
From Seed to Scope: Reasoning to Identify Change Impact Sets
Aashish Yadavally

University of Texas at Dallas
Dallas, USA

aashish.yadavally@utdallas.edu

Tien N. Nguyen
University of Texas at Dallas

Dallas, USA
tien.n.nguyen@utdallas.edu

Abstract

Change impact analysis (IA), which identifies the set of co-changed
program elements (i.e., impact set), is critical for several software
engineering tasks. However, existing IA approaches struggle with a
trade-off between precision (correctly detecting impacted elements)
and recall (detecting all relevant ones). More importantly, they are
limited in intent-aware settings, where co-changing elements are
determined by a given change intent. In this work, we propose
Ripple, an intent-aware IA approach that leverages large language
models (LLMs) to capture change dependencies by linking intent to
program elements and estimating their co-change relationships. To
address the precision-recall tradeoff, we adopt a two-phase design:
(1) a seed-to-scope expansion strategy that expands the impact set
using evolutionary and dependence coupling to improve recall, and
(2) a plan-then-predict strategy where an LLM-generated change
plan refines impact estimation for higher precision. We evaluate
Ripple on real-world commits from Apache projects, achieving a
39.7%–380.8% improvement in F1-score over existing IA approaches.
In addition, Ripple introduces flexibility, allowing users to prioritize
higher precision or recall based on their preferences.

CCS Concepts

• Computing methodologies → Neural networks; • Software

and its engineering;

Keywords

AI4SE, Change Impact Analysis, Large Language Models
ACM Reference Format:

Aashish Yadavally and Tien N. Nguyen. 2026. From Seed to Scope: Reasoning
to Identify Change Impact Sets. In 2026 IEEE/ACM 48th International Con-

ference on Software Engineering (ICSE ’26), April 12–18, 2026, Rio de Janeiro,

Brazil. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3744916.
3773265

1 Introduction

Software undergoes continual changes for enhancement and main-
tenance throughout its lifecycle. However, every modification can
have a ripple effect across the codebase, making it crucial to identify
which parts will be affected. This process, known as (change) impact

analysis (IA), plays a vital role in regression testing [18, 48, 49], bug
fixing [12, 48], and software maintainability [16].

To this end, researchers have proposed several automated ap-
proaches targeting the IA problemwith two primary inputs or levels

This work is licensed under a Creative Commons Attribution 4.0 International License.
ICSE ’26, Rio de Janeiro, Brazil

© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2025-3/26/04
https://doi.org/10.1145/3744916.3773265

of abstraction: source code [47] and change requests [9, 50]. Those
leveraging source code typically determine the initial location of
the change (via feature location techniques [15]) and subsequently
use it to identify the impact set. They can further be categorized
into top-down strategies, that analyze the structural, semantic, con-
ceptual, or execution information; and bottom-up strategies, which
adopt mining from commit histories to infer co-changes.

Precision-Recall Tradeoff. Among the top-down solutions,
first, there are structural approaches, which analyze relationships
between program elements, e.g., class hierarchies, field accesses,
etc. for impact analysis [43]. For example, modifications to a base
class may require updating its derived classes. Second, the semantic
IA approaches explore dependencies between program elements
including data/control dependencies, and calling relations. Despite
having a high recall by capturing structural/semantic relations, such
analyses tend to generate large impact sets with a low precision [33].

Third, conceptual IA techniques rely on shared semantic pur-
poses between program elements (e.g., methods or classes) as a
proxy to generate impact sets. They formulate IA as an information
retrieval (IR) task to model the conceptual relationships between
program entities [46]. However, they struggle to detect changes
lacking textual or semantic similarity, resulting in a lower recall.

Fourth, execution-based analyses collect information such as ex-
ecution traces and code coverage [45], and execute-after relations
between program elements [7] to compute the impact sets. Such
dynamic IA approaches are more precise than the static ones. How-
ever, they are runtime-intensive while suffering from low recall,
because they depend on the generalizability of the test suite.

In contrast, the bottom-up IA approaches mine evolutionary
coupling among program elements in the commit history [67]. The
idea is that the co-change elements in the past are likely to change
together in the near future.While the resulting impact set from such
evolutionary coupling might have high recall with large impact sets,
they have many false positives (i.e., low precision). Notably, they are
useful to capture co-changing locations that are not captured by
traditional program analyses (i.e., detecting isolated changes not
captured by explicit structural/semantic dependencies).

An ideal IA approach must strike balance between precision
(to avoid overestimating the impact) and recall (to avoid missing
critical locations). Low precision results in developers having to
examine many irrelevant locations, increasing manual effort and
potential cognitive overload. Conversely, low recall could lead to
missing fixing locations, potentially leading to undetected errors.
Some attempts have been made to combine different IA techniques
with orthogonal information sources to gain this balance [25, 29].
Athena [63] advances this effort by integrating dependence-based
and conceptual information using Transformer-based models [55].

What’s missing? Despite their strengths, both top-down and
bottom-up approaches only focus on varied information sources.

https://doi.org/10.1145/3744916.3773265
https://doi.org/10.1145/3744916.3773265
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3744916.3773265

ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Aashish Yadavally and Tien N. Nguyen

Broadly speaking, an IA solution can approach the IA problem
in settings that require knowledge of the change intent, i.e., the
purpose behind the change, either implicitly or explicitly. Such an
implicit intent can arise from program semantics, where the goal is
to identify all code locations that need to be modified together [33].
For example, when renaming a method, all of its call sites need
to be updated due to the implicit intent dictated by the semantics
of renaming [47]. In contrast, explicit intent is typically expressed
in natural language texts (e.g., bug reports), where the goal is to
determine the code locations to be changed to fulfill the described

intent. Starting from the same initial code location, the set of im-
pacted locations may differ depending on whether the intent is to
fix different bugs from bug reports or introduce new features.

By design, those approaches focus on implicit intent IA settings.
They rely on change propagation but do not account for how the
underlying change intent (e.g., as described in a bug report) influ-
ences how impact may be propagated. For instance, evolutionary
approaches identify co-changing files based on historical patterns
but do not distinguish between a bug fix and a refactoring change,
even if the same code is modified for different reasons. Similarly, IR-
based conceptual approaches may capture intent at the level of an
existing code entity but fail to associate intent with the change itself.
This omission leads to imprecise impact predictions, as different
change intents require different forms of propagation analysis.

Our Approach. We develop an IA solution tailored to utilize
explicit intent, which we term intent-aware impact analysis. We
posit that understanding the intent/motivation behind a change
allows us to better contextualize its propagation and disambiguate
co-change relations based on their intended modifications.

We propose Ripple, an intent-aware IA approach that utilizes the
reasoning capabilities of large language models (LLMs) to connect
natural language change intent with program elements and estimate

their co-change dependencies. To address the precision-recall tradeoff,
Ripple adopts a two-phase design. First, we develop a seed-to-scope
strategy that begins with a seed edit and progressively expands the
impact set through a combination of evolutionary and dependence
coupling. This recall-focused approach helps cast a wider net, i.e.,
capture a full range of change semantics while eliminating irrel-
evant program elements. In the next precision-focused phase, we
adopt a plan-then-predict strategy, where the Planner LLM first
produces a change plan via Chain-of-Thought [60] that captures the
change intent to derive the structured reasoning steps for impact
analysis. To mitigate LLM hallucinations, we slice the repository
based on dependence clusters extracted from the expanded impact
set. Impact estimation is performed independently by the Reasoner
LLM within each cluster, ensuring a localized reasoning. It utilizes
the generated change plan for more precise impact set prediction.

We conducted several experiments to evaluate Ripple on a real-
world IA benchmark covering Java projects from the Apache Soft-
ware Foundation. As shown in Figure 1, Ripple-(1) (⋆) outperforms
existing top-down (•) and bottom-up (•) IA approaches in both pre-
cision and recall, with an improvement of 39.7%–380.8% in F1-score.
Ripple captures change dependencies beyond structural/semantic
dependencies, which alone yield low precision. This enhances Rip-
ple’s performance for large single-file or multi-file commits, for
which it improves over the state-of-the-art Athena by 59.7% in F1-
score (Section 5.2.2). By default, Ripple adopts self-consistency [58]

0 10 20 30 40
0

20

40

60

80

Conceptual

Evolutionary

Athena
Ripple-(1)

Ripple-(2)

Semantic

★

★

— Precision (in %) −→

—
R
e
c
a
l
l
(in

%)
−→

Figure 1: Precision-Recall plot comparing the performance

of top-down and bottom-up IA approaches with Ripple

for precise impact estimation. However, as shown in Figure 1, by
switching to an aggregation-based strategy i.e., Ripple-(2) (⋆), we
can get relatively less precise impact sets with significantly more
coverage–introducing flexibility in users’ preferences (Section 6.2).

In brief, this paper makes the following contributions:
(1) Ripple: an intent-aware, reasoning-driven, scalable IA ap-

proach with flexibility to balance high precision and high recall.
(2) Empirical evaluation: our extensive experiments demonstrate

that Ripple is more effective than state-of-the-art IA approaches.

2 Motivation and Key Ideas

2.1 Motivating Example

Developers frequently modify source code and commit the changes
to their code repositories. The term "(change) commit" is used to
refer to such transactions. A commit includes a textual description
and a corresponding change set, which comprises changes to one or
multiple code locations. These modifications can serve various pur-
poses. A study by Nguyen et al. [42] on a large number of commits
in open-source projects identified six primary purposes of commits:
1) bug-fixing, 2) enhancement (adding functionality), 3) refactoring,
4) presentation (formatting, cosmetic), 5) code annotation, and 6)
documentation enhancement [42]. The goal of change impact anal-

ysis is to automatically identify all affected locations that belong to a

change set [63]. If an initial change location (or seed edit location) is
identified, the resulting set of impacted locations is referred to as
the impact set of the seed. In this paper, we use both terms change
set and impact set interchangeably unless a distinction is necessary.

As explained in Section 1, for bug fixes or feature enhancements,
the IA problem and solutions must account for explicit change
intents (or simply intents), which are explicitly described in bug
reports or change requests. Let us use an example to illustrate a fix
in a dependency resolution tool, Apache Ivy. From the bug report
IVY-644 [2], as modules in different configurations evict the same
dependency, a NullPointerException could occur. This issue was ad-
dressed in commit 283f77d [1], where the eviction logic was refined
to handle such cases robustly. The changes span four files: those in
the IvyNode class and the IvyNodeEviction class ensure that the eviction
scenarios are processed safely without causing null dereferences,
while updates in the ResolveEngine class enforce consistent depen-
dency resolution. Moreover, the ResolveTest class was extended to
cover this usage in testing, preventing regressions in future updates.

From Seed to Scope: Reasoning to Identify Change Impact Sets ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

2.2 Observations and Key Ideas

The above example illustrates that changes in these files are specific
to this bug whose description is in the bug report IVY-644. Analyzing
the report’s contents can help determine the intent behind the fix.

Observation 1 (Assessing Impact Through Change Intent).
For certain types of changes (e.g., bug-fixing), assessing the change

impact requires explicit knowledge of the change intent. We refer to

this problem setting of impact assessment as "intent-aware".

Key Idea 1 (Intent-aware Impact Analysis). To address the
intent-aware problem setting, one needs impact analysis approaches

that consider the change intent that is explicitly expressed in natural-

language texts. We refer to it as "intent-aware impact analysis".

As listed in Section 1, existing IA approaches can be broadly
classified into 1) top-down, including structural, semantic, concep-
tual, or execution-based approaches, and 2) bottom-up, which mine
commit histories to infer co-changed files.

Unfortunately, these approaches do not work well for the above
example. First, no structural relations among methods or classes
in the codebase can help identify the impact set comprising the
changed classes. Second, semantic IA approaches leverage calling
relations or program dependencies from a seed location, which is
the initial code location in the impact set. Identifying a seed lo-
cation in IA often involves bug localization techniques based on
bug reports [41, 66], feature and concept location [15], etc. For this
example, following from the developer discussions, one way to fix
this bug is that every root configuration should be resolved sepa-
rately prior to computing the conflicts. To this end, the developers
decided that the first change, i.e., the seed edit needed to be made
in the ResolveEngine.computeConflicts() method [1]. However, from
this seed edit location, through both direct and indirect semantic
relations, no other methods in the impact set can be identified. In ad-
dition, these approaches wrongly identify several methods that have
structural or semantic dependencies on ResolveEngine.computeCon-

flicts() as being potentially affected. Third, the existing conceptual
IA approaches are restricted to conceptual similarity, which does
not work for this case since the changed elements in that set are
not similar. Thus, the combination of semantic dependence and
conceptual similarity in the state-of-the-art Athena [63] is not
effective in this case either. Finally, execution-based IA approaches
require dynamic information, which is not easily available.

The bottom-up IA approaches examine commit history to derive
the co-changes via evolutionary coupling. For this example, the
files in the impact set for this bug-fixing commit, i.e., IvyNode.java,
IvyNodeEviction.java and ResolveEngine.javawere also co-changed, all
together, on 8 previous instances in the commit history. However,
in only one of the commits, they were the only co-changed files,
and in the remaining, the total number of co-changed files ranged
from 3–282. This shows their unreliability in identifying the impact
sets, stemming from: (i) tangled commits, which include multiple
unrelated code changes for different purposes [24]; (ii) not consid-
ering the intent presented in the bug report. As a result, despite a
high recall, the evolutionary coupling approaches are less precise.

In general, the aforementioned IA solutions are effective to some
extent. However, as discussed in Section 1, the approaches always
have a trade-off between precision and recall. Neither top-down

or bottom-up IA approaches alone can fully and accurately cap-
ture the range of co-change dependencies introduced by software
evolution. Evolutionary coupling through mining provides insights
into historical co-changes, but without accounting for semantic
and conceptual dependencies, it may miss implicit relationships.
Conversely, semantic dependence analysis captures semantic links
but lacks historical context, leading to lower recall.

Observation 2 (Precision-Recall Trade-Off). Existing IA

solutions suffer from a trade-off between precision and recall.

To address this, we hypothesize that advanced LLMs possess

the capability to understand and reason from the change intent to

the relevant program elements (i.e., methods or classes) within the

corresponding impact set. We are motivated by their remarkable
proficiency in mapping textual descriptions to code in tasks such as
code generation/synthesis [11, 27, 44, 59]. Our empirical evaluation
(Section 4) validates our hypothesis on this capability of LLMs.

Key Idea 2 (Reasoning with LLMs for Intent-Aware Impact
Analysis). LLMs can reason and infer the relations between change

intent and the affected program elements, discovering the co-change

dependencies within the corresponding impact set.

To complement to the use of LLMs in addressing the precision-
recall trade-off, we adopt a seed-to-scope approach–starting from a
seed edit and progressively expanding the impact set through both
evolutionary and dependency-based relationships. We posit that
commit history reinforces logical dependencies, while structural
and semantic dependencies are accounted for in the next step. This
ensures a recall-focused impact estimation, casting a wider net over
potential change propagation. We refer to this as the dependence-
enhanced impact set (ℐ𝐷). With ℐ𝐷 , the LLM is guided toward a
focused subset of the codebase, eliminating irrelevant files.

Key Idea 3 (From Seed to Scope: Casting a Wider Net). By
integrating evolutionary coupling with dependence-enhanced impact

sets, we expand from a seed edit location to a potentially imprecise,

yet broader impact scope–capturing a full range of change semantics.

It is well-known that LLMs struggle to process long, context-rich
sequences. In the IA task, the LLMs must analyze entire repositories
or their structures and, based on the change intent, reason about
change propagation. However, a project might have a large number
of classes and methods. As a result, they can encounter difficulties
in identifying relevant dependencies, leading to incorrect analysis.

Observation 3 (Diminishing Returns of Large Contexts).
Increasing the context window results in degradation of IA as LLMs

do not robustly make use of relevant information.

To limit the context window and identify semantically-related
change modifications, we extract connected components in ℐ𝐷 over
call and class-member dependencies to form dependence clusters.
We posit that each dependence cluster represents a logically cohe-
sive unit of change propagation encapsulated in the change intent.
By clustering ℐ𝐷 in this manner, we refine the impact set while
reducing the unnecessary reasoning overhead for the LLM.

Key Idea 4 (Dependence Coupling-Based Clustering). We

extract connected components from ℐ𝐷 over call and class-member

dependencies to form dependence clusters, which represent logically

cohesive units of change propagation.

ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Aashish Yadavally and Tien N. Nguyen

3 Intent-Aware Change Impact Analysis

Impact analysis can be performed at the coarser-grained file-level [8],
or fine-grained method [63] and statement-level [22]. Since the lat-
ter is cost-prohibitive, we focus on method-level IA. Given the
change intent𝜓 and a seed edit location𝑀0 for the initial modifica-
tion, Ripple predicts a set of methods ℐ𝑓 = {𝑀1, 𝑀2, ..., 𝑀𝑘} within
a code repository ℛ that may potentially be impacted.

3.1 Overview

In Figure 2, we illustrate an overview of our proposed framework for
intent-aware impact analysis. Ripple mainly operates in two phases:
(1) recall-focused impact set generation, and (2) precision-focused
impact set refinement. In the first phase, we expand from seed to

scope by leveraging evolutionary coupling to construct an impact
set from commit history (ℐ𝐻). We then further expand this set
using dependence coupling, incorporating call and class-member
dependencies to capture structural and semantic relationships. This
combined approach casts a wider net–ensuring a high recall (i.e.,
minimizing the number of missed impacted locations). Then, we
cluster the resulting dependence-enhanced impact set (ℐ𝐷) into
dependence clusters, where each represents a connected component
of inter-dependent locations in the repository.

The recall-focused phase helps Ripple reduce the context size
consisting of a much smaller number of program elements that
the LLM must consider in the second phase. In our experiment
(Section 4), we show that Ripple is able to reduce an average of
86.4% methods per repository, while maintaining a recall of 76.8%.

In the second phase, we refine the impact set by prompting the
LLM to develop a change plan, which provides a structured sum-
mary of the required modifications as a sequence of change steps.
Next, we process each dependence cluster independently, repre-
senting it as a repository-aware structure that includes all methods
in the cluster along with their summaries. This structured represen-
tation provides the LLM with contextual hints about the conceptual
meaning of relevant methods, enabling Ripple to improve preci-

sion by filtering out unnecessary locations while preserving key
dependencies. We merge the refined impact subsets corresponding
to all dependence clusters to construct ℐ𝑓 , i.e., the final impact set.

3.2 Recall-Focused Impact Set Generation

3.2.1 Impact Set Initialization. The selection of a seed edit location
serves as the starting point for impact analyis. Various approaches
exist for identifying such locations, including bug/fault localization
techniques that analyze bug reports [41, 66] and feature/concept
localizationmethods that map change requests to relevant code [15].
In Figure 2, we denote the seed edit location as𝑀0, highlighting it
in a blue cell. We define the initial impact set 𝐼0 as:

𝐼0 = {𝑀0} (1)

3.2.2 Evolutionary Coupling-Based Impact Set Expansion. Previous
research has demonstrated the advantages of using commit history
to understand programs and their evolution, revealing logical re-
lationships between co-changed locations in the repository [67].
Accordingly, we leverage historical commit data to expand the
initial impact set 𝐼0 by identifying additional methods that have
historically co-evolved with the seed edit location𝑀0.

Figure 2: Ripple: Intent-aware change impact analysis

Given the seed edit location𝑀0, wemine the previous𝑁 commits
where 𝐹0 (i.e., the file containing𝑀0) was also modified. We parse
each modified file in these commits to extract the modified methods
in each file based on the line ranges of the change hunks.

Let 𝒞 = {𝐶1,𝐶2, ...,𝐶𝑁 } denote the set of previous 𝑁 commits
in which 𝐹0 was modified, and ℳ𝑖

= {𝑀0, 𝑀
(𝑖)
1 , ..., 𝑀

(𝑖)
𝑗 }, the set

of methods modified in 𝐶𝑖 , obtained by parsing the changes. Since
this step in Ripple is recall-focused, we do not apply additional
precision-enhancing techniques (e.g., association rule mining [51]),
prioritizing efficiency and minimizing computational overhead.
Accordingly, we define our history-based impact set (ℐ𝐻) as follows:

ℐ𝐻 =

𝑁

⋃
𝑖=1

ℳ𝑖
=

𝑁

⋃
𝑖=1

{𝑀0, 𝑀
(𝑖)
1 , . . . , 𝑀

(𝑖)
𝑗 } (2)

Note that commit history can be noisy (e.g., due to tangled com-
mits that address multiple concerns at once [24]), incomplete, or
even obsolete (i.e., when the software has undergone significant
refactoring or deprecated features remain in history). To mitigate
these issues, following from our preliminary experiments, we trun-
cate the commit history by considering only the most recent 100
relevant commits (i.e., those where 𝐹0 was modified) for each trans-
action. Moreover, since we prioritize coverage in this recall-focused
phase and evolutionary coupling is more effective at capturing co-
changing files than co-changing methods (Table 1, row 1), we select
all commits where 𝐹0 was modified, regardless of whether𝑀0 was
changed. This strategy also conforms to the principle of the locality
of code changes: "files that have been changed recently are likely
to be changed in a near future" [21, 30]. Because newly added files
have no commit history, we retain the initial impact set as is.

3.2.3 Dependence Coupling-Based Impact Set Expansion. To cap-
ture the structural relationships beyond historical co-evolution, we
further expand the impact set via dependence coupling. Given the
history-based impact set ℐ𝐻 , we construct a dependence coupling-
based impact set ℐ𝐷 by expanding over each method 𝑀𝑖 ∈ ℐ𝐻
with its direct and indirect calling dependencies, where we limit
the latter to at most 𝐿 calling hops. That is, for all 𝑀𝑖 ∈ ℐ𝐻 , we
include𝑀𝑗 in the dependence-expanded set ℐ𝐷 if:

(i) direct call dependence:𝑀𝑗 ∈ 𝐶𝑎𝑙𝑙(𝑀𝑖), i.e.,𝑀𝑖 calls𝑀𝑗

(ii) indirect call dependence: ∃{𝑀𝐼1 , ..., 𝑀𝐼𝐿} s.t.𝑀𝐼1 ∈ 𝐶𝑎𝑙𝑙(𝑀𝑖)
and 𝑀𝐼2 ∈ 𝐶𝑎𝑙𝑙(𝑀𝐼1),..., 𝑀𝑗 ∈ 𝐶𝑎𝑙𝑙(𝑀𝐼𝐿), i.e., 𝑀𝑖 calls 𝑀𝐼1 ,
which in turn, calls𝑀𝐼2 ,.., and𝑀𝐼𝐿 calls𝑀𝑗 .

From Seed to Scope: Reasoning to Identify Change Impact Sets ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

(iii) class-member dependence:𝑀𝑗 ∈ 𝐶𝑙𝑎𝑠𝑠𝑀𝑒𝑚𝑏𝑒𝑟(𝐶𝑙𝑎𝑠𝑠(𝑀𝑖)),
i.e.,𝑀𝑗 belongs to the same class as𝑀𝑖 , ensuring that changes
to class-wide members are captured.

Therefore, we formulate dependence-enhanced impact set as:

ℐ𝐷 = ⋃
𝑀𝑖∈ℐ𝐻

{𝑀𝑗 ∈ 𝐶𝑎𝑙𝑙
ℎ(𝑀𝑖) ∣ 1 ≤ ℎ ≤ 𝐿}

∪ {𝑀𝑗 ∈ 𝐶𝑙𝑎𝑠𝑠𝑀𝑒𝑚𝑏𝑒𝑟𝑠(𝐶𝑙𝑎𝑠𝑠(𝑀𝑖))}
(3)

3.3 Precision-Focused Impact Set Refinement

Recently, LLMs have exhibited emergent reasoning behaviors in
various domains, e.g., arithmetic [32], formal logic [40], and source
code [13, 54, 62]. These successes can be attributed to effective
planning capabilities, which include a structured decomposition and
analysis of complex tasks through multi-step inference [13, 56, 60].

As illustrated in Figure 2, we leverage "Reasoner LLM" (ℳ𝑅) in
Ripple for the task of intent-aware impact analysis. To reduce the
cognitive load of the LLM, we adopt a plan-then-predict strategy
which improves its ability to precisely predict the potentially im-
pacted locations in the repository. To this end, first, we introduce
a "Planner LLM" (ℳ𝑃) that constructs a Change Plan 𝒫 , encapsu-
lating a high-level overview of the change intent as a structured
sequence of reasoning and change actions. This explicit decompo-
sition allows (ℳ𝑅) to reason over a structured step-by-step repre-
sentation of changes toward predicting change impact.

Instead of exposing the entire code repository ℛ to ℳ𝑅 , we
localize impact reasoning using dependence-based clustering. To this
end, we leverage the dependence-enhanced impact set ℐ𝐷 as deter-
mined in the previous phase (Section 3.2.3) to construct dependence
clusters (𝒟). This ensures that Reasoner LLM (ℳ𝑅) operates only
on relevant repository slices, limited to structurally/semantically-
dependent components. We then aggregate the impact set predic-
tions corresponding to individual dependence clusters to construct
the final impact set ℐ𝑓 , thus enabling amore precise impact analysis.

Overall, the plan-then-predict approach to precision-focused im-
pact set refinement phase in Ripple can be formulated as follows:

3.3.1 Change Plan Generation. In the plan phase of our plan-then-
predict strategy, we adopt Planner LLM ℳ𝑃 which generates a
structured Change Plan𝒫 to guide the downstream reasoning in the
predict phase. Instead of allowingℳ𝑃 to reason about change prop-
agation in an unstructured manner, we adopt Chain-of-Thought
(CoT) [60] prompting to generate a sequence of change steps that
encapsulate a structured representation of the change intent 𝜓 .
By explicitly decomposing reasoning into intermediate steps, CoT
enables ℳ𝑃 to produce logically consistent reasoning on changes.

In Figure 3 (left), we present the prompt template toℳ𝑃 , which
takes as input the change intent 𝜓 and the seed edit location 𝑀0.
Mathematically, the generated change plan 𝒫 can be defined as:

𝒫 = ℳ𝑃 (𝜓,𝑀0) (4)

where 𝒫 = {𝑃𝑖 ∣𝑃𝑖 is a change step}. Here, each change step 𝑃𝑖 is a
natural language instruction that describes a set of required changes.
In addition, note that change steps within 𝒫 often exhibit change
dependencies, where code modifications pertaining to one influence

those in another. For example, if one change step indicates a modifi-
cation to the signature of the method getListedMethods, another could
denote modifications to all methods invoking getListedMethods.

Planner LLM Prompt Template for Generating Change Plans

.Task. [Chain-of-Thought Prompt]

.Input Format. = ⟨Issue Summary, Issue Description, Filename, Seed Location Code⟩

. .Output Format. = [Plan with Change Steps]

Reasoner LLM Prompt Template for Intent-Aware Impact Analysis

.Role. Instructions...

.Input Format. ⟨ Issue Summary, [Plan with Change Steps], Repository Structure⟩

.Task. [Chain-of-Thought Prompt]

. .Output Format. (ClassName1, methodName1), ... [Justification]

Figure 3: Prompt Templates to LLMs inRipple for (top) gener-

ating change plans, and (bottom) performing impact analysis.

We expect the effectiveness of this step due to the pre-training
data of LLMs, which includes large-scale corpora of natural lan-
guage (NL)-programming language (PL) pairs from sources such as
code documentation, developers’ online forums, and commit mes-
sages. These diverse examples provide LLMs with the contextual
knowledge necessary to infer structured modifications from high-
level intent, allowingℳ𝑃 to capture the dependencies among change

steps and eventually generate semanticallymeaningful change plans.

3.3.2 Dependence-Aware Impact Set Clustering. Given ℐ𝐷 , i.e., the
dependence-enhanced impact set, we identify dependence clusters

that capture structurally/semantically interdependent groups of
methods and provide a localized view of impact propagation. To
this end, we model ℐ𝐷 as a dependence graph 𝐺 = (ℐ𝐷 , 𝐸) where
𝐸 = {(𝑀𝑖 , 𝑀𝑗) ∣𝑀𝑖 , 𝑀𝑗 ∈ ℐ𝐷 , and (𝑀𝑖 , 𝑀𝑗) satisfies a dependence

relation as defined in Section 3.2.3}
Accordingly, we define dependence clusters 𝐷𝑖 as the connected

components of 𝐺 , ensuring that each cluster consists of a maximal
set of methods that are transitively connected when edge direction
is ignored. Formally, the set of dependence clusters is given by:

𝒟 = {𝐷𝑖 ∣ 𝐷𝑖 ⊆ ℐ𝐷 , and 𝐷𝑖 is a connected component of 𝐺} (5)

Such a partitioning of ℐ𝐷 into cohesive subsets of interdependent
methods enables a localized and more precise impact reasoning.
Those subsets potentially have change dependencies, yet do not ex-

plicitly exhibit structural/semantic relations in a program.

3.3.3 Reasoning to Identify Impact Subsets. In the predict phase of
our plan-then-predict strategy, the objective of the Reasoner LLM
ℳ𝑅 is to identify the set of all potentially impacted locations within
the repositoryℛ. To facilitate structured reasoning, we leverage the
Change Plan 𝒫 generated by the Planner LLMℳ𝑃 , which breaks
down the change intent𝜓 into a sequence of change steps 𝑃𝑖 describ-
ing changes. However, these modifications often exhibit structural
and semantic interdependencies (e.g., function calls, shared variables),
making it insufficient to reason about each change step in isolation.
Thus, we perform repository slicing via dependence clusters.

Repository Slicing with Dependence Clusters. Repository-
wide analysis with LLMs is infeasible due to the large-scale nature
of modern codebases. To address this limitation, we localize reason-
ing by leveraging dependence clusters 𝒟, which capture groups of

ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Aashish Yadavally and Tien N. Nguyen

structurally/semantically-dependentmethods (Section 3.3.2). Specif-
ically, we sliceℛ to retain only methods

{𝑀𝑗 ∣ 𝑀𝑗 ∈ 𝐷𝑖}, where 𝐷𝑖 ∈ 𝒟 ⊆ ℐ𝐷 ⊆ ℛ (6)

Accordingly, ℳ𝑅 operates independently within each dependence
cluster 𝐷𝑖 , ensuring that impact reasoning remains both contextually

relevant and computationally feasible. This structured decomposi-
tion allowsℳ𝑅 to consider interactions between interdependent
changes over localized repository contexts–improving precision.

In Figure 3 (bottom), we present the template prompt for ℳ𝑅 to
predict the set of impacted methods ℐ𝑖 within a given dependence
cluster 𝐷𝑖 . We structure 𝐷𝑖 and augment each method entity𝑀(𝑖)

𝑗

with a textual summary 𝑆
(𝑖)
𝑗 (𝑀𝑗 and 𝑆 𝑗 for short), which helps to

abstract the details of the implementation, yet provide contextual
hints about the method. Mathematically:
ℐ𝑖 = ℳ𝑅(𝜓,𝒫, 𝐷𝑖)

= ℳ𝑅(𝜓, {𝑃1, 𝑃2, ..., 𝑃∣𝒫∣}, {(𝑀1, 𝑆1), . . . , (𝑀∣𝐷𝑖 ∣, 𝑆∣𝐷𝑖 ∣)})

= ∏
𝑗

𝑃 (𝑀̃𝑗 ∈ 𝒟𝑖 ∣ {(𝑀̃1, 𝐴1), . . . , (𝑀̃𝑗−1, 𝐴 𝑗−1)}, 𝐴 𝑗 ,𝜓,

{𝑃1, 𝑃2, ..., 𝑃∣𝒫∣}, {(𝑀1, 𝑆1), . . . , (𝑀∣𝐷𝑖 ∣, 𝑆∣𝐷𝑖 ∣)})

(7)

Here, 𝐴 𝑗 represents the analysis over change dependencies which
results in ℳ𝑅 selecting 𝑀̃𝑗 ∈ 𝐷𝑖 as being potentially impacted,
i.e., to belong to ℐ𝑖 . Moreover, the subset of change steps 𝒫𝑖 ⊆ 𝒫
corresponds to the modifications required in the interdependent
group of methods in 𝐷𝑖 . These steps encapsulate the reasons for
changes to address the intent behind the impact set ℐ𝑖 ⊆ 𝐷𝑖 .

Sample-and-Marginalize Inference. Standard CoT prompting
relies on greedy decoding inference, where a single reasoning path
decides the final answer. In contrast,Wang et al. [58] introduced self-
consistency, which explores multiple reasoning paths and selects
the most optimal answer through majority voting. This strategy
is grounded in the intuition that the correct answer to a complex

problem can be reached via multiple independent reasoning paths.
In Ripple,ℳ𝑅-generated impact sets exhibit inherent variability

due to the diverse reasoning trajectories explored while analyzing
change impact propagation. To mitigate this variability, we enforce
self-consistency by sampling multiple candidate impact sets for
the dependence cluster 𝐷𝑖 , and marginalize by computing their
intersection. This can formally be defined as:

ℐ𝑖 =
𝐾

⋂
𝑗=1

ℐ(𝑗)
𝑖 =

𝐾

⋂
𝑗=1

ℳ(𝑗)
𝑅 (𝜓,𝒫, 𝐷𝑖) (8)

where ℐ(𝑗)
𝑖 denotes the 𝑗-th sampled impact set for 𝐷𝑖 , among a

total of 𝐾 candidates. In other words, we leverage self-consistency
to refine the Reasoner LLM’s impact set predictions, yielding amore

precise and reliable intent-aware impact analysis.

3.3.4 Impact Subset Aggregation. Finally, we construct the final
impact set 𝐼𝑓 denoting impacted locations by aggregating the impact
subset predictions ℐ𝑖 for each dependence cluster 𝐷𝑖 as follows:

ℐ𝑓 =

∣𝒟∣
⋃
𝑖=1

ℐ𝑖 =
∣𝒟∣
⋃
𝑖=1

⎛
⎜
⎝

𝐾

⋂
𝑗=1

ℐ(𝑗)
𝑖

⎞
⎟
⎠
=

∣𝒟∣
⋃
𝑖=1

⎛
⎜
⎝

𝐾

⋂
𝑗=1

ℳ(𝑗)
𝑅 (𝜓,𝒫, 𝐷𝑖)

⎞
⎟
⎠

(9)

4 Empirical Evaluation

We seek to answer the following research questions:
(RQ1) Effectiveness in Change Impact Analysis

Can Ripple accurately predict the impact of the modifications to a
specific seed location within Java code repositories?
(RQ2) Qualitative Evaluation

2.1 Do generated change plans capture change dependencies to
help predict isolated changes in the impact sets?

2.2 Turning the Precision–Recall knobs.How are the precision and
recall for impact analysis affected by different aggregation
strategies for multiple candidate impact sets in Ripple?

2.3 Granularity. How do the impact sets generated by Ripple
scale to different granularities of program elements?

(RQ3) Ablation Study

How does the inclusion of different information sources, such
as commit history, structural/semantic dependencies, change plans,
contribute to the effectiveness of Ripple in impact analysis?

5 Effectiveness in Impact Analysis (RQ
1
)

5.1 Experiment Setup

5.1.1 Dataset. Commits in projects often include unrelated changes
for different purposes [24], making the direct use of tangled com-
mits less reliable for IA. Herbold et al. [23] manually untangled
the commits to introduce a dataset with 3,498 commits from 28
Java projects, selected from the Apache Software Foundation. From
this dataset, Yan et al. [?] build Alexandria, an IA benchmark
containing 910 commits from 25 open-source projects where every
co-changing code entity only contributes to the bug fix. To establish
the intent-aware IA benchmark, we first extract issue IDs from the
commit logs for all commits in Alexandria. Based on these, we link
the commits to their respective bug reports in JIRA issue trackers.
We retrievemetadata representing the intent, i.e., the issue summary
and description. This alignment ensures our benchmark having
only the bug-fixing commits that are explicitly tied to their reports.

Seed Edit Locations. If Ripple is used in practice, a developer
could start at an initial editing location, or one could use automated
approaches in bug/fault localization from bug reports [41, 66], or
feature/concept localization from change requests [15]. In our exper-
iments, because the benchmark does not contain seed edit locations,
we use a data-driven proxy to recover the seeds. Specifically, given
the co-changing methods in an untangled commit, we identify the
method with the highest number of direct or indirect call/class-
member dependencies to other co-changing methods. This serves
as the seed edit location as its structural position suggests a central
role in propagating change effects across the impacted codebase.

Ground-Truth Impact Sets. For each untangled fixing com-
mit in our benchmark, if 𝑀0 denotes the seed edit location and
ℳ = {𝑀0, 𝑀1, ..., 𝑀𝑛} denotes the set of co-changedmethods in the
commit, the corresponding ground-truth impact set isℳ \ {𝑀0}.

Data Statistics and Selection. Our benchmark consists of 866
untangled bug-fixing commits in 25 projects, as explained. These
projects contain from 24–1,202 Java files (mean: 302.9) and 232–
12,690 methods (mean: 3,111.9). The commits themselves include
1–34 co-changed files and 2–121 co-changedmethods. Among them,
737 commits involve ≤ 5 co-changed methods and 129 involve > 5
co-changed ones. To ensure a comprehensive yet computationally

From Seed to Scope: Reasoning to Identify Change Impact Sets ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

feasible evaluation, we randomly select 50 instances from each cate-
gory, yielding a total of 100 untangled commits for our experiments.

5.1.2 Methodology. In the Recall-Focused Impact Set Generation

phase, we first expand the seed edit location using commit history
(Section 3.2.2). To construct the dependence-enhanced impact set,
we leverage the static dependence graph generator in Athena [63]
to model calling and class-member dependencies within a project.
Unlike tools such as WALA [5] and Soot [52], which require compi-
lable Java bytecode, this approach works directly on source code
using Tree-sitter [4]. This enables an efficient and scalable extrac-
tion of inter-method relationships without the overhead of bytecode
analysis. For indirect calling dependencies, we limit the dependence
depth 𝐿 to 1 hop–thus ensuring that the most relevant inter-method
dependencies are captured while avoiding combinatorial explosion.

Finally, in representing the code repository, we augmented meth-
ods with their natural language summaries to abstract implemen-
tation details (Section 3.3.3). To this end, we first extract method
summaries from existing code documentation. In cases where doc-
umentation is missing or contains only external references without
descriptions, we employ the StarCoder-1B [34] model in a few-shot
setting to generate a concise (1–2 lines) summary directly from
the method’s implementation. By combining human-written docu-
mentation with LLM-generated summaries, we ensure that every
method in the repository has a conceptual summary/representation.

5.1.3 Baselines. We compare Ripple with multiple top-down and
bottom-up approaches, each leveraging different information sources.
First, we establish an evolutionary coupling baseline based on com-
mit history. Since commit history can be noisy [24], we limit this
baseline to the most recent 100 relevant commits, i.e., those where
the seed edit location was modified. The impact set is then formed
by merging the co-changed methods from these relevant commits.
Second, we compare against a dependence coupling-based baseline,
which, like Ripple, considers direct and indirect (up to 𝐿=1 hop)
calling dependencies, along with class-member dependencies to de-
termine the impact set. Third, for the conceptual baseline, we chose
a traditional information retrieval (IR)-based TF-IDF approach as
in Athena [63]. Each method in the corpus is tokenized and repre-
sented as a TF-IDF vector, with cosine similarity scores computed to
establish a rank order. Fourth, we chose the state-of-the-art IA tool,
Athena [63], which integrates dependence-based and conceptual
information using Transformer-based neural models [55]. For both
TF-IDF and Athena, we use the results on Athena’s website for
our selected instances [3]. Finally, we compared against multiple
LLMs, including Gemini-2.0 Flash, Claude-3.5 Sonnet, and GPT-4o.

5.1.4 Evaluation Metrics. For a fair comparison across baselines
that produce ranked lists (i.e., TF-IDF and Athena), and unordered

impact sets (i.e., evolutionary and dependence coupling, Ripple),
we evaluate using both set-based and rank-based metrics. Given the
actual impact set (i.e., AIS), let the estimated impact set be EIS. Preci-
sion = ∣EIS∩AIS∣

∣EIS∣ , Recall = ∣EIS∩AIS∣
∣AIS∣ , and F1-Score = 2∗Precision∗Recall

Precision+Recall
are for the set-based evaluation, where Precision measures the pro-
portion of predicted impacted entities that are actually impacted,
Recall measures the proportion of actually impacted entities that are
predicted, and F1-score balances the correctness and completeness.

Table 1: Effectiveness of Ripple in impact analysis (RQ1)

Approach

Evaluation Metrics (in %)

Hit@k Prec. Recall F1

Evolutionary Coupling 32.0 4.9 17.1 5.2
Dependence Coupling 86.0 7.6 64.7 11.1
Conceptual (TF-IDF) 44.0 11.9 25.2 13.1

Athena 62.0 18.0 31.2 17.9
Ripple w/ Gemini-2.0 Flash 60.0 25.8 32.2 23.3
Ripple w/ Claude-3.5 Sonnet 70.0 25.3 38.3 24.5
Ripple w/ GPT-4o 69.0 28.2 36.3 25.0

Let the ranked list of predicted impact locations from rank-based
baselines be denoted as EIR. In rank-based evaluation, we compute:
Hit@𝐾 = 1(∣EIR𝐾 ∩ AIS∣ > 0), Precision@K = ∣EIR𝐾∩AIS∣

𝐾
, and

Recall@K = ∣EIR𝐾∩AIS∣
∣𝐴𝐼𝑆∣ . Here EIR𝐾 denotes the top-𝐾 ranked pre-

dictions, Hit@𝐾 measures whether at least one relevant entity in
the impact set appears in EIR𝐾 , precision@𝐾 measures the propor-
tion of relevant entities among EIR𝐾 , and recall@𝐾 measures the
proportion of AIS retrieved within EIR𝐾 .

Standardization. Since set-based baselines produce unordered sets,
while rank-based baselines return ranked lists, we standardize 𝐾
across all metrics to ensure a fair evaluation across approaches:
• in ranked baselines,𝐾 is set to the size of EIS produced by Ripple.
• in Ripple where no ranking exists, since 𝐾 is set to ∣EIS∣, we

measure whether at least one relevant entity appears in EIS.
By default, we reportmacro-averaged scores, which treat metrics

for each instance equally. In other words, for 𝑁 instances, macro-
Precision = ∑𝑁

𝑖=1
Precision𝑖

𝑁
and macro-Recall = ∑𝑁

𝑖=1
Recall𝑖
𝑁

. For
some in-depth evaluations (as in Sections 5.2.2 and 6.3), we also
report micro-averaged scores which can be computed as micro-

Precision = ∑𝑁
𝑖=1 ∣EIS𝑖∩AIS𝑖 ∣
∑𝑁
𝑖=1 ∣𝐸𝐼𝑆∣

and micro-Recall = ∑𝑁
𝑖=1 ∣EIS𝑖∩AIS𝑖 ∣
∑𝑁
𝑖=1 ∣𝐴𝐼𝑆∣

.

5.2 Empirical Results

5.2.1 Comparison with Traditional IA Approaches. In Table 1, we
compare with traditional IA approaches that leverage different
information sources. Ripple outperforms all baselines in F1-score
by 39.7%–380.8%. Compared to the evolutionary coupling baseline,
which relies on commit history, we observe a 475.5% increase in
precision and a 112.3% increase in recall. This improvement can be
attributed to the fact that inherent noise in commit history is filtered
in the Precision-Focused Impact Set Refinement phase in Ripple.

Compared to the dependence coupling-based approach, Ripple
achieves a 125.2% improvement in F1-score. While this baseline has
a 78.2% higher recall than Ripple, it is at the cost of significantly
lower precision (by 271.1%). Notably, the 86% Hit@𝐾 indicates that
in most commits, at least one co-changing location is structurally
or semantically dependent on the seed edit location–reinforcing
the importance of dependence coupling in estimating impact sets.

As discussed in Section 3.2.2, commit history captures change de-
pendencies beyond structural/semantic relationships. In fact, in 21%
of the commits in our benchmark, evolutionary coupling identifies

impact locations that dependence coupling alone misses. Thus, despite
its lower precision and recall, it provides complementary insights
that enhance impact set estimation. By design, we incorporate both

ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Aashish Yadavally and Tien N. Nguyen

Table 2: Stratified evaluation of impact analysis approaches

by the number of co-changed methods in a commit (𝑁) (RQ1)

Approach 𝑁

Evaluation Metrics (in %)

Micro Macro
Prec. Recall F1 Prec. Recall F1

Athena ≤ 5 7.8 36.8 12.9 12.4 41.7 17.4
> 5 17.7 13.6 15.4 23.6 20.7 18.4

Ripple w/ ≤ 5 7.8 36.8 12.9 16.0 42.7 20.7
GPT-4o > 5 25.5 19.6 22.2 40.3 29.8 29.4

information sources in the Recall-Focused Impact Set Generation–
thus attaining both higher precision and recall than other baselines.

Ripple improves over the TF-IDF conceptual coupling baseline
by 90.8% in F1-score, with a 137% increase in precision and a 44%
increase in recall. While this baseline is useful to identify impact lo-
cations that frequently refer to similar domain-specific concepts or
share variable names, relying only on conceptual coupling results in

missing an average of 74.2% impact locations per commit, that are oth-
erwise captured by dependencies. Moreover, in 56% of the commits

in our benchmark, it fails to identify even a single impacted location.
The best baseline Athena improves over conceptual coupling in

F1-score by 36.6%. However, Ripple outperforms Athena in F1-score

by 39.7%, with 56.7% higher precision and 16.3% higher recall. In fact,
Athena misses an average of 70.4% impact locations per commit

that can otherwise be captured by dependencies. This highlights
its limitations in sufficiently capturing dependence coupling. In
contrast, Ripple misses 49.9% of impact locations on average per
commit while successfully identifying at least one location that is

dependent on the seed location in 77.9% of the relevant instances.
As noted in Section 3.2, co-changed locations often exhibit logi-

cal relationships that are not captured by dependence coupling. 54%
of the commits in our benchmark have at least one such isolated
impact location. Ripple predicts 16.7% of these due to LLMs’ ability
to capture change dependencies. This can be attributed to: (i) in-
corporation of dependence clusters built from commit history and
dependence-enhanced impact sets, which expands its scope; and (ii)
change plans, which help identify relationships between clusters.

Finally, we compare the performance of three LLMs, i.e., Gemini-
2.0 Flash, Claude-3.5 Sonnet, and GPT-4o within Ripple. Notably,
Gemini failed to adhere to the prescribed output format for 11% of
the commits in our benchmark, whereas Claude and GPT-4o had
significantly lower error rates at 1% and 2%, respectively. Among
the three, GPT-4o demonstrates the best overall performance. In
precision, it outperforms Claude by 11.5% and Gemini by 9.3%,
while in recall, it improves over Gemini by 12.7%, although Claude
surpasses it by 5.5%. Overall, these results indicate that Ripple with
any LLM outperforms all baselines in both precision and recall.

5.2.2 Stratified Evaluation based on the Number of Co-Changed
Methods. In our benchmark, we consider two categories, with ≤ 5
and > 5 co-changed methods–each indicative of the complexity of
the change. Let us refer to them as Lite and Complex, respectively
(Table 2). Due to the smaller size of the ground-truth impact sets
in Lite, micro metrics are sensitive to variations in small sets, thus,
more suitable for evaluation. As for Complex, macro metrics are
more suitable due to robustness to varying impact set sizes.

Table 3: Sensitivity of Ripple to seed edit location (RQ1)

Seed Localization Approach

Evaluation Metrics (in %)

Hit@k Prec. Recall F1

Ranking-Based

Athena 59.0 15.0 28.6 14.4
Ripple 64.0 19.1 32.8 19.5

LLM-Based

Athena 71.0 17.7 38.4 16.4
Ripple 73.0 24.9 36.7 20.6

Entity-Matching

Athena 72.0 16.5 37.7 16.8
Ripple 81.0 21.5 46.2 22.0

Dependence-Based

Athena 62.0 18.0 31.2 17.9
Ripple 69.0 28.2 36.3 25.0

Table 2 shows that for the Lite benchmark, the performance of
Ripple and Athena are similar. This can be due to the size of the
dependence-enhanced impact sets ℐ𝐷 s generated in the first phase,
due to which we observe a drop in overall precision. However, in the
Complex dataset, Ripple outperforms Athena by 59.7% in F1-score,
with a precision of 40.3% and a recall of 29.8%. Notably, in 46% of
these commits, the ℐ𝐷 sets predict all impact locations. In 12% of
the instances, these are covered by multiple dependence clusters.

A fine-grained analysis showed that 18% of the commits in the
Complex benchmark involve only one file, where Ripple achieved
47.4% precision and 52.1% recall in predicting impact locations. For
the remaining 82% (i.e., multi-file commits), the precision and re-
call were 38.8% and 25.0%, respectively. These show that leveraging
both commit history and dependencies enables Ripple to better cap-
ture change dependencies, leading to better performance on large
(multiple co-changed methods) single-file and multi-file commits.

RA1. (1) Ripple excels in capturing change dependencies,
outperforming all IA baselines by 39.7%–380.8% in F1-score.
(2) In particular, Ripple enhances both precision and recall in
complex, i.e., large single-file or multi-file commits.

5.2.3 Sensitivity to Seed Edit Locations. In this experiment, we
evaluate the sensitivity of Ripple to the quality of initial seed edit
locations. We first design a ranking-based seed localization method
by adapting prior work on information retrieval (IR)-based bug lo-
calization and concept location [17, 66]. Instead of lexical similarity,
we use embedding-based similarity by generating vector represen-
tations for the bug report and all methods in a code repository with
UniXCoder [19]. We then rank the methods based on their semantic
similarities to the bug report and select the top-ranked method as
the seed location. Next, we design an LLM-basedmethod to identify
the seed edit location from a bug report by adapting our prompt
for all impacted methods in Section 3.3.3. Both ranking-based and
LLM-based methods serve as imperfect localization approaches (i.e.,
noisy approximations) to identify the seed edit location.

Furthermore, we use two data-driven, pseudo-perfect proxies
to recover the seed method, because our benchmark does not have
the seed edit locations. In the first one, we use an entity matching

strategy guided by bug reports [14]. In particular, we extract ref-
erences to method and class names from the issue summaries and
descriptions, and match them against entities (method and class
names) in the ground-truth impact set. To resolve ambiguities: (i)

From Seed to Scope: Reasoning to Identify Change Impact Sets ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

No Reference Reference

0

50

100

15.7

33.3

F1
-S
co
re

(→
)

Figure 4: F1-score distributions for commits where the

Change Plan in Ripple either references actual impacted

locations (i.e., Reference) or does not (i.e., No Reference)

if a method name match is found, we use it as the seed; (ii) if only
class name match is found, we randomly select a method from the
ground-truth impact set that belongs to this class as the seed; (iii) if
multiple matched methods or classes are found, we randomly select
one among them; (iv) if no match is found, we randomly choose
a method from the ground-truth impact set. Finally, the second
proxy is the dependence-based one presented in Section 5.1.1. Note
that to study Ripple’ sensitivity, the first two seed edit localization
methods are imperfect ones to locate the seed, while the last twos
are pseudo-perfect in which the set of locations in the ground truth
is used to recover the seed. For all seed edit localization methods,
we compare with the corresponding Athena variants.

As seen in Table 3, Ripple consistently outperforms Athena
across all seed edit localization methods by 25.6%–35.4%. Both
ranking-based and LLM-based approaches are imperfect (no ground
truth access), therefore, Ripple’s performance using them are lower
than when using the dependence-based proxy, by 28.2% and 21.4%,
respectively. For the entity-based matching method, among the
analyzed bug reports, 36% contained explicit references to methods
names in the ground-truth impact set, 27% referenced only class
names, and the remaining 37% had no identifiable entity matches,
resulting in random seed selection. When method-level references
were available (indicating near-perfect seed edit localization), Rip-
ple achieved an F1-score of 33.8%. When only class-level references
were found, performance remained high at 27.1% F1-score, high-
lighting that even coarser-grained context provides a meaningful
signal. Its F1-score drops to 12.6% only in the most noisy setting,
when the seed edit location was completely random. Overall, Ripple
performs 13.6% better with dependence-based seed edit location
than with entity-based matching. These results show that Ripple is
generally robust to seed edit localization and is better than Athena.

6 Qualitative Evaluation (RQ
2
)

6.1 Change Plans ↝ Change Dependencies

In this experiment, we evaluate how our change plans contribute to
impact prediction. To this end, we classify them based on whether
they reference the class or method names in the ground-truth im-
pact set. We use explicit references to actually impacted elements
as a proxy for their potential influence on impact analysis reason-
ing. As shown in Figure 4, commits with such references achieve
significantly higher F1-scores, suggesting the effectiveness of these
change plans. Notably, 55.6% of the commits with these change

Table 4: Effect of inference-time reasoning strategies in Rip-

ple on precision and recall of impact analysis (RA2.2)

Ripple w/ 𝑁

Evaluation Metrics (in %)

Micro Macro
Prec. Recall Prec. Recall

sample-and-marginalize

≤ 5 7.8 36.8 16.0 42.7

(intersection)

> 5 25.5 19.6 40.3 29.8
All 18.3 21.3 28.2 36.3

sample-and-aggregate

≤ 5 3.3 58.6 7.1 57.6

(union)

> 5 13.9 31.9 27.8 45.0
All 9.0 34.6 17.5 51.3

plans have impact locations that are not structurally or semantically

dependent on the seed edit location. Yet, Ripple successfully identi-
fied these methods in 33.3% of the instances. This suggests that the
context reasoning in a change plan helps capture indirect change
dependencies that were not captured by program dependencies.

RA2.1. Change plans enhance Ripple’s reasoning in impact
prediction by providing contextual hints to capture change
dependencies beyond structural and semantic dependencies.

6.2 Sample–and–Marginalize versus Aggregate

By default, Ripple employs the sample-and-marginalize strategy in
Reasoner LLM to enforce self-consistency within each dependence
cluster. This strategy takes the intersection of all impact subsets
corresponding to the dependence clusters, ensuring a more con-
servative and precise estimation. Alternatively, Ripple can adopt
the sample-and-aggregate strategy, which considers the union of all
impact subsets, capturing a broader range of potential impacts.

Table 4 reports precision and recall across aggregation strategies.
The intersection strategy results in a higher precision in bothmicro

and macro settings, with 103.3% and 61.1% improvements, respec-
tively. Union improves recall in both settings by 62.4% and 41.3%.

As noted in Section 5.2.2, micro evaluation metrics are more
suitable for the Lite benchmark (i.e., ≤ 5 co-changed methods), and
macro for Complex (i.e., > 5 co-changed methods). Accordingly,
for commits in Lite, union yields a 59.2% improvement in recall as
precision drops from 7.8% to 3.3%. In Complex, intersection yields a
45% improvement in precision as recall drops from 57.6% to 42.7%.

Choosing between marginalization and aggregation is akin to
turning the precision and recall knobs, where each strategy priori-
tizes one over the other, allowing flexibility in users’ preferences.

RA2.2. Sample-and-marginalization (i.e., intersection) yields
more precise impact sets with relatively less coverage, while
sample-and-aggregation (i.e., union) yields relatively less pre-

cise impact sets with significantly more coverage.

6.3 Method versus File-Level Impact Analysis

Traditional IA approaches focus on the method level [57, 67?], as
file-level IA is often too coarse [53], and statement-level IA [20]
is execution-dependent and costly. In this experiment, we extend
baselines to the file level to assess whether coarser granularity

ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Aashish Yadavally and Tien N. Nguyen

Table 5: Impact analysis at different granularities (RA2.3)

Approach

Evaluation Metrics (in %)

Method-Level File-Level
Prec. Recall Prec. Recall F1

Evolutionary Coupling 4.9 17.1 21.1 43.2 21.1
Dependence Coupling 7.6 64.7 37.7 61.2 39.7
Conceptual (TF-IDF) 11.9 25.2 44.0 29.2 32.2

Athena 18.0 31.2 62.0 40.9 45.3
Ripple w/ GPT-4o 28.2 36.3 60.9 62.4 54.6

Table 6: Ablation study (RQ3)

Ablation Baseline

Evaluation Metrics (in %)

Hit@k Prec. Recall F1

History-based (𝐵1) 32.0 4.9 17.1 5.2
Dependence-enhanced (𝐵2) 30.4 6.3 76.8 9.6
Ripple w/o Change Plan (𝐵3) 39.6 14.6 31.5 17.2

Ripple 69.0 28.2 36.3 25.0

improves precision and recall by capturing transitive dependencies
and reducing noise. We do so by mapping method-level impact sets
to files and comparing them to ground-truth impacted files.

Table 5 displays the comparative results against the baselines
in both method-level and file-level IA. Ripple with GPT-4o outper-
forms all baselines by 20.5%–158.8% in F1-score. Notably, Athena’s
limitations in modeling dependencies (as discussed in Section 5.2.1)
persist at the file-level, indicating that the missing dependencies are
transitive and span multiple files. In contrast, the increase in Rip-
ple’s recall from method-level to file-level highlights its ability to
capture such file-level dependencies, although it may not precisely
predict all impacted methods. This can be attributed to its design,
which incorporates repository slicing with dependence clusters and
change plans to better model file-level change dependencies.

RA2.3. Ripple scales effectively frommethod-level to file-level
impact analysis by better modeling file-level change dependen-
cies, improving over all baselines by 20.5%–158.8% in F1-score.

7 Ablation Study (RQ
3
)

In this experiment, we quantify the contributions of different phases
in Ripple to its overall performance. As the first baseline (𝐵1), we
consider commit history-based impact set expansion (Figure 2). The
second baseline (𝐵2) extends (𝐵1) by incorporating program depen-

dencies. Both 𝐵1 and 𝐵2 give insights about the role of the recall-
focused first phase in Ripple. Finally, we compare against a Ripple
variant without the planning phase (𝐵3), i.e., excluding the Change
Plan input to the Reasoner LLM, to assess its contribution.

As seen in Table 6, we observe that both 𝐵1 and 𝐵2 perform
poorly, with Ripple outperforming them by 380.8% and 160.4% in
F1-score, respectively. Notably, 𝐵1 proves useful in capturing logical

dependencies that are not explicitly linked to the seed location through

structural or semantic relations. In fact, we found that commit history

helps identify isolated impact locations in 45.3% of commits with

multiple dependence clusters, of which only one contains the seed
edit location and related methods. In addition, the high recall of

. .Issue Summary. Some file descriptors are left open.

. .Issue Description. In some cases it seems that file descriptors are left opened by Ivy. It
happens especially when loading a properties file from an ivyconf.xml, and also with
ivy files used during the resolve process.

. .Change Plan Generated by GPT-4o in Ripple.

To address the issue of file descriptors being left open, these modifications are needed:
(1) Ensure that InputStream is is properly closed after its usage in the toIvyFilemethod.
(2) Implement a try-with-resources statement or explicitly close the InputStream in a

finally block to guarantee that the resource is closed even if an exception occurs.
(3) Similar changes might be needed in:

– Other methods within XmlModuleDescriptorParser.java that handle Input-
Streams or other I/O resources.

– Any other classes or methods in the module that perform file operations, particu-
larly those that load properties files or handle ivy files during the resolve process.

(4) Dependent updates potentially required:
– Other methods within XmlModuleDescriptorParser.java that handle Input-

Streams or other I/O resources.
– Any other classes or methods in the module that perform file operations, particu-

larly those that load properties files or handle ivy files during the resolve process.
(5) Assumption: The issue primarily pertains to the handling of InputStreams in the

specified method and similar methods in the codebase.

Figure 5: Change plan generated by Planner LLM in Ripple,

for which the reference code change is shown in Figure 6.

𝐵2 highlights its advantage, as structurally broadening the scope
effectively reduces the number of methods under consideration (by
an average of 86.4% per repository). Finally, the 45.3% drop in F1-
score when omitting change plans underscores the importance of
encapsulating change intent, as in our plan-then-predict approach.

RA3. These findings reinforce the need for change intent and
LLM planning that integrate the learning signals from different
sources to achieve precise and complete impact analysis.

8 When Does Ripple Work—and When Not?

Qualitative Breakdown of Common Failures. In Ripple w/
GPT-4o, the Reasoner LLM failed to predict any impacted location
in 31% of the instances, whereas in 18% of them, it successfully
predicted impact locations with an F1-score ≥ 50%. Among the
failure cases, 22 involved ≤ 5 co-changed methods (i.e., Lite) and
9 had > 5 co-changed methods (i.e., Complex); 18 were single-file
commits, while the remaining 13 spanned multiple files. In contrast,
among the success cases (F1-score ≥ 50%), 7 were Lite and 11 were
Complex; 11 were single-file and 7 were multi-file commits. That
is, Ripple struggles with complex cases having more multiple files.

Manual inspection showed that 51.6% of the failure cases are
conceptual at the change level, involving modifications with common

purposes across impacted locations. Ripple employs evolutionary
coupling-based impact set expansion to capture such changes but
does not explicitly model them. In contrast, our conceptual coupling
baselines, TF-IDF and Athena, use only lexical similarity and code

search-guided fine-tuning to capture such changes, predicting the
impacted sets in these instances with F1-scores of 11.4% and 12.7%.

An Example. Figure 5 illustrates a bug report, comprising the
the summary of the Jira ticket and its description, along with the

change plan generated by the Planner LLM in Ripple. We can see
that it correctly identifies the underlying issue, i.e., the file descrip-
tors being left open, and recommends adding resource management

From Seed to Scope: Reasoning to Identify Change Impact Sets ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

diff --git
a/src/java/fr/jayasoft/ivy/external/m2/PomModuleDescriptorParser.java
b/src/java/fr/jayasoft/ivy/external/m2/PomModuleDescriptorParser.java

↪

↪

@@ -252,7 +252 @@ public class PomModuleDescriptorParser extends

AbstractModuleDescriptorParser {↪

- try {
- XmlModuleDescriptorWriter.write(md, destFile);
- } finally {
- if (is != null) {
- is.close();
- }
+ XmlModuleDescriptorWriter.write(md, destFile);
diff --git a/src/java/fr/jayasoft/ivy/xml/XmlModuleDescriptorParser.java

b/src/java/fr/jayasoft/ivy/xml/XmlModuleDescriptorParser.java↪

@@ -107,4 +106,0 @@ public class XmlModuleDescriptorParser extends

AbstractModuleDescriptorParser {↪

- } finally {
- if (is != null) {
- is.close();
- }

Figure 6: An example for a conceptual code change in Ivy

project: removing stream cleanup logic across parser classes.

logic such as try-with-resources or explicit finally blocks. It also sug-
gests reviewing similar locations across parser components where
such logic may be duplicated. Figure 6 shows the actual code change
as the redundant finally blocks handling InputStream cleanup in two
parser classes were removed. These edits reflect a shared conceptual
intent to simplify resource management across sibling components.
However, they are not structurally connected via call or data depen-
dencies, despite occurring in classes that share a superclass. As a
result, while the Planner LLM correctly captured the high-level fix
intent, Reasoner LLM in Ripple did not identify all impacted loca-
tions. This highlights a limitation of our plan-then-predict approach
in bridging high-level intent with impact prediction, particularly
for conceptually coupled yet structurally decoupled changes.

9 Discussion

Threats to Validity. External Validity: Our benchmark focuses on
Apache projects which might not be representative. However, it was
extracted from Alexandria, which was used in prior research [63].
We evaluated Ripple with three LLMs and only on Java. However,
it is generic and the LLMs are programming language-agnostic.
Internal Validity: The third-party tools for program dependencies
may introduce errors. However, we used well-established tools.
Construct Validity: Varied prompts may lead to varied input distri-
butions, potentially affecting results. To address this, we define the
prompts with well-specified structural templates.
Limitations. Ripple, like existing IA approaches [63, 67], assumes
access to a seed edit location to predict the impact set. Recent work
on program repair has focused on autonomously localizing and
fixing bugs in both Python [28, 65] and Java [64], removing the
need for a predetermined seed edit location. However, they struggle
to scale beyond a single file and exhibit poor bug localization on
multi-file commits (e.g., SWE-Bench-Full [28]). Ripple struggles
with complex cases having more multiple files. It also limited in
bridging conceptually coupled yet structurally decoupled changes.

10 Related Work

Change Impact Analysis (IA). IA is vital for software testing
[18, 31, 48, 49] and maintenance [12, 16, 48]. Researchers have pro-
posed approaches that rely on source code [47] or change requests
[9, 50]. The former include top-down and bottom-up IA approaches.

Top-down Approaches. Structural approaches propagate changes
by analyzing relations between program elements [43]. Semantic
approaches examine data and control flows, achieving high recall
but often low precision due to large change sets [33]. Conceptual
approaches use IR to detect shared intent between elements [46],
improving precision but having lower recall when changes lack
direct semantic overlap. Execution-based approaches analyze exe-
cution traces and code coverage [45], and execute-after relations [7],
offering higher precision but lower recall due to test adequacy.

Bottom-up Approaches. These techniques mine evolutionary de-
pendencies by analyzing past commits [67]. While these methods
often achieve high recall, they suffer from low precision due to
false positives. Other approaches combine different IA categories
with orthogonal sources to gain the balance [25, 29]. Athena [63]
integrates dependence-based and conceptual information.

Automated ProgramRepair (APR).Assuming access to buggy
statements (i.e., perfect fault localization), earlier APR approaches
leveraged deep learning [35, 37–39] or LLM prompting [26]. Re-
cently, APR has evolved into an end-to-end scheme with LLM
agents, performing both fault localization [36] and patch synthe-
sis [61, 65]. However, they prioritize minimal test-passing edits, of-
ten under-fixing by generating localized patches for specific faults,
leading toweaker performance onmulti-file commits in SWE-Bench
despite strong results on single-file commits [28]. Such limitations
are problematic for IA, where full semantic coverage is essential.

Ripple is designed to generalize across diverse code changes
(feature enhancements, refactoring, bug fixes) while offering intent-
aware change impacts. While optimizing for bug-fixing, APR tools
are not explicitly incentivized to identify all semantically impacted
locations implied by change intent. Thus, Ripple exhibits broader
applicability, complementing APR tools by enabling an execution-
free assessment of code changes and providing a useful proxy for
progress monotonicity, task advancement, and fixing completion.

11 Conclusion and Implications

Novelty. Ripple is an intent-aware IA approach that guides an
LLM to devise a change plan to derive the impact set. Our results
matched with the theoretical one in addressing the precision-recall
tradeoff. Our finding is the LLM’s ability to infer structured changes
from high-level intent and identify change dependencies among
the change steps. These dependencies may not always align with
explicit relations explored in existing approaches. The Planner LLM
effectively captures these dependencies and generates a meaningful
change plan for Reasoner LLM to derive a precise final impact set.

Implications. First, Ripple can be complementary to APR tools
in guiding complete fixing. Second, it can be extended to guide LLMs
in identifying necessary co-changes to implement a new feature
by maintaining consistency changes to multiple elements. Third,
Ripple can support automated change documentation. Finally, in
an IDE, it can be used to build LLM-based assistants to offer context-
aware editing suggestions based on change dependencies [10].

Data Availability.All data, code, and detailed prompts for LLMs
in Ripple to replicate our experiments are available at [6].
Acknowledgments

This work was supported in part by the US National Science Foun-
dation (NSF) grant CNS-2120386.

ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Aashish Yadavally and Tien N. Nguyen

References

[1] 2007. commit 283f77d. https://github.com/apache/ant-ivy/commit/
283f77d29ab46c5ae47d312455641a0317c58f58

[2] 2007. NPE in case of eviction by 2 other modules on different confs. https://issues.
apache.org/jira/browse/IVY-644

[3] 2024. Athena: Enhancing Code Understanding for Impact Analysis by Combining

Transformers and Program Dependence Graphs. https://github.com/yanyanfu/
Athena/tree/main

[4] 2024. Tree-sitter. https://tree-sitter.github.io/tree-sitter/
[5] 2024. WALA. https://github.com/wala/WALA
[6] 2025. Replication package for RIPPLE. https://github.com/se-doubleblind/ripple
[7] T. Apiwattanapong, A. Orso, and M.J. Harrold. 2005. Efficient and precise dy-

namic impact analysis using execute-after sequences. In Proceedings of the 27th

International Conference on Software Engineering (ICSE 2005). IEEE CS, 432–441.
doi:10.1109/ICSE.2005.1553586

[8] L.C. Briand, J. Wust, and H. Lounis. 1999. Using coupling measurement for impact
analysis in object-oriented systems. In Proceedings IEEE International Conference

on Software Maintenance - 1999 (ICSM’99). ’Software Maintenance for Business

Change’ (Cat. No.99CB36360). 475–482. doi:10.1109/ICSM.1999.792645
[9] Lionel C. Briand, Yvan Labiche, and Leeshawn O’Sullivan. 2003. Impact Analysis

and Change Management of UML Models. In 19th International Conference on

Software Maintenance (ICSM 2003), The Architecture of Existing Systems, 22-26

September 2003, Amsterdam, The Netherlands. 256–265. doi:10.1109/ICSM.2003.
1235428

[10] Yuchen Cai, Aashish Yadavally, Abhishek Mishra, Genesis Montejo, and Tien
Nguyen. 2024. ProgrammingAssistant for ExceptionHandlingwith CodeBERT. In
Proceedings of the IEEE/ACM 46th International Conference on Software Engineering

(Lisbon, Portugal) (ICSE ’24). Association for Computing Machinery, New York,
NY, USA, Article 94, 13 pages. doi:10.1145/3597503.3639188

[11] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
De Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374 (2021).

[12] Ophelia C. Chesley, Xiaoxia Ren, and Barbara G. Ryder. 2005. Crisp: A Debugging
Tool for Java Programs. In Proceedings of the 21st IEEE International Conference

on Software Maintenance (ICSM 2005), 25-30 September 2005, Budapest, Hungary.
IEEE CS, 401–410. doi:10.1109/ICSM.2005.37

[13] Hridya Dhulipala, Aashish Yadavally, and Tien N. Nguyen. 2024. Planning to
Guide LLM for Code Coverage Prediction. In Proceedings of the 2024 IEEE/ACM

First International Conference on AI Foundation Models and Software Engineering

(Lisbon, Portugal) (FORGE ’24). Association for Computing Machinery, New York,
NY, USA, 24–34. doi:10.1145/3650105.3652292

[14] Yangruibo Ding, Yanjun Fu, Omniyyah Ibrahim, Chawin Sitawarin, Xinyun
Chen, Basel Alomair, David Wagner, Baishakhi Ray, and Yizheng Chen. 2025.
Vulnerability Detection with Code Language Models: How Far are We? . In 2025

IEEE/ACM 47th International Conference on Software Engineering (ICSE’25). IEEE
Computer Society, Los Alamitos, CA, USA, 1729–1741. doi:10.1109/ICSE55347.
2025.00038

[15] Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshy-
vanyk. 2013. Feature location in source code: a taxonomy and sur-
vey. Journal of Software: Evolution and Process 25, 1 (2013), 53–
95. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.567
doi:10.1002/smr.567

[16] Fabrizio Fioravanti and Paolo Nesi. 2001. Estimation and Prediction Metrics for
Adaptive Maintenance Effort of Object-Oriented Systems. IEEE Trans. Software

Eng. 27, 12 (2001), 1062–1084. doi:10.1109/32.988708
[17] Gregory Gay, Sonia Haiduc, Andrian Marcus, and Tim Menzies. 2009. On the

use of relevance feedback in IR-based concept location. In Proceedingsd of 2009

IEEE International Conference on Software Maintenance (ICSM’09). IEEE Computer
Society, 351–360. doi:10.1109/ICSM.2009.5306315

[18] Milos Gligoric, Lamyaa Eloussi, andDarkoMarinov. 2015. Practical regression test
selection with dynamic file dependencies. In Proceedings of the 2015 International

Symposium on Software Testing and Analysis, (ISSTA 2015), Baltimore, MD, USA,

July 12-17, 2015. IEEE CS, 211–222. doi:10.1145/2771783.2771784
[19] Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. 2022.

UniXcoder: Unified Cross-Modal Pre-training for Code Representation. In Pro-

ceedings of the 60th AnnualMeeting of the Association for Computational Linguistics

(Volume 1: Long Papers), Smaranda Muresan, Preslav Nakov, and Aline Villavicen-
cio (Eds.). Association for Computational Linguistics, Dublin, Ireland, 7212–7225.
doi:10.18653/v1/2022.acl-long.499

[20] Alex Gyori, Shuvendu K. Lahiri, and Nimrod Partush. 2017. Refining interproce-
dural change-impact analysis using equivalence relations. In Proceedings of the

26th ACM SIGSOFT International Symposium on Software Testing and Analysis

(ISSTA’17), Santa Barbara, CA, USA, July 10 - 14, 2017, Tevfik Bultan and Koushik
Sen (Eds.). ACM, 318–328. doi:10.1145/3092703.3092719

[21] Ahmed E. Hassan. 2009. Predicting faults using the complexity of code changes.
In Proceedings of 2009 IEEE 31st International Conference on Software Engineering

(ICSE’09). IEEE CS, 78–88. doi:10.1109/ICSE.2009.5070510
[22] Lile Hattori, Dalton Guerrero, Jorge Figueiredo, João Brunet, and Jemerson Damá-

sio. 2008. On the Precision and Accuracy of Impact Analysis Techniques. In
Seventh IEEE/ACIS International Conference on Computer and Information Science

(ICIS 2008). 513–518. doi:10.1109/ICIS.2008.104
[23] Steffen Herbold, Alexander Trautsch, Benjamin Ledel, Alireza Aghamohammadi,

Taher A. Ghaleb, Kuljit Kaur Chahal, Tim Bossenmaier, Bhaveet Nagaria, Philip
Makedonski, Matin Nili Ahmadabadi, Kristof Szabados, Helge Spieker, Matej
Madeja, Nathaniel Hoy, Valentina Lenarduzzi, ShangwenWang, Gema Rodríguez-
Pérez, Ricardo Colomo-Palacios, Roberto Verdecchia, Paramvir Singh, Yihao Qin,
Debasish Chakroborti, Willard Davis, VijayWalunj, HongjunWu, Diego Marcilio,
Omar Alam, Abdullah Aldaeej, Idan Amit, Burak Turhan, Simon Eismann, Anna-
Katharina Wickert, Ivano Malavolta, Matúš Sulír, Fatemeh Fard, Austin Z. Henley,
Stratos Kourtzanidis, Eray Tuzun, Christoph Treude, SiminMaleki Shamasbi, Ivan
Pashchenko, Marvin Wyrich, James Davis, Alexander Serebrenik, Ella Albrecht,
Ethem Utku Aktas, Daniel Strüber, and Johannes Erbel. 2022. A fine-grained data
set and analysis of tangling in bug fixing commits. Empirical Softw. Engg. 27, 6
(Nov. 2022), 49 pages. doi:10.1007/s10664-021-10083-5

[24] KimHerzig, Sascha Just, and Andreas Zeller. 2013. It’s not a bug, it’s a feature: how
misclassification impacts bug prediction. In Proceedings of the 2013 International

Conference on Software Engineering (San Francisco, CA, USA) (ICSE ’13). IEEE
Press, 392–401.

[25] Lulu Huang and Yeong-Tae Song. 2007. Precise Dynamic Impact Analysis with
Dependency Analysis for Object-oriented Programs. In Proceedings of the 5th

ACIS International Conference on Software Engineering Research, Management

& Applications (SERA ’07). IEEE Computer Society, USA, 374–384. doi:10.1109/
SERA.2007.109

[26] Nan Jiang, Kevin Liu, Thibaud Lutellier, and Lin Tan. 2023. Impact of Code
Language Models on Automated Program Repair. In Proceedings of the 45th

International Conference on Software Engineering (Melbourne, Victoria, Australia)
(ICSE ’23). IEEE Press, 1430–1442. doi:10.1109/ICSE48619.2023.00125

[27] Xue Jiang, Yihong Dong, Lecheng Wang, Zheng Fang, Qiwei Shang, Ge Li, Zhi
Jin, and Wenpin Jiao. 2024. Self-planning code generation with large language
models. ACM Transactions on Software Engineering and Methodology 33, 7 (2024),
1–30.

[28] Carlos E Jimenez, John Yang, AlexanderWettig, Shunyu Yao, Kexin Pei, Ofir Press,
and Karthik R Narasimhan. 2024. SWE-bench: Can Language Models Resolve
Real-world Github Issues?. In The Twelfth International Conference on Learning

Representations (ICLR’24). https://openreview.net/forum?id=VTF8yNQM66
[29] Huzefa Kagdi, Malcom Gethers, Denys Poshyvanyk, and Michael L. Collard. 2010.

Blending Conceptual and Evolutionary Couplings to Support Change Impact
Analysis in Source Code. In Proceedings of the 2010 17th Working Conference on

Reverse Engineering (WCRE ’10). IEEE Computer Society, USA, 119–128. doi:10.
1109/WCRE.2010.21

[30] Sunghun Kim, Thomas Zimmermann, E. James Whitehead Jr., and Andreas
Zeller. 2007. Predicting Faults from Cached History. In Proceedings of the 29th

International Conference on Software Engineering (ICSE ’07). IEEE Computer
Society, USA, 489–498. doi:10.1109/ICSE.2007.66

[31] Tri Le, Thien Tran, Duy Cao, Vy Le, Tien N. Nguyen, and Vu Nguyen. 2024. KAT:
Dependency-Aware Automated API Testing with Large Language Models . In
2024 IEEE Conference on Software Testing, Verification and Validation (ICST). IEEE
Computer Society, Los Alamitos, CA, USA, 82–92. doi:10.1109/ICST60714.2024.
00017

[32] Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk
Michalewski, Vinay V. Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag,
Theo Gutman-Solo, Yuhuai Wu, Behnam Neyshabur, Guy Gur-Ari, and Vedant
Misra. 2022. Solving Quantitative Reasoning Problems with Language Models.
In Advances in Neural Information Processing Systems 35: Annual Conference on

Neural Information Processing Systems 2022 (NeurIPS 2022), New Orleans, LA, USA,

November 28 - December 9, 2022, Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle
Belgrave, K. Cho, and A. Oh (Eds.).

[33] Bixin Li, Xiaobing Sun, Hareton Leung, and Sai Zhang. 2013. A survey of code-
based change impact analysis techniques. Softw. Test. Verification Reliab. 23, 8
(2013), 613–646. doi:10.1002/STVR.1475

[34] Raymond Li, Loubna Ben allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov,
Chenghao Mou, Marc Marone, Christopher Akiki, Jia LI, Jenny Chim, Qian
Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo, Thomas Wang, Olivier Dehaene,
Joel Lamy-Poirier, Joao Monteiro, Nicolas Gontier, Ming-Ho Yee, Logesh Kumar
Umapathi, Jian Zhu, Ben Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra
Murthy, Jason T Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca,
Manan Dey, Zhihan Zhang, Urvashi Bhattacharyya, Wenhao Yu, Sasha Luccioni,
Paulo Villegas, Fedor Zhdanov, Tony Lee, Nadav Timor, Jennifer Ding, Claire S
Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex Gu,
Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva Reddy,
Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean
Hughes, Thomas Wolf, Arjun Guha, Leandro Von Werra, and Harm de Vries.
2023. StarCoder: may the source be with you! Transactions on Machine Learning

Research (2023). https://openreview.net/forum?id=KoFOg41haE Reproducibility

https://github.com/apache/ant-ivy/commit/283f77d29ab46c5ae47d312455641a0317c58f58
https://github.com/apache/ant-ivy/commit/283f77d29ab46c5ae47d312455641a0317c58f58
https://issues.apache.org/jira/browse/IVY-644
https://issues.apache.org/jira/browse/IVY-644
https://github.com/yanyanfu/Athena/tree/main
https://github.com/yanyanfu/Athena/tree/main
https://tree-sitter.github.io/tree-sitter/
https://github.com/wala/WALA
https://github.com/se-doubleblind/ripple
https://doi.org/10.1109/ICSE.2005.1553586
https://doi.org/10.1109/ICSM.1999.792645
https://doi.org/10.1109/ICSM.2003.1235428
https://doi.org/10.1109/ICSM.2003.1235428
https://doi.org/10.1145/3597503.3639188
https://doi.org/10.1109/ICSM.2005.37
https://doi.org/10.1145/3650105.3652292
https://doi.org/10.1109/ICSE55347.2025.00038
https://doi.org/10.1109/ICSE55347.2025.00038
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.567
https://doi.org/10.1002/smr.567
https://doi.org/10.1109/32.988708
https://doi.org/10.1109/ICSM.2009.5306315
https://doi.org/10.1145/2771783.2771784
https://doi.org/10.18653/v1/2022.acl-long.499
https://doi.org/10.1145/3092703.3092719
https://doi.org/10.1109/ICSE.2009.5070510
https://doi.org/10.1109/ICIS.2008.104
https://doi.org/10.1007/s10664-021-10083-5
https://doi.org/10.1109/SERA.2007.109
https://doi.org/10.1109/SERA.2007.109
https://doi.org/10.1109/ICSE48619.2023.00125
https://openreview.net/forum?id=VTF8yNQM66
https://doi.org/10.1109/WCRE.2010.21
https://doi.org/10.1109/WCRE.2010.21
https://doi.org/10.1109/ICSE.2007.66
https://doi.org/10.1109/ICST60714.2024.00017
https://doi.org/10.1109/ICST60714.2024.00017
https://doi.org/10.1002/STVR.1475
https://openreview.net/forum?id=KoFOg41haE

From Seed to Scope: Reasoning to Identify Change Impact Sets ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

Certification.
[35] Yi Li, Shaohua Wang, and Tien N. Nguyen. 2020. DLFix: context-based code

transformation learning for automated program repair. In Proceedings of the

ACM/IEEE 42nd International Conference on Software Engineering (Seoul, South
Korea) (ICSE ’20). Association for Computing Machinery, New York, NY, USA,
602–614. doi:10.1145/3377811.3380345

[36] Yi Li, Shaohua Wang, and Tien N. Nguyen. 2021. Fault Localization with Code
Coverage Representation Learning. In Proceedings of the 43rd International Con-

ference on Software Engineering (Madrid, Spain) (ICSE ’21). IEEE Press, 661–673.
doi:10.1109/ICSE43902.2021.00067

[37] Yi Li, Shaohua Wang, and Tien N. Nguyen. 2022. DEAR: a novel deep learning-
based approach for automated program repair. In Proceedings of the 44th Inter-

national Conference on Software Engineering (Pittsburgh, Pennsylvania) (ICSE
’22). Association for Computing Machinery, New York, NY, USA, 511–523.
doi:10.1145/3510003.3510177

[38] Yi Li, Shaohua Wang, and Tien N. Nguyen. 2022. Fault localization to detect co-
change fixing locations. In Proceedings of the 30th ACM Joint European Software

Engineering Conference and Symposium on the Foundations of Software Engineering

(Singapore, Singapore) (ESEC/FSE 2022). Association for Computing Machinery,
New York, NY, USA, 659–671. doi:10.1145/3540250.3549137

[39] Yi Li, ShaohuaWang, Tien N. Nguyen, and Son Van Nguyen. 2019. Improving bug
detection via context-based code representation learning and attention-based
neural networks. Proc. ACM Program. Lang. 3, OOPSLA, Article 162 (Oct. 2019),
30 pages. doi:10.1145/3360588

[40] Terufumi Morishita, Gaku Morio, Atsuki Yamaguchi, and Yasuhiro Sogawa.
2023. Learning Deductive Reasoning from Synthetic Corpus based on For-
mal Logic. In International Conference on Machine Learning, ICML 2023, 23-29

July 2023, Honolulu, Hawaii, USA (Proceedings of Machine Learning Research,

Vol. 202), Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engel-
hardt, Sivan Sabato, and Jonathan Scarlett (Eds.). PMLR, 25254–25274. https:
//proceedings.mlr.press/v202/morishita23a.html

[41] Anh Tuan Nguyen, Tung Thanh Nguyen, Jafar Al-Kofahi, Hung Viet Nguyen,
and Tien N. Nguyen. 2011. A topic-based approach for narrowing the search
space of buggy files from a bug report. In Proceedings of 2011 26th IEEE/ACM

International Conference on Automated Software Engineering (ASE 2011). 263–272.
doi:10.1109/ASE.2011.6100062

[42] Hoan Anh Nguyen, Anh Tuan Nguyen, and Tien N. Nguyen. 2013. Filtering noise
in mixed-purpose fixing commits to improve defect prediction and localization.
In Proceedings of 2013 IEEE 24th International Symposium on Software Reliability

Engineering (ISSRE). 138–147. doi:10.1109/ISSRE.2013.6698913
[43] Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H. Pham, Jafar Al-Kofahi, and

Tien N. Nguyen. 2010. Recurring bug fixes in object-oriented programs. In Pro-

ceedings of the 32nd ACM/IEEE International Conference on Software Engineering

- Volume 1 (Cape Town, South Africa) (ICSE ’10). Association for Computing
Machinery, New York, NY, USA, 315–324. doi:10.1145/1806799.1806847

[44] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou,
Silvio Savarese, and Caiming Xiong. 2022. CodeGen: An Open Large Language
Model for Code with Multi-Turn Program Synthesis. arXiv preprint (2022).

[45] Alessandro Orso, Taweesup Apiwattanapong, and Mary Jean Harrold. 2003.
Leveraging field data for impact analysis and regression testing. In Proceedings of

the 9th European Software Engineering Conference Held Jointly with 11th ACM SIG-

SOFT International Symposium on Foundations of Software Engineering (Helsinki,
Finland) (ESEC/FSE-11). Association for Computing Machinery, New York, NY,
USA, 128–137. doi:10.1145/940071.940089

[46] Denys Poshyvanyk, Andrian Marcus, Rudolf Ferenc, and Tibor Gyimóthy. 2009.
Using information retrieval based coupling measures for impact analysis. Empir-

ical Softw. Engg. 14, 1 (Feb. 2009), 5–32. doi:10.1007/s10664-008-9088-2
[47] Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G. Ryder, and Ophelia Chesley. 2004.

Chianti: a tool for change impact analysis of java programs. SIGPLAN Not. 39, 10
(Oct. 2004), 432–448. doi:10.1145/1035292.1029012

[48] Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G. Ryder, and Ophelia C. Chesley.
2004. Chianti: a tool for change impact analysis of java programs. In Proceedings of
the 19th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Sys-

tems, Languages, and Applications, OOPSLA 2004, October 24-28, 2004, Vancouver,

BC, Canada. 432–448. doi:10.1145/1028976.1029012
[49] Gregg Rothermel and Mary Jean Harrold. 1997. A Safe, Efficient Regression

Test Selection Technique. ACM Trans. Softw. Eng. Methodol. 6, 2 (1997), 173–210.
doi:10.1145/248233.248262

[50] Maryam Shiri, Jameleddine Hassine, and Juergen Rilling. 2007. Modification
analysis support at the requirements level. In 9th International Workshop on

Principles of Software Evolution (IWPSE 2007), in conjunction with the 6th ESEC/FSE

joint meeting, Dubrovnik, Croatia, September 3-4, 2007. 43–50. doi:10.1145/1294948.
1294961

[51] Surbhi K. Solanki and Jalpa T. Patel. 2015. A Survey on Association Rule Mining.
In 2015 Fifth International Conference on Advanced Computing & Communication

Technologies. 212–216. doi:10.1109/ACCT.2015.69
[52] Soot. [n. d.]. Soot Introduction. https://sable.github.io/soot/. Last Accessed July

11, 2019.

[53] Marco Torchiano and Filippo Ricca. 2010. Impact analysis by means of un-
structured knowledge in the context of bug repositories. In Proceedings of the

International Symposium on Empirical Software Engineering and Measurement,

(ESEM’10), 16-17 September 2010, Bolzano/Bozen, Italy, Giancarlo Succi, Maurizio
Morisio, and Nachiappan Nagappan (Eds.). ACM. doi:10.1145/1852786.1852847

[54] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, Dan Bikel, Lukas Blecher, Cristian Canton-Ferrer, Moya Chen, Guillem Cucu-
rull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia
Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini,
Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet,
Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton,
Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva,
Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross
Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov,
Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. 2023. Llama 2:
Open Foundation and Fine-Tuned Chat Models. CoRR abs/2307.09288 (2023).
arXiv:2307.09288 doi:10.48550/ARXIV.2307.09288

[55] A Vaswani. 2017. Attention is all you need. Advances in Neural Information

Processing Systems (2017).
[56] Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and

Ee-Peng Lim. 2023. Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-
Thought Reasoning by Large Language Models. In Proceedings of the 61st Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (Eds.). Association for
Computational Linguistics, Toronto, Canada, 2609–2634. doi:10.18653/v1/2023.
acl-long.147

[57] Wei Wang, Yun He, Tong Li, Jiajun Zhu, and Jinzhuo Liu. 2018. An Integrated
Model for Information Retrieval Based Change Impact Analysis. Sci. Program.

2018 (2018), 5913634:1–5913634:13. doi:10.1155/2018/5913634
[58] XuezhiWang, JasonWei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang,

Aakanksha Chowdhery, and Denny Zhou. 2023. Self-Consistency Improves
Chain of Thought Reasoning in Language Models. In The Eleventh International

Conference on Learning Representations, (ICLR 2023), Kigali, Rwanda, May 1-5,

2023. OpenReview.net. https://openreview.net/forum?id=1PL1NIMMrw
[59] Yue Wang, Hung Le, Akhilesh Gotmare, Nghi Bui, Junnan Li, and Steven Hoi.

2023. CodeT5+: Open Code Large Language Models for Code Understanding
and Generation. In Proceedings of the 2023 Conference on Empirical Methods in

Natural Language Processing (EMNLP’23), Houda Bouamor, Juan Pino, and Kalika
Bali (Eds.). Association for Computational Linguistics, Singapore, 1069–1088.
doi:10.18653/v1/2023.emnlp-main.68

[60] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei
Xia, Ed H. Chi, Quoc V. Le, and Denny Zhou. 2022. Chain-of-thought prompting
elicits reasoning in large language models. In Proceedings of the 36th International

Conference on Neural Information Processing Systems (New Orleans, LA, USA)
(NIPS ’22). Curran Associates Inc., Red Hook, NY, USA, Article 1800, 14 pages.

[61] Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. 2025. De-
mystifying LLM-Based Software Engineering Agents. Proc. ACM Softw. Eng. 2,
FSE’25, Article FSE037 (June 2025), 24 pages. doi:10.1145/3715754

[62] Aashish Yadavally, Xiaokai Rong, Phat Nguyen, and Tien N. Nguyen. 2025. Large
Language Models for Safe Minimization . In Proceedings of 2025 IEEE/ACM 47th In-

ternational Conference on Software Engineering (ICSE’25). IEEE Computer Society,
Los Alamitos, CA, USA, 1114–1126. doi:10.1109/ICSE55347.2025.00203

[63] Yanfu Yan, Nathan Cooper, Kevin Moran, Gabriele Bavota, Denys Poshyvanyk,
and Steve Rich. 2024. Enhancing Code Understanding for Impact Analysis by
Combining Transformers and Program Dependence Graphs. Proc. ACM Softw.

Eng. 1, FSE, Article 44 (July 2024), 24 pages. doi:10.1145/3643770
[64] Daoguang Zan, Zhirong Huang, Ailun Yu, Shaoxin Lin, Yifan Shi, Wei Liu, Dong

Chen, Zongshuai Qi, Hao Yu, Lei Yu, Dezhi Ran, Muhan Zeng, Bo Shen, Pan Bian,
Guangtai Liang, Bei Guan, Pengjie Huang, Tao Xie, Yongji Wang, and Qianxiang
Wang. 2024. SWE-bench-java: A GitHub Issue Resolving Benchmark for Java.
CoRR abs/2408.14354 (2024). arXiv:2408.14354 doi:10.48550/ARXIV.2408.14354

[65] Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. 2024. Au-
toCodeRover: Autonomous Program Improvement. In Proceedings of the 33rd

ACM SIGSOFT International Symposium on Software Testing and Analysis, (ISSTA

2024), Vienna, Austria, September 16-20, 2024, Maria Christakis and Michael Pradel
(Eds.). ACM, 1592–1604. doi:10.1145/3650212.3680384

[66] Jian Zhou, Hongyu Zhang, and David Lo. 2012. Where should the bugs be fixed?
More accurate information retrieval-based bug localization based on bug reports.
In Proceedings of 2012 34th International Conference on Software Engineering (ICSE).
14–24. doi:10.1109/ICSE.2012.6227210

[67] Thomas Zimmermann, Sunghun Kim, Andreas Zeller, and E. James Whitehead.
2006. Mining version archives for co-changed lines. In Proceedings of the 2006

International Workshop on Mining Software Repositories (Shanghai, China) (MSR

’06). ACM, New York, NY, USA, 72–75. doi:10.1145/1137983.1138001

https://doi.org/10.1145/3377811.3380345
https://doi.org/10.1109/ICSE43902.2021.00067
https://doi.org/10.1145/3510003.3510177
https://doi.org/10.1145/3540250.3549137
https://doi.org/10.1145/3360588
https://proceedings.mlr.press/v202/morishita23a.html
https://proceedings.mlr.press/v202/morishita23a.html
https://doi.org/10.1109/ASE.2011.6100062
https://doi.org/10.1109/ISSRE.2013.6698913
https://doi.org/10.1145/1806799.1806847
https://doi.org/10.1145/940071.940089
https://doi.org/10.1007/s10664-008-9088-2
https://doi.org/10.1145/1035292.1029012
https://doi.org/10.1145/1028976.1029012
https://doi.org/10.1145/248233.248262
https://doi.org/10.1145/1294948.1294961
https://doi.org/10.1145/1294948.1294961
https://doi.org/10.1109/ACCT.2015.69
https://sable.github.io/soot/
https://doi.org/10.1145/1852786.1852847
https://arxiv.org/abs/2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.1155/2018/5913634
https://openreview.net/forum?id=1PL1NIMMrw
https://doi.org/10.18653/v1/2023.emnlp-main.68
https://doi.org/10.1145/3715754
https://doi.org/10.1109/ICSE55347.2025.00203
https://doi.org/10.1145/3643770
https://arxiv.org/abs/2408.14354
https://doi.org/10.48550/ARXIV.2408.14354
https://doi.org/10.1145/3650212.3680384
https://doi.org/10.1109/ICSE.2012.6227210
https://doi.org/10.1145/1137983.1138001

	Abstract
	1 Introduction
	2 Motivation and Key Ideas
	2.1 Motivating Example
	2.2 Observations and Key Ideas

	3 Intent-Aware Change Impact Analysis
	3.1 Overview
	3.2 Recall-Focused Impact Set Generation
	3.3 Precision-Focused Impact Set Refinement

	4 Empirical Evaluation
	5 Effectiveness in Impact Analysis (RQ1)
	5.1 Experiment Setup
	5.2 Empirical Results

	6 Qualitative Evaluation (RQ2)
	6.1 Change Plans Change Dependencies
	6.2 Sample–and–Marginalize versus Aggregate
	6.3 Method versus File-Level Impact Analysis

	7 Ablation Study (RQ3)
	8 When Does Ripple Work—and When Not?
	9 Discussion
	10 Related Work
	11 Conclusion and Implications
	References

