2021; Hernández López et al. 2023] demonstrates the ability of these advanced models to
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Fig. 5. Illustration of framework architecture of NS-Slicer

capture both the syntax and semantics of programming languages. Through the training process,
we expect that this component will leverage such knowledge of fine-grained dependencies in
source code to learn to apply the flow analyses and identify the variable-statement dependencies.
Moreover, the sequential nature of PLMs ensures NS-Slicer can operate on both complete and
partial code, thus overcoming the limitations of traditional program slicing approaches, which
work only on complete code.

Consider a program 𝑃 = ⟨𝑠1, 𝑠2, · · · , 𝑠𝑁 ⟩, where 𝑠𝑖 represents the statement comprising the
sequence of code tokens ⟨𝑐𝑖1, 𝑐𝑖2, · · · , 𝑐𝑖𝑀𝑖

⟩ on the 𝑖-th line (i.e., a total of𝑀𝑖 tokens). Accordingly, we
input the sequence of code tokens ⟨𝑐11, 𝑐12, · · · , 𝑐1𝑀1

, · · · , 𝑐𝑁1 , 𝑐𝑁2 , · · · , 𝑐𝑁𝑀𝑁
⟩ to the PLM. For each of

the tokens 𝑐𝑖𝑚 in 𝑃 , the PLM yields a rich and contextualized token representation 𝑒𝑐𝑖𝑚 ∈ R𝑑 .

5.2.2 Pooling Layers. A pooling operation is useful to aggregate a sequence of token representa-
tions. In NS-Slicer, we have two pooling components: variable pooling layer, and statement pooling

layer. The former computes the representation for the variable at the slicing criterion (i.e., slicing
variable embedding) from the token representations of the comprising individual tokens within that
variable. The latter computes the representation for a program statement (i.e., statement embedding)
from the token representations of the comprising individual tokens within the statement. We use
mean-pooling as the default aggregation strategy within both pooling layers.

Consider the variable 𝑣 = ⟨𝑐𝑥𝑎+1, · · · , 𝑐𝑥𝑎+𝑏⟩ on the 𝑥-th line that corresponds to the slicing criterion,
and the statement 𝑠𝑖 , that needs to be checked whether it belongs to the static program slice or not.
Their pooled representations would be 𝑒𝑣 = 1

𝑏

∑𝑎+𝑏
𝑗=𝑎+1 𝑒𝑐𝑥𝑗 and 𝑒𝑠𝑖 =

1
𝑀𝑖

∑𝑀𝑖

𝑗=1 𝑒𝑐𝑖𝑗
, respectively.

5.2.3 Static Slice Decoding. The static slice decoding phase has two components: backward slice
decoder, and forward slice decoder. Both components construct the static backward and forward
slices by deleting the parts of the program that do not affect, or are not affected by the variable
at the slicing criterion, respectively. This is akin to traversing the PDG in the backward and
forward directions to compute the corresponding program slices, except that, the knowledge of
the variable-statement dependencies required for deriving the program slices is encoded in the
statement representations 𝑒𝑠𝑖 . We capture the nuanced difference between the static slice decoding
components by leveraging two distinct 2-layered multi-layered perceptrons (i.e., MLPb for backward
slicing and MLPf for forward slicing). To inspect whether a statement 𝑠𝑖 in a given program 𝑃 is
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involved in the computation of the variable 𝑣 on the 𝑥-th line or not, we score the MLPs as follows:

score𝑠𝑙𝑖𝑐𝑒 (𝑠𝑖 , 𝑣𝑥 ) = MLP𝑠𝑙𝑖𝑐𝑒 (𝑒𝑠𝑖 ◦ 𝑒𝑣𝑥 ) (1)

where "◦" corresponds to the concatenation operation, and 𝑠𝑙𝑖𝑐𝑒 ∈ {𝑏, 𝑓 }. If a statement 𝑠𝑖 attains a
score𝑠𝑙𝑖𝑐𝑒 (𝑠𝑖 , 𝑣𝑥 ) > 0.5, it indicates that 𝑠𝑖 belongs to the static backward/forward slice of the variable
𝑣 on line 𝑥 in the given program 𝑃 . The combination of all such statements represents the predicted
static program slice, wherein, the backward slice �̂� = {𝑠𝑖 | 𝑠𝑖 ∈ 𝑃 ∧ score𝑏 (𝑠𝑖 , 𝑣𝑥 ) > 0.5, 1 < 𝑖 < 𝑥}
and forward slice 𝐹 = {𝑠𝑖 | 𝑠𝑖 ∈ 𝑃 ∧ score𝑓 (𝑠𝑖 , 𝑣𝑥 ) > 0.5, 𝑥 < 𝑖 < 𝑁 }. Note that MLP𝑏 is applied to
all statements preceding the slicing criterion (1 < 𝑖 < 𝑥 ) and MLP𝑓 is applied to the ones following
it (𝑥 < i < 𝑁 ). Thus, both sets of statements adjudged to belong to these slices are disjoint.

5.3 Training Process

We trainNS-Slicer on complete programs to facilitate the extraction of ground-truth static program
slices. We can leverage any traditional static program slicing technique [Tip 1995] to build such
ground truth slices from complete code. Next, we will explain the mathematical formulation for
the task of neural program slicing.

For the program 𝑃 = ⟨𝑠1, 𝑠2, · · · , 𝑠𝑁 ⟩ and variable 𝑣 on the 𝑥-th line as the slicing criterion, let the
ground-truth backward and forward slices be 𝐵 = ⟨𝑦1, 𝑦2, · · · , 𝑦𝑥−1⟩ and 𝐹 = ⟨𝑦𝑥+1, 𝑦𝑥+2, · · · , 𝑦𝑁 ⟩,
respectively. It is worth noting that the backward slicing classifier is applied to all statements
preceding the 𝑥-th line, and the forward slicing classifier is applied to all the statements following
it – the label 𝑦𝑖 meaning that it belongs to either of them or not. Due to its formulation as a binary
classification problem, the ground-truth backward slices 𝐵 𝑗 for all complete programs 𝑃 𝑗 in the
training data 𝐷 can be utilized to compute the training loss for backward slicing (i.e., L𝑏 ) as:

L𝑏 (𝜃 ) =
∑︁
𝑃 𝑗 ∈𝐷

𝑥 𝑗−1∑︁
𝑖=1

{
𝑦𝑖 log(𝑝𝑏 (𝑠𝑖 , 𝑦𝑖 ) + (1 − 𝑦𝑖 ) log(1 − 𝑝𝑏 (𝑠𝑖 , 𝑦𝑖 ))

}
(2)

Similarly, the ground-truth forward slices 𝐹 𝑗 for all the complete programs 𝑃 𝑗 in 𝐷 can be utilized
to compute the training loss corresponding to forward slicing (i.e., L𝑓 ) as:

L𝑓 (𝜃 ) =
∑︁
𝑃 𝑗 ∈𝐷

𝑁∑︁
𝑖=𝑥 𝑗+1

{
𝑦𝑖 log(𝑝 𝑓 (𝑠𝑖 , 𝑦𝑖 ) + (1 − 𝑦𝑖 ) log(1 − 𝑝 𝑓 (𝑠𝑖 , 𝑦𝑖 ))

}
(3)

The final joint training loss for NS-Slicer can be computed as follows:

L(𝜃 ) = min𝜃
{
L𝑏 (𝜃 ) + L𝑓 (𝜃 )

}
(4)

6 EMPIRICAL EVALUATION

We conducted several experiments to evaluate NS-Slicer, aiming to answer the following questions:
(I) Intrinsic Evaluation

RQ1. Effectiveness on Complete Java Code: How accurate is NS-Slicer in constructing program

slices for a given criterion, i.e., a variable on a specific statement in complete Java programs?

RQ2. Effectiveness on Partial Java Code: How accurate is NS-Slicer in constructing program

slices for a given criterion, i.e., a variable on a specific statement in incomplete Java code?

(II) Ablation Study

RQ3. How does the removal/replacement of its components affect NS-Slicer’s model performance?

(III) Qualitative Evaluation

RQ4. Variable Aliasing: Can NS-Slicer correctly predict the program slice for a Java program in

which Java aliases have been introduced? How does it affect the overall model performance?
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(IV) Extrinsic Evaluation

RQ5. VulnerabilityDetection in JavaCode:How useful are the program slices built byNS-Slicer

for the downstream task of detecting vulnerabilities in incomplete code?

6.1 Static Slicing of Complete Programs (RQ1)

6.1.1 Data Collection. To enable the effectiveness evaluation on complete Java programs (RQ1),
we considered IBM’s Project CodeNet dataset [Puri et al. 2021], which includes 4,053 programming
challenges for several languages. In particular, we focus on Java language as the main resource,
which covers 250 problems and a total of 75,000 solutions. We parsed all such Java programs using
Eclipse JDT to identify the locations of different variables in the programs. Next, we leveraged
JavaSlicer [Galindo et al. 2022] to collect the static program slices for all such instances.

Since we model the program slice decoding task as binary classification, it is imperative to ensure
that the labels for positive and negative samples are balanced. Thus, we only retain those instances
in which the ratio (𝑟 ) of the statements belonging to the backward/forward slice, to the ones not
belonging to the corresponding slice lies between 0.3 and 0.7, i.e., 0.3 < 𝑟 < 0.7. 𝑟 is the range for
the ratio between the number of positive and negative samples (statements) that are input to the
slicing classifiers. Note that this ratio does not correspond to the size of the slice over the program’s
size. By not enforcing a form of balance of the positive and negative samples in this manner, the
classifiers would not capture well the notion of belonging, or not belonging to the slice. Accordingly,
we retain ~43,000 data instances corresponding to the Java programs, each containing between
5–69 statements per program. Finally, we split them at the problem-level in a 80%/10%/10% ratio,
i.e., dedicating the Java programs and their slices across 200 problems for training, 25 problems for
validation, and 25 problems for testing, respectively. Such a problem-level splitting strategy avoids
data corruption across the dataset splits, thus better representing a realistic scenario.

6.1.2 Methodology. Pre-trained language models (PLMs) on source code benefit from the pre-
training tasks by learning to encode the whole structure in programming languages [Hernán-
dez López et al. 2023], and the semantic-level structure in code [Guo et al. 2021]. In particular,
the data flow-specific pre-training objective in GraphCodeBERT [Guo et al. 2021] encodes in it
the relation of where the value in a variable comes from, making it suitable for our task of static
program slicing. Thus, we leveraged GraphCodeBERT as the PLM in NS-Slicer. During the training
phase, we fine-tuned it alongside training the MLP heads corresponding to backward and forward
slicing, respectively.

By virtue of design, the intrinsic evaluation (RQ1–RQ2) assesses how closely NS-Slicer mimics

the traditional program slicing tool, i.e., JavaSlicer in terms of resulting slices. We also picked multiple
baselines to compare against our model. First, we chose the pre-trained version of GraphCodeBERT
off-the-shelf. In this case, during the training phase of NS-Slicer, the parameters within the
PLM were fixed, and the token/statement representations from the PLM were used as-is, to train
the backward and forward slicing MLP heads. Next, we chose the state-of-the-art CodeBERT
model [Feng et al. 2020], considering both the pre-trained and fine-tuned versions as above.
The backbone of the PLMs in NS-Slicer is the standard RoBERTa-base architecture [Liu et al.

2019] which has 12 Transformer-encoder layers, each possessing 12 attention heads. We used the
byte-pair encoding (BPE) [Liu et al. 2019] scheme in the pre-trained RobertaTokenizer for splitting
the given source code into sub-tokens, with its corresponding initialization as per the NS-Slicer
variant. The dimension size for the token representations thus produced by these PLMs is 768.
All our experiments were conducted on an NVIDIA RTX A6000 GPU. With a batch size of 64,
we initialized all variants with learning rates of 1e-4 and 5e-4 during training, and reported the
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Table 1. Effectiveness evaluation on complete Java programs (RQ1).

Approach

Slicing Evaluation Metrics (in %)

Criterion A-EM A-D A-S P R F1

Pre-Trained

CodeBERT
Backward 43.21 92.24 84.40 88.52 88.30 88.41
Forward 40.84 94.80 85.76 83.62 87.20 85.37
Overall 42.03 92.46 85.06 86.51 87.86 87.18

GraphCodeBERT
Backward 47.53 92.54 86.91 91.75 88.54 90.12
Forward 49.75 95.76 88.07 86.03 89.49 87.72
Overall 48.64 93.15 87.47 89.36 88.92 89.14

Fine-Tuned

CodeBERT
Backward 81.72 97.72 95.65 97.01 96.52 96.76
Forward 83.47 97.88 95.59 95.31 95.45 95.38
Overall 82.59 97.56 95.62 96.33 96.09 96.21

GraphCodeBERT
Backward 85.77 98.21 96.51 97.60 97.21 97.41
Forward 84.62 98.49 95.99 95.20 96.45 95.82
Overall 85.20 98.09 96.26 96.63 96.91 96.77

best-performing models. Overall, NS-Slicer (with both CodeBERT and GraphCodeBERT) has about
128M parameters, and took ~32 minutes per epoch to train on our machine.

6.1.3 Evaluation Metrics. We model the program slice decoding step in NS-Slicer as a binary
classification problem at each statement. Thus, we adopt the standard evaluationmetrics:Accuracy-S
= TP+TN

TP+FP+FN+TN , Precision = TP
TP+FP , Recall =

TP
TP+FN , and F1-Score = 2∗Precision∗Recall

Precision+Recall . Here, TP = True
Positives, FP = False Positives, FN = False Negatives, and TN = True Negatives. Note that we enable
the statement-level assessment by counting all the outcomes in these metrics globally.
Next, to capture the model performance at the slice-level, we report the stricter Exact-Match

Accuracy (i.e., Accuracy-EM) that determines the number of times NS-Slicer predicts the backward
and forward slices exactly the same as the ground-truth slices from JavaSlicer.
Finally, we report Dependence Accuracy (i.e., Accuracy-D) to assess how accurately the inter-

statement dependencies are predicted, causing a particular statement to be included in the slice.
Accordingly, we define Accuracy-D for a particular program as the ratio of the correctly predicted
dependencies to the actual dependencies across all slicing criteria for that program, finally reporting
the mean across all programs in the dataset. We use the same set of metrics for RQ1–RQ4.

6.1.4 Experimental Results. In Table 1, we report the performance of NS-Slicer on complete Java
programs, comparing different PLMs for the static program slicing task. We can see that using
GraphCodeBERT (rows 10–12) produces the most competitive results, predicting the backward and
forward slices with an F1-score of 97.41% and 95.82%, respectively. Overall, our tool best predicts
the complete static slice with an F1-score of 96.77%. Furthermore, it matches the ground-truth
program slices constructed by JavaSlicer exactly, in 85.20% of the cases. Note that these ground-truth
program slices are executable, i.e., are syntactically valid and can be executed independently of
the main program. Thus, 85.20% of the program slices predicted by NS-Slicer are also executable,
demonstrating its usefulness in debugging real-world Java programs.

CodeBERT is pre-trained on the masked-language modelling (MLM) and replaced-token detection
(RTD) learning objectives, compared to GraphCodeBERT, which leverages code structure and data-
flow for pre-training. As a result, using GraphCodeBERT in place of CodeBERT as the PLM in NS-
SLICER results in a relative improvement in the overall F1-score by 0.58%, and exact-match accuracy
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Fig. 6. Sensitivity to the static program slice sizes as a fraction of the entire program.

by 3.16%. Besides, the improvement in predicting such matched slices can possibly be attributed
to the data-flow knowledge in GraphCodeBERT, which ensures both statements containing the
variable belong to the slice.We conducted 𝑡-test between CodeBERT and GraphCodeBERT PLMs in

NS-Slicer, and the results show the improvements are significant with 𝑝 < 0.01.
We also report the performance of NS-Slicer by leveraging CodeBERT and GraphCodeBERT

PLMs off-the-shelf (rows 1–3 and 4–6 in Table 1). Here, only the backward and forward slicing
MLP-heads are trained. The results demonstrate a decrease in the overall F1-score by 11% and
8.56%, respectively. Moreover, there is a notable decline in the exact-match accuracy, with a drop of
102.71% for CodeBERT and 75.16% for GraphCodeBERT. Such a drop in performance reinforces the
complexity of the program slicing task and underscores the rationale behind NS-Slicer’s design.
As seen in Table 1, NS-Slicer also achieves very high Dependence Accuracies (𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦-𝐷)

across all the models from 92.46%–98.09%. This validates our hypothesis on the ability of the PLMs
in learning the variable-statement dependencies.

NS-Slicer predicts the program slices for complete Java programs with an overall F1-score of

96.77%, and exactly matches the ground-truth program slices in 85.20% of the cases.

6.1.5 Sensitivity to the Size of Static Program Slices. In Fig. 6, we report the stratified performance
of NS-Slicer with fine-tuned GraphCodeBERT based on the ratio (𝑟 ) of the sizes of static program
slices to the corresponding lengths of the programs. Here, note that 𝑟 in the given ranges (i.e., the
range of 0.2–0.3 to the range of 0.8–0.9) corresponds to 1.1%, 10.7%, 17.8%, 23.5%, 21.8%, 19.1%, and
5.8% of the test set, respectively.
A lower value of 𝑟 indicates fewer variable-statement dependencies in the program. Notably,

when 0.2 < 𝑟 < 0.5, we can see that the dependence accuracy and recall are among the highest.
This showcases the effectiveness of NS-Slicer in identifying the presence of such dependencies.
However, based on the lower precision in these cases, we can conclude that it does not identify
the statements that do not belong to the static program slice as well. As a result, the exact-match
accuracy and F1 scores are also lower. We can attribute this skewedness to the fewer number of
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Table 2. Effectiveness evaluation on partial Java programs, where 𝑃% is omitted at both start and end (RQ2)

.

P Slicing Evaluation Metrics (in %)

Criterion A-EM A-D A-S P R F1

5%
Backward 85.98 98.26 96.67 97.57 97.40 97.49
Forward 80.99 97.17 95.59 95.25 95.56 95.40
Overall 83.48 97.76 96.14 96.60 96.64 96.62

10%
Backward 83.89 98.10 96.17 97.08 96.91 96.99
Forward 72.91 93.79 94.12 95.45 92.68 94.05
Overall 78.40 96.13 95.14 96.37 95.03 95.70

15%
Backward 84.54 97.31 95.91 97.32 96.23 96.77
Forward 62.02 89.89 91.83 96.00 88.57 92.14
Overall 73.28 93.92 93.85 96.73 92.68 94.66

examples with a low value of 𝑟 during training. Moreover, the nature of static program slicing
diminishes the consequences of including such non-dependent statements in the slice.

6.2 Static Slicing of Partial Programs (RQ2)

Traditional program analysis approaches fail to extract static program slices for partial programs (for
reasons shown in Section 3). In contrast, NS-Slicer is not limited by the program’s completeness.
We set up this experiment to exhibit its ability in predicting static slices for partial Java code.

6.2.1 Methodology. Extracting the ground-truth program slices for partial programs is not possible.
As a result, for the test Java programs in Section 6.1, we strip 𝑃% of the statements at the beginning
and at the end of the code example to imitate a partial Java program. To evaluate the performance
of NS-Slicer on partial code thus obtained, we extract the ground-truth partial program slices
corresponding to the retained code, from the ground-truth program slices of complete code. In this
process, we omit any instances which end up with empty backward or forward slices. The difficulty
in dealing with partial programs obtained in such a manner is exacerbated by the possible deletion
of various variable declarations – thus eliminating the def-use relationships. Moreover, the higher
the value of 𝑃 , more number of such relationships shall be defied.

6.2.2 Experimental Results. In Table 2, we report NS-Slicer’s results on partial Java code obtained
by omitting 5%, 10%, and 15% of the programs, both at the beginning and the end. We record an
overall F1-score of 94.66%–96.62%, and an exact-match accuracy of 73.28%–83.48%. Overall, with
this stripping scheme, an average of 2, 3, and 5 statements per program are omitted, respectively.
Notably, in 14.89%, 51.97%, and 59.46% of the cases, the excluded statements contain variable
declarations that are referenced in the remaining partial program, thus disrupting the def-use

chain. Thus, we can explain the decrease in performance by 2.07% in overall F1-score and 13.92% in
exact-match accuracy, as resulting from the deletion of 5% −→ 15% of the program.

Comparing to the Dependence Accuracies (𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦-𝐷) in Table 1, the corresponding accuracies
for partial code in Table 2 are lower. However, they are all from 93.92% to 97.76%, validating our
hypothesis of the learning capability of PLMs on variable-statement dependencies.

NS-Slicer predicts the program slices for partial Java code with an F1-score of 94.66%–96.62%,

and exactly matches the ground-truth program slices in 73.28%–83.48% of the cases.
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Table 3. Ablation Study: Here, B1 denotes NS-Slicer w/o source code pre-training; B2 denotes NS-Slicer w/o
data-flow pre-training; B3 denotes NS-Slicer w/o mean-pooling (RQ3).

Baseline

Evaluation Metrics (in %)

A-EM A-D A-S P R F1

𝐵1 82.19 97.84 95.50 96.60 95.59 96.09
𝐵2 83.30 97.71 95.79 96.66 96.03 96.35
𝐵3 80.15 96.57 95.41 96.65 95.36 96.00

NS-Slicer 85.20 98.09 96.26 96.63 96.91 96.71

6.3 Ablation Study (RQ3)

In this experiment, we aim to quantify the contributions of different model components inNS-Slicer
to its overall performance.

6.3.1 Ablation Baselines. The different ablation baselines include:
• B1, w/o source code pre-training: PLMs such as CodeBERT, GraphCodeBERT, etc., are trained on
source code from multiple programming languages, and have exhibited benefits to tasks such as
clone detection, code summarization, etc. The underlying RoBERTa-base [Liu et al. 2019] model
architecture, however, was originally trained on multiple English-language corpora. We created
this baseline to observe the effect that such source code pre-training has on the static program
slicing task. Thus, we initialize the PLM in NS-Slicer with the pre-trained RoBERTa-base model.

• B2, w/o data-flow pre-training: The masked language modeling (MLM) pre-training objective
has been shown to help source code PLMs understand the structure in programming lan-
guages [Hernández López et al. 2023]. In GraphCodeBERT, Guo et al. [Guo et al. 2021] included
additional pre-training tasks such as edge prediction and node alignment to help the model learn
where the value in a variable comes from, i.e., data-flow. We created this ablation baseline to
understand the affect that these pre-training objectives have on the data flow-specific task of
program slicing. Thus, we initialize the PLM in NS-Slicer with CodeBERT model pre-trained only

on MLM.
• B3, w/o mean-pooling: In NS-Slicer, by default, we use the mean-pooling strategy within the
Variable Pooling Layer and Statement Pooling Layer to aggregate the contextualized sub-token
representations produced by the PLMs for the corresponding sub-tokens. We created this baseline
to assess the effect of such an aggregation, and replace it with max-pooling instead.

6.3.2 Experimental Results. In Table 3, we report the performance of the different ablation baselines
𝐵1–𝐵3. To establish 𝐵1, we replace the source code-based PLMs in NS-Slicer with the RoBERTa-
base model pre-trained on the English language. Interestingly, we can see that the lack of source
code-based pre-training only results in a drop in performance from using the GraphCodeBERT
PLM in NS-Slicer by 0.62% in overall F1-score and 3.01% in exact-match accuracy. Nevertheless,
the disparity between 𝐵1, which lacks source code understanding, and the use of source code-based
PLMs in NS-Slicer becomes evident when tested on partial code (as in Section 6.2). In this case,
𝐵1 observes an exact-match accuracy of 68.54%–80.33%, highlighting the advantages of utilizing
source code-based PLMs in our solution.

With 𝐵2, we aim to isolate the benefits of leveraging the data flow-specific pre-training objectives
in GraphCodeBERT for program slicing. We see that using just the MLM learning objective results
in a relative drop in performance by 0.37% in overall F1-score and 1.9% in exact-match accuracy.
Note that 𝐵2 is different from the pre-trained CodeBERT in Table 1 (rows 7–9), as it is not trained
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on the RTD learning objective. In this case, it improves upon CodeBERT pre-trained on both MLM
and RTD learning objectives by 0.15% in overall F1-score and 1.22% in exact-match accuracy.
Devlin et al. [Devlin et al. 2019] assert that each downstream task benefits from different sub-

token aggregation techniques. In 𝐵3, we test max-pooling instead of mean-pooling, and observe
that the overall F1-score drops by 0.71% and the exact-match accuracy drops by 5.1%. In fact, it is
the worst-performing ablation baseline among 𝐵1–𝐵3. Therefore, we can quantifiably measure the
advantage of employing mean-pooling for extracting the contextualized variable and statement
representations in NS-Slicer to predict the corresponding program slices.

From Table 3, we learned that mean-pooling (𝐵3), to obtain variable/statement representations is
more critical in our design. This is reflected by the 5.1% drop in Exact-Match score upon replacing
it by max-pooling, another popular sub-token aggregation strategy. Comparing 𝐵1 and 𝐵2, we
saw that source code pre-training is more important than data flow pre-training. Furthermore,
the importance of source-code-pre-training is exacerbated in the case of partial code. As seen,
NS-Slicer’s performance dropped significantly from 73.28% (Table 2) to 68.54%.

All model components in NS-Slicer directly contribute to its ability in predicting highly accurate

static program slices.

6.4 Probing Pre-Trained Language Models (PLMs) for Variable Aliasing (RQ4)

Variable aliasing is an intrinsic code property in which multiple references when used to refer to the
same object, still point to the same location in memory. In practice, aliasing is not straightforward
to debug, as the changes caused on one variable also reflects on the other. We set up this experiment
to assess how well the PLMs understand variable aliasing, and the effect such aliases have on the
performance of NS-Slicer in static program slicing.

6.4.1 Methodology. We enable this experiment by introducing synthetic variable aliases in the
test Java programs in Section 6.1, by inserting a variable assignment in the statement following the
one containing the variable of the requested criterion. Next, in all the subsequent statements that
contain the variable, we replace the original variable with the alias. For example, let us consider
a Java program in which we need to predict the program slice for the variable x of type int, on
statement 5. Let the forward slice for this contain the statements 8, 9, 13, and 15, among which
statements 9 and 13 contain x. In this case, we introduce a variable assignment int aliasingVar=x
on statement 6, and replace x on statements 9 and 13 by aliasingVar. As a result, the new forward
slice contains the statements 6, 9, 10, 14, and 16, while the backward slice remains unaffected. Thus,
for the test programs obtained in such a manner, we compare the forward slicing performance of
CodeBERT and GraphCodeBERT in NS-Slicer, with and without aliasing.

6.4.2 Experimental Results. In Table 4, we report the forward slicing performance of both Code-
BERT and GraphCodeBERT PLMs, on test programs with and without synthetic variable aliases.
We observed a drop in the forward slicing F1-score, with reductions of only 13.32% and 12.31%,
respectively. This shows that NS-Slicer is able to track the dependencies across the variable
aliases (in Section 6.4.3, we demonstrate such dependency tracking via a case study). In contrast,
the forward slicing exact-match accuracy shows substantial declines, with a drop of 139.72% for
CodeBERT and 118.43% for GraphCodeBERT. The lower exact-match accuracy, despite having a
high F1-score, can be attributed to the strictness of the former metric. This suggests that NS-Slicer
may have mis-predicted only a few statements per program.
We performed an in-depth analysis of the test Java programs to gain more insights about this

behavior. On average, 42.86% of the statements in the forward slice for each program contains
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Table 4. Probing Pre-Trained Language Models (PLMs) for Variable Aliasing: Comparison of forward slicing

performance on complete Java programs, with (𝑀x) and without (𝑀*x) synthetic variable aliases (RQ4).

Approach

Evaluation Metrics (in %)

A-EM A-D A-S P R F1

𝑀CodeBERT 34.82 74.33 81.31 90.12 78.95 84.17
𝑀*CodeBERT 83.47 97.88 95.59 95.31 95.45 95.38

𝑀GraphCodeBERT 38.74 74.23 82.49 90.27 80.89 85.32
𝑀*GraphCodeBERT 84.62 98.49 95.99 95.20 96.45 95.82

references to the synthetic variable aliasingVar. Next, to investigate the effect of the number of
aliasing variable references on NS-Slicer’s performance, we stratified the test set based on the
number of such references and compared the forward slices. However, we did not observe any
direct correlation between the number of references and our tool’s predictive capabilities.
While the predicted forward slices still hold value, the PLMs may encounter challenges in

generating exact-match slices in such complex yet uncommon aliasing scenarios. This could be
attributed to the lack of understanding of source code at the memory level, as the current pre-
training tasks mainly focus only on the lexical aspects of source code. Thus, advancements in source
code-specific pre-training could further improve the performance of PLMs for program slicing.

The PLMs in NS-Slicer predict the forward slices for complete Java programs with variable aliases

with an F1-score of 84.17%–85.32%, and exact-match accuracy of 34.82%–38.74%.

6.4.3 Case Study 1. The self-attention [Vaswani et al. 2017] mechanism in PLMs facilitates con-
textualization by assigning attention scores to each token based on its relationship with all the
other tokens within its context. Thus, for an input containing 𝑁 tokens, we obtain an 𝑁 × 𝑁

attention map, where each attention score numerically signifies the importance of one token on the
other. In this section, we leverage such attention maps to investigate the GraphCodeBERT PLM’s
understanding of variable-statement dependencies within NS-Slicer.

In Fig. 7, we present a test Java program, for which the static program slices need to be derived
with respect to variable c on line 7. The ground-truth backward and forward slices for this slicing
criterion include the lines {1, 2, 3, 4, 5} and {8, 9, 11, 12, 13, 19}, respectively. To predict the static
program slices, we leverage two versions of NS-Slicer from Section 6.1, utilizing the pre-trained
GraphCodeBERT (row 2 in Table 1), and fine-tuned GraphCodeBERT (row 4 in Table 1).

Fig. 7a and Fig. 7b correspond to the pre-trained and fine-tuned GraphCodeBERT PLMs withinNS-
Slicer, respectively. In both, we illustrate the words (comprising tokens separated by a whitespace
or a period) in the test Java program in the form of a heatmap – highlighting the attention scores
of all words with respect to the variable c on line 7. To compute the attention score for a word
in the heatmaps, we follow prior work [Clark et al. 2019] and take the mean of all such scores
over its sub-tokens. In general, a darker colour in the heatmaps indicate a stronger relationship
with variable c, in the form of variable-statement dependencies. Moreover, given that NS-Slicer is
geared to predict whether a statement belongs to the program slice with respect to a variable in a
requested criterion or not, the attention scores here suggest such decision making.

When leveraging the pre-trained GraphCodeBERT (Fig. 7a), we can see that the model does not
pay attention to the data and control dependent variables. As a result, the program slice computed
by plugging the pre-trained GraphCodeBERT model in NS-Slicer is not capable of predicting
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(a) (b)

Fig. 7. Visualization of attention score heatmaps from pre-trained (left) and fine-tuned (right) GraphCodeBERT

PLMs within NS-Slicer, for all words in a Java program, sliced with respect to variable c on line 7.

1 public static void main(String[] args ) throws Exception { ✓

2 Scanner sc = new Scanner(System.in) ; ✓

3 int n = sc . nextInt () ; ✓

4 String ans = "Yes" ; ✗

5 int p_t = 0; ✓

6 int p_x = 0; ✗

7 int p_y = 0; ✗

8 for ( int i = 0; i < n; i++){ ✓

9 int t = sc . nextInt () ; ✓

10 int x = sc . nextInt () ; ✓

11 int y = sc . nextInt () ; ✓

12 int diff = Math.abs(x − p_x) + Math.abs(y − p_y) ; ✓

13 int aliasingVar = t ; ✓

14 if ( diff > aliasingVar − p_t || Math.abs( aliasingVar − p_t − diff ) % 2 == 1) { ✓

15 ans = "No"; ✗

16 break; ✓

17 } ✓

18 p_t = aliasingVar ; ✓

19 p_x = x ; ✗

20 p_y = y; ✗

21 } ✓

22 System.out. println (ans) ; ✗

23 } ✓

Fig. 8. Java program sliced with respect to variable t on line 9: ✓ denotes statements correctly identified by

NS-Slicer as part of the slice, ✗ indicates statements erroneously classified as not belonging to the slice.

accurate backward and forward slices. Therefore, we can see that PLMs cannot directly be used for
the program slicing task, reiterating the need to formulate the program slicing task as in NS-Slicer.
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In contrast, utilzing fine-tuned GraphCodeBERT in NS-Slicer correctly predicts the backward
and forward slice for this program. In Fig. 7b, we see that it pays more attention to the variables a

and b on line 5, and subsequently, also to the corresponding variable declarations on lines 3 and 4,
respectively. Thus, it predicts the lines {3, 4, 5} to belong to the backward slice. Applying a similar
reasoning, we can also explain the prediction of line {2} belonging to the backward slice. On line
8, the synthetic variable alias aliasingVar is introduced. As a result, lines {8, 9} are predicted to
belong to the forward slice. While lines 10 and 11 are control-dependent on line 9, we can see
that the variable bre does not depend on either c or the alias aliasingVar anywhere else. Thus, line
{6} and lines {14, 15, 16, 17} are omitted from the backward and forward slices, respectively. Due
to the control dependency described earlier, lines {11, 12}; and due to the nature of executable
slices produced by JavaSlicer in the ground truth, lines {13, 19}, are predicted to belong to the
forward slice. Therefore, as noted in Key Idea 2 (Section 4), we can see that NS-Slicer exhibits

an understanding of the variable-statment dependencies. Furthermore, we observe significant
program slicing-specific code understanding within the attention maps of the PLM in NS-Slicer.

6.4.4 Case Study 2. Next, we present a test Java program in Fig. 8 for which the ground-truth
static backward and forward slices with respect to variable t on line 9 are {1, 2, 3, 5, 6, 7, 8} and
{10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 23}, respectively. We can see that the variable ans depends on
the conditions related to the variables t, p_t, diff, x, and y. However, it does not directly contribute
to the computation of t on line 9. As a result, the fine-tuned GraphCodeBERT (row 4 in Table 1
omits lines {4} and {15, 22} from the static backward and forward slices.

Furthermore, the if-condition on line 14 depends on the variable diff, which, in turn depends on
variables p_x and p_y. Thus, the lines {6, 7} and {19, 20} should belong to the static backward and
forward slices, respectively. With the introduction of the alias aliasingVar on line 13, NS-Slicer
seems to miss this indirect dependency, leading it to omit these lines in the corresponding predicted
slices. However, upon testing this programwithout aliasingVar, we observed thatNS-Slicer predicts
the static program slice correctly, confirming the intricacies of understanding variable aliasing.

6.5 NS-Slicer for Vulnerability Detection (RQ5)

In this experiment, we explore the applicability of the static program slices predicted by NS-Slicer
for the downstream task of vulnerability detection (VD) in Java code. VulDeePecker [Li et al. 2018]
is a popular automated VD approach that utilizes program slices for this purpose – representing
programs as code gadgets that are composed of a number of semantically related program statements.
Each code gadget focuses on a key point hinting at the existence of a vulnerability.

In Fig. 9, we present the general overview of VulDeePecker. During the training phase, VulDeeP-
ecker approach utilizes a BiLSTM model to learn to detect the vulnerability patterns from the
code gadgets. In the detection phase, it breaks a given program down into multiple code gadgets,
leveraging the trained BiLSTM model to determine whether each is vulnerable or not.

Next, we present the pipeline for extracting such code gadgets in VulDeePecker [Li et al. 2018].
Technically, a code gadget is a static program slice from an arguments of API method call. In Fig. 10
(top), it: first, extracts all the libary/API call arguments; second, builds the PDGs using Joern and
apply data flow analyses to extract the corresponding gadgets (static slices); third, retrieves the
vulnerability labels for the code gadgets. However, its dependence on traditional PA approaches for
building static program slices limits VulDeePecker to complete code. Alternatively, NS-Slicer can be
plugged into the second step of the process for extracting code gadgets, as in Fig. 10 (bottom). That is,
we used the slices predicted by NS-Slicer in both training and prediction phases of VulDeePecker.
Such an integration extends VulDeePecker’s applicability to both complete and partial code.
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Fig. 9. Overview of VulDeePecker

Fig. 10. Contrasting code gadget-building pipelines in: VulDeePecker (top),NS-Slicer +VulDeePecker (bottom).

6.5.1 Data Collection and Procedure. Most benchmark vulnerability datasets cover C/C++ (e.g.,
BigVul [Fan et al. 2020]), and those for Java are limited. [Nikitopoulos et al. 2021] introduced
CrossVul, a cross-language vulnerability dataset that includes vulnerable files written in more than
40 programming languages, covering 563 commits across Java files. We parse them using Eclipse
JDT and extract a total of 14,139 methods with external libraries. Note that NS-Slicer can work on
all of those methods regardless of whether they are complete (compilable) or not. We follow the
methodology in BigVul [Fan et al. 2020] to label them as vulnerable or non-vulnerable – retrieving
574 and 13,565 for each, respectively. To ensure a balanced dataset, we only select files that are
independent of the ones possessing the vulnerable methods, and randomly pick 574 non-vulnerable
ones. Finally, we split them in a 80%/10%/10% train/validation/test ratio at the file-level.

Similar to [Li et al. 2018], we pick the library/API function call arguments within a method as the
focus area. Accordingly, we collect all library/API call arguments for each method, determining their
vulnerability labels based on whether the API call belongs to the changed code or not. As observed
in Section 3, Joern fails to produce quality PDGs in the absence of external libaries, subsequently
generating program slices with a low accuracy. Thus, we leverage NS-Slicer to extract the program
slices corresponding to the API call arguments, and generate the code gadgets as explained.

Overall, we obtain 1,476 code gadgets for training, 184 for validation, and 187 for testing. Among
these gadgets, 1,020 are vulnerable and 827 are non-vulnerable. To avoid underfitting of the BiLSTM
in VulDeePecker due to the limited size of the Java vulnerability dataset, we utilize the version
trained on BigVul [Fan et al. 2020] as the initialization point. Such a strategy leverages knowledge
gained from predicting vulnerabilities in C/C++ code, leading to better generalization for Java code.
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Table 5. Results of NS-Slicer + VulDeePecker for vulnerability detection, where𝑀 corresponds to the PLM.

NS-Slicer {𝑀} + VulDeePecker Evaluation Metrics (in %)

A P R F1

Pre-trained GraphCodeBERT 59.46 64.71 62.86 63.77
Fine-tuned GraphCodeBERT 60.00 58.96 97.14 73.38

6.5.2 Evaluation Metrics. We adopt the same evaluation metrics as in prior vulnerability detection
literature [Li et al. 2018; Wu et al. 2022], i.e, Accuracy, Precision, Recall, and F1-Score.

6.5.3 Experimental Results. In Table 5, we present the performance of VulDeePecker in predicting
vulnerabilities via program slices, constructed by using the pre-trained GraphCodeBERT as the
PLM in NS-Slicer (row 1), and the fine-tuned version of GraphCodeBERT from Section 6.1 (row 2).
We can see that using the program slices from NS-Slicer helps predict vulnerabilities in such Java
code with an F1-score of 73.38%, while outperforming the baseline by 15.1%. Such an improvement in
performance further reiterates the role of learning variable-statement dependencies (See Section 4,
Key Ideas 2–3), as opposed to only relying on data-flow knowledge of pre-trained GraphCodeBERT.
Furthermore, as Zhou et al. [Zhou and Sharma 2017] note, real-world vulnerabilities exist in a

9:1 non-vulnerable to vulnerable ratio. To test the performance of NS-Slicer + VulDeePecker in a
real-world setting, we replicated this ratio across our test set and averaged the performance across
10 samples – achieving an F1-score of 98.67%. However, due to the significantly fewer number of
vulnerable code gadgets in such samples, we note that the metrics in this setting are skewed.

The static program slices predicted by NS-Slicer help the automated vulnerability detection tool,

VulDeePecker, detect vulnerabilities in partial Java code with an F1-score of 73.38%.

6.6 Limitations and Threats to Validity

6.6.1 Programming Languages. There do not exist many public, open-source, and non-proprietary
static program slicing tools for different programming languages. For modern Java too, to the best
of our knowledge, JavaSlicer [Galindo et al. 2022] is the only one. As a result, NS-Slicer primarily
supports Java at this time. This framework can easily be adapted to other programming languages
by collecting ⟨Program, Slicing Criterion, Backward/Forward Slice⟩ tuples as in Section 6.1. Moreover,
the underlying PLM in NS-Slicer was originally trained on six programming languages, and can
easily be adapted for enabling static program slicing for these languages by constructing those
⟨Program, Slicing Criterion, Backward/Forward Slice⟩ tuples.

6.6.2 External APIs. JavaSlicer currently fails to build static program slices for programs with
external dependencies. We reported to the developers about the same, which will potentially be
fixed later. As a result, in the current version, our dataset only covers programs with no external
libraries. Hence, extending our tool to programs with external libraries (which will require manual
program analysis for extracting the ground truth program slices) is left for future work.

6.6.3 Model Size. In this work, we only compare with CodeBERT and GraphCodeBERT PLMs in
NS-Slicer, which internally make use of the RoBERTa-base model architecture – thus limiting the
model input size to 512 tokens. However, our dataset still covers instances with an average of 19
statements per program. Besides, a PLM with a larger input size, for example, LongCoder [Guo
et al. 2023] (maximum of 4,096 tokens) can easily be plugged into our framework.
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6.7 Discussion on Potential Applications

In addition to debugging, the static slices produced by NS-Slicer for incomplete code can be useful
in several software engineering applications.

6.7.1 Vulnerability Detection on Incomplete Code Snippets. The ability of NS-Slicer to enable
VulDeePecker [Li et al. 2018] to perform vulnerability detection on incomplete code snippets is
a significant advancement. This capability facilitates early detection of vulnerabilities, which is
crucial in preventing potentially insecure code from being incorporated into software projects.
By analyzing incomplete code snippets from sources such as online forums like StackOverflow,
NS-Slicer contributes to enhancing the security posture of software projects.

6.7.2 Analyzing Code Snippets from Bug Reports. Developers often encounter defects and report
them through issue or bug tracking systems, providing incomplete code snippets where the fault
occurred. With NS-Slicer, these snippets can now be analyzed for debugging purposes, enabling
developers to better understand and address reported issues. NS-Slicer facilitates a more thorough
analysis of code snippets extracted from bug reports. By providing developers with the means to
scrutinize incomplete code snippets within the context of reported defects, NS-Slicer empowers
them to gain deeper insights into the root causes of issues and devise effective debugging strategies.
This capability enhances the efficiency and accuracy of bug resolution processes, ultimately leading
to more robust and stable software products.

6.7.3 Code Adaptation. Adapting an incomplete code snippet into a project is a common but
challenging task that lacks adequate tool support. NS-Slicer addresses this gap by allowing
developers to select only the relevant statements associated with the variable or statement of
interest and seamlessly adapt them into their codebases. This capability streamlines the process
of integrating code snippets into existing projects. NS-Slicer simplifies the process of adapting
incomplete code snippets into existing projects. By allowing developers to selectively choose
relevant statements and seamlessly integrate them into their codebases, NS-Slicer streamlines the
integration of external code snippets. This feature not only saves developers time and effort but also
reduces the likelihood of introducing errors/inconsistencies into the codebase during adaptation.

6.7.4 Compliance Auditing. Incomplete code snippets are often encountered during security audits
and compliance checks, particularly when evaluating legacy or third-party code. NS-Slicer plays
a vital role in analyzing these snippets to identify potential security and compliance violations,
as well as ensuring adherence to coding standards. This application is essential for maintaining a
secure and compliant codebase, particularly in regulated industries. Furthermore, NS-Slicer aids
in compliance auditing by enabling thorough analysis of incomplete code snippets encountered
during security assessments. Its ability to identify potential security and compliance violations, as
well as ensure adherence to coding standards, is invaluable for organizations seeking to maintain a
secure and compliant codebase. This aspect is particularly critical in industries subject to stringent
regulatory requirements, where non-compliance can result in legal and financial consequences.

6.7.5 Analysis on Code Undergoing Edits. During the editing process, code is often incomplete,
and existing Integrated Development Environment (IDE) support for such incomplete code is
limited to syntactic highlighting. NS-Slicer fills this gap by providing in-depth analysis of program
semantics and offering slicing capabilities, empowering developers to better understand andmanage
incomplete code during the editing process. This enhances the productivity and effectiveness of
developers working on evolving codebases.
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7 RELATEDWORK

7.1 Traditional Program Slicing Approaches

While there is a rich literature in program slicing [Harman et al. 1996; Silva 2012; Tip 1995], none
of the existing approaches work for incomplete code snippets. There exist surveys on techniques
for program slicing [Binkley and Gallagher 1996; Binkley and Harman 2004; Harman et al. 1996;
Harman and Gallagher 1998; Harman and Hierons 2001; Lucia 2001; Tip 1995; Xu et al. 2005].
Silva [Silva 2012] and Harman et al. [Harman et al. 1996] provide an extensive survey with multiple
dimensions to classify program-slicing works.

NS-Slicer differs from the family of conditioned program slicing [Canfora et al. 1998; Lucia et al.
1996], constraint slicing [Field et al. 1995], and pre/post-conditioned slicing [Harman et al. 2001],
where an initial state is defined via conditions.

There are static slicing approaches based on various static analyses, e.g., incremental slicing [Orso
et al. 2001], call-mark slicing [Nishimatsu et al. 1999], proposition-based slicing [Hatcliff et al. 2000],
stop-list slicing [Gallagher et al. 2006], amorphous slicing [Harman and Danicic 1997]. NS-Slicer
is loosely related to SDG-based slicing, as it leverages a SDG-based slicing tool [Galindo et al. 2022]
to enable a learning-based approach. But, we do not explicitly build an SDG to compute the slice.
There are dynamic slicing approaches [Binkley et al. 2014; Jhala and Majumdar 2005; Korel and
Laski 1988; Maras et al. 2011], including language-independent slicing [Binkley et al. 2014], which
compute a slice for a specific execution whereas NS-Slicer produces a static slice for all executions.

7.2 Learning-Based Approaches

LExecutor [Souza and Pradel 2023] is a learning-guided approach for executing arbitrary code
snippets. It predicts missing values that otherwisewould cause the program to get stuck, and to inject
these values into the execution. In TRACED [Ding et al. 2024], the authors pre-train code language
models with a combination of source code, executable inputs, and corresponding execution traces,
and then fine-tune for predicting the execution. The knowledge from both pre-trained language
models might benefit dynamic slicing more than static slicing.

NeuralPDA [Yadavally et al. 2023] is a deep learning approach that derives the program depen-
dency graph (PDG) for any complete/incomplete code snippets. However, it cannot be leveraged for
program slicing because it operates at the statement level, and does not have have the fine-grained
dependencies among program elements in the statements. As a result, the alternative approach
of building the PDG for an incomplete code snippet with NeuralPDA, and then performing
data/control-flow analysis for extracting the program slice is not possible. In contrast, NS-Slicer
works at the token-level and can be leveraged to extract static program slices directly.

8 CONCLUSION

In conclusion, we introduce NS-Slicer, a novel learning-based static program slicing approach
which extends the applicability of such techniques to incomplete code. To enable this process, we
leverage source code pre-training, and extend it to learn the fine-grained dependencies between
the variable at the slicing criterion and all other statements in the program. This knowledge forms
the cornerstone while discarding the irrelevant program statements, so as to identify the sets
of statements that affect, or are affected by the slicing criterion. In our empirical evaluation, on
complete code, NS-Slicer predicts the backward and forward slices with an F1-score of 97.41% and
95.82%, respectively. For partial programs, it records an F1-score of 96.77%–97.49% for backward
slicing, 92.14%–95.40% for forward slicing. In addition, we prove the utility of NS-Slicer in detecting
vulnerabilities in incomplete code, attaining a prediction F1-score of 73.38%. In effect, we introduce
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a new semantic knowledge-probing downstream task of static program slicing, proving the efficacy
and promise of PLMs in understanding the intricate variable-statement dependencies.
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