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Abstract

Dependence analysis (DA) plays a critical role in software engi-
neering, from code optimization to debugging. It is traditionally
limited to scenarios where entire source code is available. In prac-
tice, however, developers often encounter incomplete or partial
code snippets, as in StackOverflow (S/O) forums or during modular
development, where program constructs are missing. This presents
challenges for DA tools, which rely on syntactic and semantic cor-
rectness to correctly identify dependencies. Thus, existing DA tools
for partial code often face trade-offs in precision and recall.

In this work, we introduce LAMDA, a framework that addresses
these limitations by leveraging large language models (LLMs) as
context augmenters to enrich partial code snippets with the pro-
gram elements required for enabling such analyses. Through our
evaluation, we showed that LAMDA exhibits high correctness and
completeness guarantees, yielding a higher recall than traditional
approaches, and a higher precision than learning-based approaches.
Overall, LAMDA improves over all baselines in partial program
dependence analysis by 5%-265% and 16%-331% across S/O bench-
marks. Moreover, we show LAMDA’s effectiveness in providing
exception handling suggestions as well as exception-flow analysis.
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1 Introduction

Dependence analysis (DA) is a fundamental technique in program
analysis that examines the relationships between different program
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elements. Program dependence graph (PDG) [15] is a standard
representation used to model such dependencies. They are useful
in understanding program behaviors and serve as the basis for
multiple applications, including optimization [15, 21], slicing [37],
debugging [29], testing [42], and model checking [35].

Typically, dependence analysis assumes access to the complete
codebase, using syntactic and semantic information to construct
an accurate model of dependencies. However, in many real-world
scenarios, only partial programs (formally defined in Section 3.1)
are available-whether due to modular development, privacy con-
straints, or coming from online forums (e.g., StackOverflow). Specif-
ically, these partial programs often exhibit several challenges: (1)
missing variable declarations, which result in incomplete variable-
level dependencies (e.g., def-use/use-def chains); (2) unresolved data
types, which hinder type-sensitive analyses such as alias resolution
and field access tracking; (3) unknown parameters, which can mis-
lead dependence analysis; (4) missing import statements, leading to
unresolved API elements and incomplete call/return flow informa-
tion; and (5) absent exception flows, further reducing the accuracy
of control and data flow modeling. In such cases, it is not always
possible for compiler-based dependence analysis approaches to
completely disambiguate the syntactic constructs. As a result, they
are rendered ineffective for partial programs. Thus, it is pivotal to
enhance DA tools to build an accurate model of dependencies for
partial programs and broaden their utility in real-world scenarios.

Precision-Recall Conundrum. When applied to complete
code, classical DA tools (e.g., Joern [4]) correctly identify most or all
dependencies, achieving a high precision and recall. We denote this
in Figure 1 (left) with 4. However, since DA tools prioritize caution
over assumption, ambiguities arising from missing information in
partial code weaken their ability to fully identify dependencies. As
a result, some dependencies between program elements are missed,
leading to a high precision but lower recall (denoted by ¢).

To address these challenges, recent work [23, 39] has leveraged
large language models (LLMs) to “predict” the dependencies among
program elements. The core principles driving these learning-based
approaches are: first, that missing type-specific information in par-
tial code, required for correctly identifying semantic dependencies,
can implicitly be learned in the latent space during the (pre)training
process. Second, that LLMs are useful in scenarios where low levels
of imprecision are tolerable. By design, employing LLMs to directly
analyze dependencies in partial code may yield a higher recall than
DA tools. Nonetheless, this would be at the cost of a lower precision,
as the LLMs do not provide correctness guarantees (denoted by ®).

Our Approach. Addressing this precision-recall trade-off in
partial code remains challenging yet critical. To this end, we advo-
cate for a novel paradigm called predictive dependence analysis
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Figure 1: (left) A theoretical framework representing the efficacy of program dependence analysis approaches for partial and
complete code, without LLM (4), and with LLM (&, ¥ ). A high precision denotes the correct identification of dependence, and
a high recall, the identification of all dependencies between program elements. (right) Our experimental results for partial
Java programs in COSTER-SO benchmark in alignment with the theoretical framework (Section 6). Here, — and -» denote
improvements in Precision and Recall, respectively, with our proposed framework, LAMDA.

(LAMDA), which leverages LLMs in conjunction with the traditional
DA tools. Rather than using LLMs to directly predict dependencies
by implicitly inferring the missing program elements (as in LLM ®),
LAMDA leverages an LLM as a context augmenter to explicitly fill
them in and disambiguate partial code. We posit that by harnessing
the complementary capabilities of the LLMs for improving coverage
(i.e., high recall) and DA techniques for correctness (i.e., high preci-
sion), we can achieve optimality in partial code settings (denoted by
)- With necessary information, 7 would theoretically converge
to o, the spatial counterpart to applying DA tools on complete code.
LAMDA operates in two phases: Context Augmentation and Anal-
ysis. In the first phase, LAMDA uses feedback from a semantic
verifier (in this case, a compiler) to guide the LLM to fill-in missing
variable declarations, import statements, and type information. Note
that for other analyses, the verifier in LAMDA can alternatively
be replaced with model checkers, specification verifiers, etc. By
augmenting the given partial program P with the suggested pro-
gram elements, we transform it into a contextually augmented and
syntactically complete variant. We refer to this as the approximately-
complete program P4c. In the second phase, traditional DA tools
are subsequently applied to P4c¢ to obtain dependencies, which are
then refined to retain only those relevant to P, thereby aligning
with the initial scope of the analysis despite the augmented context.
Moreover, each project has its own requirements and standards,
and P4 may not always resemble the developers’ version Pp when
incorporating P into their projects. However, P4c is designed to
capture the essential dependencies and syntactic structure neces-
sary for preliminary analyses, allowing LAMDA to proceed with a
reliable approximation of the program’s intended functionality.
We implemented LAMDA framework using state-of-the-art LLMs,
including Claude 3.5 Sonnet and GPT-4o, along with the advanced
dependence analysis tool Joern [4]. The LLMs are enhanced with
feedback from a semantic verifier, which we implemented using a
compiler. LAMDA selectively retains only compiler messages help-
ful in disambiguating unknown/unresolved identifiers. Moreover,
our feedback prompt guides the LLM to synthesize only minimal,

dependency-relevant code needed for reliable DA. Our experimen-
tal results on partial program dependence analysis, illustrated in
the Precision-Recall plot in Figure 1 (right), corroborate with the
theoretical framework outlined in Figure 1 (left). LAMDA improves
over the learning-based approaches (®.A and ®.B) in precision for
the StatType-SO and COSTER-SO benchmarks by 18.6%-558.6%
and 32.4%-733.6%, respectively. We also observed improvements in
recall over traditional DA technique (4) by 26.2% and 71.3%. Overall,
LAMDA improves over all baselines in partial program dependence
analysis by 5%-265.3% and 15.9%-331% (Section 6). We also show
LAMDA’s applicability and effectiveness in two downstream tasks:
(a) analyzing exception flows in partial program to handle such
suggestions (Section 9.1), and (b) suggesting the exceptions to be
handled in partial programs (Section 9.2).

Novelty. This work makes the following key contributions:

e Predictive Dependence Analysis. A paradigm for analyzing depen-
dencies in (in)complete code with correctness and completeness.

e We carry out a rigorous evaluation using two StackOverflow
benchmarks, employing multiple LLMs.

o Usefulness. We show LAMDA'’s effectiveness in exception flow
analysis and exception handling suggestion.

2 Motivation and Key Ideas
2.1 Dependence Analysis in Incomplete Code

Developers frequently access online forums such as StackOver-
flow (S/O) for quick solutions to coding tasks, often using those
online code examples. While such code reuse can accelerate de-
velopment, it also introduces potential risks. For instance, these
examples might be outdated [31], or possess vulnerabilities [34],
and may inadvertently migrate to a codebase. Thus, a thorough
analysis and scrutiny of such “toxic” code snippets is crucial for
maintaining the integrity and robustness of the target codebase.

Figure 2 illustrates an example from an S/O answer (post #161801-
30 [1]). This was originally copied from the LineRecordReader class in
the Hadoop project on Github [2], intending to explain the usage of
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if (codec != null) {
in = new LineReader(codec.createInputStream(fileIn), job);
end = Long.MAX_VALUE;
} else {
if ( start !'=0 ) {
skipFirstLine = true;
--start;
fileIn.seek ( start );
}
in = new LineReader(fileln, job);
}
if (skipFirstLine) {
start += in.readLine (new Text(),@, (int) Math.min((long)
Integer.MAX_VALUE, end-start));

WN =0 OO NOU A WN =
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)

Figure 2: Incomplete code from S/O post #16180130

import java.io.IOException;
import java.io.InputStream;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDatalnputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.compress.CompressionCodec;
import org.apache.hadoop...CompressionCodecFactory;. ..
public class LineRecordReader implements ... { ...
public LineRecordReader(Configuration job, FileSplit split) throws
IOException {
start = split.getStart();
end = start + split.getLength();
final Path file = split.getPath();
compressionCodecs = new CompressionCodecFactory(job);
final CompressionCodec codec = compressionCodecs.getCodec(file);
FileSystem fs = file.getFileSystem(job);
FSDataInputStream fileIn = fs.open(split.getPath());
boolean skipFirstLine = false;
if (codec != null) {
in = new LineReader(codec.createInputStream(fileIn),job);
end = Long.MAX_VALUE;
} else {
if (start !'= 0) {
skipFirstLine = true;
--start;
filelIn.seek(start);
3

in = new LineReader(fileln, job);

N—= 0 ©VENOU A WN =

3
if (skipFirstLine) {
start += in.readLine(new Text(), @, (int) Math.min((long)
Integer.MAX_VALUE,end-start));
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Figure 3: A snapshot of LineRecordreader class in Hadoop project,
from where the code snippet in Figure 2 was copied

the Filesplit object, which requires an offset of -1 in some use cases
and not in others. Notably, this has subsequently been modified to
better handle such offsets in the Hadoop project itself (not shown
here), significantly impacting its behavior and usage requirements.
Although this change was introduced several years ago, the code in
the S/O post remains outdated. Alarmingly, this outdated snippet
has since been adopted by multiple new projects [31], which may
encounter unexpected issues in their implementations.
Traditional DA tools have been shown to struggle with cap-
turing dependencies effectively in incomplete code snippets [38].
As an illustration, we used Joern [4] to analyze the data depen-
dencies of the potentially vulnerability-injecting code snippet in
Figure 2. When input as is, we found that Joern missed all data
dependencies. Next, we wrapped the code snippet in a dummy
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Figure 4: Augmenting partial code with relevant context
helps retrieve missing dependencies (-» to —) with a depen-
dence analyzer

method signature, creating a pseudo-syntactically valid program.
We found that Joern captured a few data dependencies, while pro-
ducing several error messages of the form ‘Could not find type mem-
ber. type=ABC, member=xyz’. Here, ABC refers to a type name and
xyz is the respective identifier (e.g., the name of a variable/field).
To assess the precision of the detected data dependencies, we
ran Joern on the complete code in the Hadoop project listed in Fig-
ure 3. Since our focus was solely on those within the original code
snippet in Figure 2, we pruned the set of detected dependencies to
retain the ones relevant to the incomplete code snippet. In Figure 4
(left), we present the respective PDG, marking the dependencies
correctly predicted by Joern with a — and the missed ones with --.
Despite of high precision, we can see that edges corresponding to
the variables codec, filein, in (missing variable declarations); and
LineReader (unresolved APIs), were missed, resulting in low recall.
Control dependencies are also impacted by incomplete code. For
instance, the control from a conditional statement may flow through
either the true or false branch depending on the value of a vari-
able that may be unassigned. In general, the missed dependencies
illustrate the limitations of the traditional DA tools in effectively
handling incomplete code. The ability to assess risks associated with
integrating potentially vulnerable code is significantly hindered.

2.2 Key Ideas

In this paper, we propose, LAMDA, to provide higher correctness
and completeness in the dependence analysis of partial programs.
LLMs can utilize typical usage patterns and identifier cues to gen-
erate contextually-appropriate completion for unsolved symbols
in partial programs. By inferring structures, types, and dependen-
cies, LLMs can approximate the intended semantics, producing an
approximately-complete program. Such completions, however, can
be highly project-specific with multiple valid implementations. For
instance, the complete version in Hadoop (Figure 3) represents just
one candidate for the partial program in Figure 2. While one can
incorporate user intent in completion with LLMs, our focus is on
incorporating the information needed for dependence analysis.

For illustration, LLMs can expand the code in Figure 2 in various
ways, specifically by: (1) identifying the possible data types for
fileln, codec, job, start, end, etc.; (2) initializing these variables; (3)
adding necessary import statements. Figure 5 shows an approximate-
ly-complete version generated by GPT-4o for the incomplete code
in Figure 2. This version may not perfectly match a human-completed
version, but it provides sufficient structure for subsequent DA analysis.
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import java.io.IOException;
import java.io.InputStream;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDatalnputStream;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.compress.CompressionCodec;
import org.apache.hadoop. . .CompressionCodecFactory;. ..
public class FileProcessing implements ... {
public processFile (Configuration job, String fName, long start, long end,
boolean skipFirstLine, CompressionCodec codec) throws IOException {
FSDataInputStream fileIn = new FSDatalnputStream(fName);
LineReader in;
if (codec != null) {
in = new LineReader(codec.createInputStream(fileln), job);
end = Long.MAX_VALUE;
} else {
if (start !=0) {
skipFirstLine = true;
--start;
fileIn.seek(start);

SN U A WN =

[
SNV A WN =

21 }
22 in = new LineReader(fileln, job);

}
24 if (skipFirstLine) {
25 start += in.readLine(new Text(), @, (int) Math.min((long)
Integer.MAX_VALUE,end-start));
26 3
27 this.pos = start;
28 }

Figure 5: Complete code predicted by the LLM in LAMDA

Despite their ability in generating approximately-complete pro-
grams, LLMs do not guarantee syntactic or semantic correctness.
This can result in errors stemming from incorrect types or APIs
from external libraries. To address this issue, prior research in code
completion [9, 40] has proposed using semantic verifiers, such as
compilers, to ensure the correctness of generated code. Similarly,
we adopt a compiler for semantic verification, providing a feedback
signal to the LLM to refine the approximately-complete programs
(see Section 3.2). Alternative analyses may involve model checkers
to verify properties, symbolic execution engines to explore multiple
paths and identify potential runtime errors, runtime verification,
or test case execution, among other methods.

KeY IDEA 1 (LLMs FOR APPROXIMATING PARTIAL PROGRAMS).
Leverage programming patterns learned during the extensive pre-
training of LLMs to create a syntactically and semantically-valid
approximately-complete program.

As seen in Figure 5, formal parameters are added to declare
the variables job, start, end, skipFirstLine, and codec; and the as-
sociated import statements are also included. Interestingly, it de-
clares fileName as a formal parameter and creates an instantiation
of FsbataInputStream that takes fileName as an argument is initialized
to fileIn at line 11. This statement is necessary to set up the API
call createInputStream at line 14. In Figure 4 (right), we present the
PDG for the approximately-complete program variant. Owing to
the code populated by the LLM in LAMDA, for the lines 13-28 in
Figure 5, when compared with the corresponding pruned PDG for
the Hadoop code, we observed that Joern was able to produce cor-
rectly all the program dependencies. This includes dependencies
that were missed in Figure 4 (left) for the partial code, thus helping
capture more dependencies. That is, leveraging the approximately-
complete program helps achieve a high recall, and using the DA tool
to decide the dependencies helps achieve a high precision, despite
the differences with the correct intention in human-completed version.
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Figure 6: An overview of predictive dependence analysis
framework with LAMDA

KEey IpEA 2 (DA = HigH PrecisioN, LLM - HiGH REcALL). An-
alyzing the syntactically and semantically valid, complete variant
generated by an LLM for a partial program can help the precise
retrieval of more (i.e., missed) dependencies.

3 Partial Program Dependence Analysis
3.1 Important Concepts

DEFINITION 1 (PARTIAL PROGRAM). A partial program P is a syn-
tactically valid, non-empty subset of an otherwise complete program
(i.e., P C Pc). The incompleteness of P arises from the presence of un-
known symbols S within P (such as fields, methods, type expressions)
that are originally defined in Pc (i.e, S € Pc).

The disambiguation of P involves variable declarations, method
signatures, class definitions, import statements, try-catch blocks, type
casting, assignment of correct data types for typesafe (for local vari-
ables, return values, fields), code hardening, interface definitions, etc.

DEFINITION 2 (CONTEXT). The context C for a partial program
P comprises the additional program elements required to resolve all
unknown symbols S within P and disambiguate it.

DEFINITION 3 (APPROXIMATELY-COMPLETE PROGRAM). An appro-
ximately-complete program Py is the result of augmenting a partial
program P with context C (generated by an LLM in LAMDA), such that
Pac=P+C. This integration resolves all unknown symbols S within P,
ensuring that Pyc is both syntactically and semantically valid.

Pyc (as obtained from LAMDA) provides sufficient context for
the DA tool, e.g., Joern, to derive the missing dependencies.

3.2 Overview

Figure 6 illustrates LAMDA for partial dependence analysis. In the
first phase of LAMDA, an LLM is tasked with disambiguating a
given partial code by augmenting the necessary context required to
retrieve syntactically and semantically valid, complete variant (re-
ferred to as approximately-complete programs). The augmented con-
text can include: (1) variable declarations, (2) type information, (3)
method signatures, (4) class definitions, (5) import statements, among
other program constructs. To ensure its correctness, we guide and
validate the LLM in iterative cycles of self-correction, providing only
the compiler’s feedback helpful in disambiguating unresolved names.
This iterative process continues until the approximately-complete
program is compilable. If a specified number of iterations is reached,



Large Language Model-Aided Partial Program Dependence Analysis

manual intervention may be necessary. Depending on the analysis
requirements, the compiler could be replaced with other semantic
verifiers, e.g., model or type checkers, specification verifiers, etc.
In the second phase, the DA tools are applied to the approximately-

complete programs to retrieve program dependencies (including
statements filled-in by the LLM as context). Finally, these dependen-
cies are pruned to retain only those relevant to the program state-
ments present in the original partial program. With the additional
context, it is possible for DA tools to identify dependencies between
program elements that were originally missed due to ambiguities
associated with the unknown symbols in the partial program (i.e.,
high recall). Furthermore, by design, DA tools provide soundness
guarantees (i.e., high precision). As a result, LAIMDA improves over
applying the DA tools directly to partial programs in recall; and
over the rule-based [17] or learning-based approaches in precision.

3.3 Problem Formulation

For a partial program P, let Py represent a manually completed
variant by human developers (based on a specific use case) and let
Pyc represent the approximately-complete variant generated by
the LLM in LAMDA. Given a dependence analysis tool T, let the
dependence graphs produced by T for all program variants P; be
G; = T(P;). Let Gy and G ¢ denote the pruned versions of Gy and
Gac, respectively, such that each contains only program elements
present in P. We aim to show that our tool’s design ensures that:

Precision(Gac, Gyy) is 71 (1)
Recall(Gac, Grr) > Recall(G, Gyp) (2)

4 Context Augmentation: P — Pyc

For a given partial program P, the objective is to generate a com-
pilable variant P4¢ such that no program elements within P are
modified. To facilitate this process, we leverage an LLM M and a
compiler V (as a semantic verifier), which work in tandem itera-
tively to populate the necessary missing information in P.

4.1 Approximating Partial Programs with LLM

We first check if the partial program P is compilable, collecting all
its errors V(P) if it is not. Next, in the first pass to the LLM (prompt
shown in Figure 7 (left)), we provide the partial program P along
with compiler errors, and a set of instructions describing the task.

In the interest of making P compilable, the two main objectives
of the LLM in this phase are (a) code approximation, and (b) type
analysis. The first task requires the LLM to fill-in essential program
elements including necessary headers, import statements, method
signatures, etc. which are crucial for the input program’s function-
ality. For this process, we instruct the LLM to inspect the compiler’s
error message, diagnose, and subsequently attempt to rectify these
errors. As seen in Figure 7 (left), an illustration of such unfiltered
compiler outputs, this involves fixing syntax errors as well as dis-
ambiguating all unknown identifiers. To further facilitate this, we
include the second task, which requires the LLM to accurately re-
solve types and enumerate all variables and their types, e.g., (fileln,
FSDataInputStream). We expect this analysis help the LLM capture
type dependencies intrinsically, which could facilitate a better iden-
tification of fully-qualified names for the unknown symbols. Finally,
the LLM outputs a candidate approximately-complete program Py~
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and the extracted type information 7. We adopt the few-shot set-
ting with an exemplar, which serves as a reference for the LLM.

4.2 Refinement/Validation via Semantic Verifier

In this work, we leverage a compiler as a semantic verifier. We be-
gin by checking the compilability of the candidate approximately-
complete program P§~ generated by the LLM (Section 4.1). If P~
does not compile, a refinement process is initiated. We collect all
errors generated in a failed compilation attempt. These might cover
a range of syntactic/semantic issues. Some errors, however, are tied
to external dependencies, e.g., “package does not exist” and “class
name and file name do not match”. We discard these as the LLM fails
to resolve them. If a “symbol not found” error does not correspond to
an AP, e.g., in the case of an undefined constant, we also discard it.
Next, we construct a feedback loop prompt (Figure 7 (right)) to
guide the LLM to generate new candidate approximately-complete
programs that address the errors identified by the compiler at the
end of an iteration. The tasks and objectives of the LLM in this
prompt are the same as in Section 4.1. We also include the following:
(1) original partial code snippet P

(2) LLM-generated candidate approximately-complete program

at the end of the i-th iteration ij(cl?)

(3) filtered error messages from compiler
It is essential to incorporate both the original and the current mod-
ified versions, especially for longer code snippets, as that helps the
LLM avoid getting stuck in a cycle of repeated errors and facilitates
a more accurate understanding of the necessary corrections.

Finally, the approximately-complete program P4 is le(é) if there
are no more compilation errors. In contrast, if the threshold 6 is
reached with not all errors being resolved (i.e., the LLM failed to
disambiguate the partial program P), manual intervention is needed.

5 Empirical Evaluation

To evaluate LAMDA, we seek to answer the following questions:
(RQ1) Partial Program Dependence Analysis Effectiveness:
Can LAMDA enhance dependence analysis for partial programs?
(RQ3) Sensitivity Analysis: How many dependencies are cor-
rectly recovered after each iteration of compiler feedbacks?
(RQs3) Program Constructs that LAMDA Completes the Code.
What programming constructs does the LLM in LAMDA fill-in
toward disambiguating unknown symbols?

(RQ4) Adaptability to Exception Flow Analysis and Exception
Handling Recommendations: Can LAMDA improve the analysis
of exception-flows in partial Java programs? Is LAMDA useful for
suggesting exceptions that need to be handled in partial programs?
(RQs5) Ablation Study: How does LAMDA'’s feedback loop affect
its effectiveness in capturing dependencies in partial code?

(RQg) Efficiency: How are LAMDA's efficiency and token costs in
LLM usages compared to those of the baselines?

6 Partial Program Dependence Analysis (RQ;)
We first evaluate how the code filled in by LAMDA helps the DA tool
in better capturing the dependencies in the original, incomplete code.
6.1 Experimental Setup

6.1.1 Datasets. We selected two benchmark datasets from prior
work, namely, StatType-SO [28] and COSTER-SO [32]. Both cover
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Prompt for Approximating Partial Programs

Task. Given a partial Java code snippet, compiler output/errors, and the expected outcome, your task is to
generate the necessary code to complete the snippet. The additional code should address the issues indicated by
the compiler output and achieve the desired outcome. Focus on enhancing the code header to make the snippet
a compilable Java unit, without modifying the original code body.

Using the information provided by the compiler, the model should fill in the missing information of the partial
code snippet, focusing solely on enhancing the code header. The goal is to make the partial code snippet a
compilable Java unit without modifying any part of the existing code body. Your first task is to analyze the

Additionally, you do not need to write a method to solve missing API calls. After completing the code, your

provided code, identify what are missing and complete the Java snippet. Do not modify the original code.

Rong, Yadavally, and Nguyen

Prompt for Incorporating Compiler Feedback for
Self-Correction

Task. After incorporating the suggested code enhancements into
the original code snippet, the code was recompiled, resulting in
new compiler output/errors. Your task is to analyze these new
errors, understand the context of both the original and modified
code, and apply further modifications to correct the errors without
altering the core functionality or logic of the original code.

new_errors

second task is to fill in type information

<sample code snippet
Here is what your response is supposed to look like:
Code Approximation:
* tjava
... // LLM approximated code here.

Type Information:
... // LLM proposed type information here.
Disclaimer:

Do not include any explanation or comments.

\.

Here is an example procedure of how you should construct answer. Suppose you are given a partial code snippet

(i.e., after filtering the compiler’s outputs)

** java
... // LLM approximated code here.

Type Information:
... // LLM proposed type information here.

Here is an example procedure of how you should construct answer.
**Same as in Fig. 7 (left)™
Disclaimer:

Do not include any explanation or comments.

7 \ v

Figure 7: Prompts to LLM in LAMDA for: (left) approximating the partial program; (right) providing feedback for self-correction

six Java libraries: android, gwt, hibernate, joda-time, jdk, and xstream.
The authors of both benchmarks made these partial code snippets
compilable by manually adding all required libraries in an iterative
fashion and filling in missing details. Finally, they used Eclipse JDT
compiler to validate the compilability of the code snippets. In the
Context Augmentation phase in LAMDA, in simple terms, we aim to
automate this process. Thus, we evaluated it on the incomplete S/O
code snippets, using the manually filled-in code as the ground-truth.
Overall, we collected 172 and 274 incomplete code snippets in two
datasets, respectively, each containing 2—-45 and 4-90 statements.

6.1.2 Procedure. We used the state-of-the-art Joern [4] as a DA
tool. Our evaluation involved several baseline comparisons and
approaches for generating PDGs from the incomplete code snippets
(Dincomplete)- First, we used a traditional baseline (¢.A) by creating a
pseudo-syntactically valid variant for each incomplete code snippet
by wrapping around them a dummy method signature (Ddummy)-
We also applied two baselines JCoffee [17] (¢.B) and Code2API [25]
(#.C) to produce two complete versions for each code snippet. This
modification is necessary as Joern requires syntactically valid inputs
to construct PDGs. Second, we established learning-based baselines,
NEURALPDA [39] (®.A) and PDBERT [23] (®.B), which were trained
to “predict” the dependencies between program elements directly.
Third, for LAMDA framework, we employed multiple LLMs includ-
ing GPT-3.5, Claude 2, Claude 3.5 Sonnet, and GPT-4o0 (*.A—*.D)
to obtain approximately-complete programs from the incomplete
code snippets (Dapprox)- Finally, we used the manually-completed
versions of the snippets (Dcomplete) to get the oracle dependencies.

For each dataset Dy (x € {dummy, approx, complete}), we con-
structed the corresponding PDGs using Joern, i.e., Dy + Joern = Gy.
Next we sliced all Gy to select the sub-PDGs (G;C) corresponding to
the statements in Dincomplete- By comparing such sub-PDGs from

the partial and complete code, i.e., Géummy with Géomplete’ we assess
the impact of code incompleteness on Joern’s ability to build PDGs.

Similarly, we quantify the impact of code approximation in LAMDA
by comparing the sub-PDGs from the respective approximately-
complete and complete code, i.e., G;ppmx with thtomplete' For the
learning-based approaches, we aggregated the predicted dependen-
cies to build the PDGs (Glearning) and compared with G!

complete*

6.1.3  Metrics. We use Precision, Recall, and F1-Score to measure the
quality of the PDGs. A True Positive (TP) occurs when an edge in

) 1 . )
Ge {Gdummy, Gapprox> Glearning } along with the associated nodes

matches exactly with those in Giomplete' False Positives (FP) occur

when: an edge in G between two nodes is decided, but does not exist
Ll
mn Gcomplete5
S| . N
them does not exist in Geypplete- The latter is common in Gapprox. as

the LLM sometimes tends to modify some of the original program

statements to harden the code. False Negatives (FN) occur when an
I

complete*
Formally, the evaluation metrics are defined as follows: Precision =

TP _ TP _ _ 2%Precision*Recall
TP+FP’ Recall = TP+FN’ and F1-Score = Precision+Recall *

an edge in G between two nodes is decided, but one of

edge is absent in G, but is present in the corresponding G,

6.2 Empirical Results

In Table 1, we compare the PDGs constructed for partial Java code
using LAMDA, with multiple LLMs (% .A-% D), against traditional
and learning-based approaches. In the case of the former, i.e, when
compared to the edges constructed for partial programs wrapped
around in dummy method signatures (#.A), we saw that LAMDA
improves in recall by 17.2%-33.5% and 27.6%—71.3% for the StatType-
SO and COSTER-SO benchmarks, respectively. Interestingly, while
there is a slight drop in precision by 3%-10.1% for the StatType-SO
benchmark, in the case of COSTER-SO, it still goes up by 0.7%-
3.1% (except for Claude 3.5 Sonnet). This difference in precision
can possibly be attributed to the difference in lengths of the partial
programs in StatType-SO and COSTER-SO, because with larger
lengths, the LLMs contextualize the programs in COSTER-SO better
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Table 1: Dependence analysis for partial code. Here, "-": NEURALPDA does not distinguish between dependence edges (RQ1)

Dataset (—) StatType-SO COSTER-SO

Approach (1) Data+Control Data Control Data+Control Data Control
PP P R F | P R F| P R F| P R Fl| P R F | P R F
Ddummy +Joern (4.A) 99.0 69.8 819 | 98.8 68.0 80.6 | 100 82.6 904 || 96.2 485 64.5 | 949 40.6 569 | 100 71.1 83.1
Dicoftee +Joern (4.B) 990 69.9 81.9 | 98.8 682 80.7 | 100 82.6 90.4 || 96.2 485 64.5 | 949 40.6 569 | 100 71.1 83.1
Dcodeaapr + Joern (4.C) 874 78.6 828 | 8.5 773 81.6|945 884 914 || 875 634 73.6 | 851 547 66.6|91.8 83.8 87.6
NEURALPDA (®.A) 145 924 25.1 - - - - - - 119 89.5 21.0 - - - - - -
PDBERT (®.B) 80.5 954 873 | 78.8 952 96.2| 953 96.7 956 749 811 781 [ 704 799 748|919 946 958
LAMDA w/ GPT-3.5 (*A) 949 81.8 87.8 | 945 79.7 86.4 | 98.4 96.7 975 96.9 71.2 82.1 | 965 63.6 76.6 | 98.1 93.0 955
LAMDA w/ Claude-2 (*B) 96.1 84.2 89.7 | 95.8 82,5 887 |98.0 963 97.1 || 983 619 759|982 555 71.0| 984 80.2 884
LAMDA w/ Claude-3.5 (*C) 899 932 91.6 | 8.7 93.0 90.8 |99.1 950 97.1 || 89.0 81.5 851 | 86.7 77.8 819|965 924 943
LAMDA w/ GPT-40 (*D) 95.5 88.1 91.7 | 95.1 86.9 90.8 | 98.8 97.1 979 || 99.2 83.1 90.5 | 99.1 79.6 883 | 99.6 932 963

towards the correct identification of unknown symbols, eventually
resulting in better approximation. Moreover, the precision for both
benchmarks is high while achieving an improvement in recall. Overall,
LAMDA improves over the traditional approaches in F1-score by
7.2%-12% and 17.7%-40.3% for both benchmarks.

Compared to program dependencies recovered by Code2API [25]+
Joern, LAMDA with GPT-4o relatively improves in recall by 12.1%
and 31.1% for StatType-SO and COSTER-SO, respectively. Mean-
while, the improvement in F1-score is 10.7% and 23%. Upon further
examination, we found that Code2API struggles with incomplete
code snippets that missed variable declarations and explicit data
types, leading Joern to discard the dependence edges involving
those program elements. Code2API’s main goal is “APIzation,” i.e.,
transforming a given semantically complete code snippet into a
well-formed API method. To this end, it prompts LLMs to recover
missing import statements, construct the method signature (includ-
ing its name and parameters), and insert statements such as return
and throw. However, in doing so, Code2API converts local variables
into method parameters, which prevents Joern from constructing
all dependence edges originating from those variables.

Compared to the PDGs produced by JCoffee [17]+Joern, LAMDA
with GPT-4o relatively improves in recall by 26% and 71.3% for
StatType-SO and COSTER-SO, respectively. The improvement num-
bers for F1-score are 11.9% and 40.3% for two datasets. Upon exam-
ining the results, we observed that JCoffee replaces any unresolved
data type or unknown class name with the identifier uxknown. This
substitution causes confusion for Joern, which incorrectly interprets
all instances of UNKNOWN as references to the same program element.
As a result, Joern generates incorrect data flows involving these
elements. Furthermore, this approach prevents Joern from identify-
ing valid data dependencies between variables of unresolved types
and others, as the necessary information was not recovered.

Next, among the learning-based approaches, NEURALPDA (&.A)
shows a low performance in predicting program dependencies. This
can be attributed to to its lack of pretraining on a broader code cor-
pus, relying instead on specialized training with a limited dataset.
As a result, it lacks generalization capabilities. The notably high
recall and low precision suggests a bias toward over-predicting de-
pendencies between program elements. In contrast, PDBERT (®.B)
demonstrates the advantages of pretraining, achieving the high-
est recall among all approaches. However, its moderate precision

suggests a slight tendency toward over-predicting dependencies,
likely a trade-off to maintain high recall. While the precision-recall
tradeoft factors in with the smaller programs in StatType-SO, with
slightly more context, the LLM in LAMDA outperforms PDBERT
in both precision and recall. Overall, LAMDA improves over the
learning-based approaches by 5%-265.3% and 15.9%-331% in F1-
score for StatType-SO and COSTER-SO, respectively.

Among the LLMs employed in LAMDA, GPT-3.5 and Claude-
2 demonstrate similar performance, as do Claude-3.5 Sonnet and
GPT-40. We can see that Claude-2 excels at contextualizing smaller
programs, yielding a high precision and recall on StatType-SO;
while GPT-3.5 performs better at disambiguating unknown symbols
better in larger programs, as seen in its higher recall on COSTER-SO.
Similar trends are noted between GPT-40 and Claude-3.5 Sonnet.

Table 1 shows the results in recovering control dependencies for
partial code. As seen, all approaches perform generally better for
control than for data dependencies. This is expected, as the control
flow between sequential statements is less sensitive to the incom-
pleteness of code snippets. However, incompleteness still impacts
control flow in cases involving conditional expressions or incom-
plete loop constructs, where the branching logic depends on vari-
ables with missing/undeclared types, or unresolved method calls.

For data dependencies (Table 1), we observed a similar trend to
that reported earlier for PDGs. This is largely due to two factors: (1)
the number of data dependency edges is approximately five times
greater than that of control dependency edges, and (2) the models
exhibit reasonably high performance on control dependencies. As a
result, improvements in overall program dependency recovery are
strongly influenced by the accuracy of data dependency recovery.

Our results align with the theoretical framework presented in Sec-
tion 1, i.e., LAMDA effectively navigates Precision-Recall Conun-
drum by exploiting the strength of each approach: DA and LLM.

7 Sensitivity Analysis (RQ2)

We study how the approximately-complete code from each refinem-
ent between LLM and compiler, helps Joern in dependence analysis.
7.1 Experimental Setup

Here, we utilized the approximately-complete programs from all
LLMs within the LAMDA framework for both StatType-SO and



ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

(@) StatType-SO (b) COSTER-SO

170 (- -
160 |- B

ok [/ 4

140 |- B
D —a GPT-40

—#— Claude-Sonnet-35

f GPT-35 1901 GPT-35

——  Claude-21
T

# of Compilable Instances —
# of Compilable Instances—

—#— Claude-Sonnet-35

130

—— Claude-21
T

120 L 170 L
0 5 10 15 0 5 10 15

# of Iteration in Refinement —

# of Iteration in Refinement —

Figure 8: Successful compilation across refinement iterations

2,200 — . 6,500 ——
.- | _
2000w F b
" 6,000
T T
5 e G
= 1,800 |- 4 2
2 2
k] s
* * 5500 |
Leoo —+ GPT40 —+  GPT40
2 —=— Claude-Sonnet-35 | | —=— Claude-Sonnet-35
GPT-35 GPT-35
——  Claude-21 ——  Claude-21
00l 1 T 50006 L L 1 T
012345 10 15 12345 10 15

# of Iteration in Refinement — # of Iteration in Refinement —

Figure 9: Edges recovered across refinement iterations

98 — B
/*'\7.

—— -

<
=

My oo

R —

——  GPT-4o

L —=— Claude-Sonnet-35

o GPT-35 -4 GPT-35

—+—  Claude-21 —+—  Claude-21
T T

—4—  GPT-4o
—=— Claude-Sonnet-35

Cosine Similarity Score —»
<
o
T

Cosine Similarity Score —
<

96

943 Ll
0123 45 10 15
# of Iteration in Refinement —

L
0123 45 10 15
# of Iteration in Refinement —
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COSTER-SO benchmarks. First, we quantified the interaction be-
tween the LLMs and the compiler by measuring the number of
iterations required to transform the incomplete code into a valid,
compilable version. Second, we evaluated the percentage of cor-
rectly recovered data dependencies from the ground truth after each
refinement iteration in LAMDA. This process of recovering edges is
illustrated in Figure 4. Third, we also measured the semantic correct-
ness of the approximated code after each iteration. Specifically, we
compared LAMDA’s approximated code (Dapprox) obtained via com-
piler feedback-augmented prompting with the manually completed
versions of the code snippets in the two benchmarks.

To establish the semantic correctness of the approximated code in
Dapprox, we leveraged CodeBERT [14], a pre-trained code language
model known for effectively capturing program semantics. As a
measure for semantic similarity, we computed embeddings for both
the approximated code and its manually-completed version and
computed their cosine similarity scores. These range from 0 to 1,
where 0 indicates no similarity and 1 represents an identical match.

7.2 Empirical Results

7.2.1 Sensitivity to Number of Refinement Iterations. In Figure 8, we
present the total number of instances where the approximated code
from each LLM becomes compilable by the end of each feedback
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Figure 11: Scatter plots of cosine similarity of approx. comple-
te code and semantically-correct, manually-completed code

cycle. In the first iteration—using only the initial feedback from
the compiler—LAMDA enables the LLMs to generate compilable
code snippets for 73.8% (127 instances with Claude 2.1) to 96.5%
(166 instances with GPT-40) on the StatType-SO dataset, and from
62.8% (172 instances with Claude 2.1) to 83.9% (230 instances with
GPT-40) on the COSTER-SO dataset. This shows that LAMDA can
produce syntactically correct and compilable code using only the
code approximation prompt and initial compiler feedback.

Furthermore, we can see that additional iterations of refinement
via compiler feedback progressively reduces compilation errors.
Almost 98% of the code snippets becoming compilable after only two
iterations with GPT-4o for StatType-SO, and 97% of them after only
three iterations with Claude-Sonnet-3.5 on COSTER-SO.

Figure 9 shows the correlation between compilability and the
number of data dependence edges recovered. As noted in Section 3.1,
the approximately-complete programs generated by the LLMs in
LAMDA may not exactly match that from developers. However,
the data dependence edge recovery is tied to syntactic and semantic
completeness, as is reflected by the progressively increasing number
of data dependence edges recovered as the number of compilable
approximately-complete programs increase. With just four iterations
on the StatType-SO dataset and two iterations on the COSTER-
SO dataset, GPT-40 successfully recovered 96.5% and 84% of the
missing edges, respectively. These findings reinforce our Key Ideas
1 and 2-one can use LLMs to fill in missing statements such as
undeclared variables or import statements, to disambiguate partial
programs and improve the recovery of data dependencies.

7.2.2  Semantic Correctness of Approximately-Complete Code. In
Figure 10, we plot the mean cosine similarity scores between the
approximately-complete and manually-completed program variants
in both StatType-SO and COSTER-SO benchmarks, across all refine-
ment iterations. We can see that these are generally high, ranging
between 0.94-0.98 for both datasets. In Figure 11, we present a scat-
ter plot for these measures for more insights. We can see that across
all instances, the approximately-complete programs from GPT-4o0
and Claude-3.5 Sonnet and their respective manually-completed
are almost semantically similar (cosine similarity — 1).

There are a few outliers when using GPT-3.5 and Claude-2.1,
with lower cosine similarity measures. This is consistent with the
unsuccessful compilability observed using these LLMs, in which
case, the semantic similarity with manually completed programs
would be lower. However, these low-matching programs still con-
tribute to data dependence edge recovery, as indicated in Figure 9. This
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shows that even without exact matching with the human-written
code, LAMDA still effectively augmented sufficient context to help
recover dependencies in partial code. Therefore, our findings align
with Key Idea 1 (see Section 2.2) that context-augmented programs
from LAMDA need not perfectly match manually-written ones for
effective recovery of data dependencies.

Finally, vanilla LLM’s performance (i.e., without feedback loop)
was sub-optimal: many completions failed to compile (Figure 8) and
fewer edges were recovered (Figure 9). Thus, iterative refinement
significantly improves performance over the base LLM, indicating
that the gains stem from LAMDA'’s design, and not data leakage.

Our findings indicate that even when the approximately complete
code from the LLM in LAMDA does not exactly match manually
completed versions, the augmented context combined with semantic
refinement aids the recovery of program dependencies.

8 Different Types of Filled-in Statements (RQ;)

In this experiment, we aim to assess the quality of code approxima-
tion by the LLM in the Context Augmentation phase in LAMDA. To
this end, we analyzed the types of program statements filled-in for
approximation, across iterations. Figure 12 shows the frequencies
of these statements. Note that our code approximation prompt does
not explicitly refer to statement types when filling in the missing
information. The LLM rather uses the feedback from the compiler in
localizing and successfully fixing compilation errors. For example,
missing import statements, local variable declarations typically trig-
ger “cannot find symbol” errors at compile-time. These statements
constitute 76.9% and 68.05% of the different types of statements
populated by the LLM in the two datasets, respectively.

While filling in the import declarations, we observed that the
LLM identified appropriate fully-qualified names for the unknown
symbols. This aligns with research on type recovery on partial code
[5, 19, 26, 27, 30, 36], which, however, do not focus on populating
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Table 2: import statement recommendations (RQ3)

Approach Evaluation Metrics (in %)
Precision | Recall | F1-Score
SnR 98.2 82.1 89.4
Code2API 91.7 81.5 86.3
LAMDA 98.1 85.8 91.6

local or global variable type declarations due to requiring an un-
derstanding of type-specific dependencies. Overall, coupled with
compiler feedback on the unknown symbols and their locations,
LLMs can gauge both external and local type-specific dependencies.

The LLM filled-in statements include method declarations in
20.7% and 22.5% of the cases in two datasets. Apart from the method
signatures for the given code, these also include dummy methods
that were added to resolve unresolved method calls. Having dummy
methods within the same class does not affect the data dependencies
within the method, but only helps in achieving syntactic validity.

We observed that the LLM also attempted to harden the code
examples at various levels: inserting a conditional that checks for
corner cases in 104 instances across both the datasets (e.g., protecting
code from invalid input data such as null or an out-of-bound index);
and handling any missing exceptions in 21 cases.

GPT-40 and Claude 3.5 successfully generated approximately-
complete code that passed the compiler for both datasets. In con-
trast, LAMDA with GPT-3.5 failed to approximate 10 programs in
the COSTER-SO dataset, and Claude 2 failed 33 times. This differ-
ence may stem from the relatively worse coding abilities of GPT-3.5
and Claude 2, which likely limits their ability to resolve ambiguous
or unresolved types—an essential factor in accurate approximation.
This aligns with our earlier finding that, while GPT-3.5 and Claude-
2 handle smaller programs effectively, they struggle with longer
code snippets, which may require more complex type resolution.

We further evaluate the filled-in import statements in StatType-
SO dataset. To establish the ground truth, we extracted the respec-
tive import statements from the manually-completed versions for
unknown types and API elements. We skipped COSTER-SO as their
manually-completed versions do not contain the import statements
to the specific API elements. We compared our tool against the
state-of-the-art import recommenders, LLM-based Code2API [25]
and SnR [12]. SnR first extracts constraints that capture the rela-
tions between the types used in the snippet; then queries an internal
knowledge base to resolve these constraints to output the types.

As shown in Table 2, LAMDA achieves a 6.2% relative improve-
ment in F1-score over Code2API, with 7% and 5.3% increases in
precision and recall. This shows the effectiveness of our feedback
loop, which equips the LLM with explicit knowledge about unre-
solved API elements that must be addressed via import statements.
Compared to SnR, LAMDA achieves comparable precision but im-
proves recall by 4.5%. SnR relies on a predefined knowledge base of
API libraries and therefore fails to generate import statements for
libraries not in that database, resulting in lower recall and F1-score.

9 Exception-Flow-Related Dependence Analysis
9.1 Exception-Flow Analysis (RQ,)

9.1.1 Experimental Setup. We aim to evaluate how the approximately-
complete code from LAMDA helps Joern [4] in better capturing
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Table 3: Performance on exception flow analysis (RQ4)

Dataset Dy + Joern, x = Evaluation Metrics (in %)
? Precision | Recall | F1-Score
approx-naive 75.6 37.1 49.8
StatType-SO | approx (LAMDA) 98.4 72.0 83.2
approx-naive 73.9 29.3 42.0
COSTER-SO | approx (LAMDA) 100 86.6 88.3

exception-flow edges in an Exception-Flow Graph (EFG). An EFG is
part of the control flow graph (CFG) that connects to the exception
handling block(s). We used the same datasets as in Section 6, focus-
ing on instances containing try/catch blocks. We exclude those with
only general exceptions (e.g., Throwable e, Exception e), as these do
not aid in identifying exception types. Overall, this yielded 23 and
38 code snippets from StatType-SO and COSTER-SO, respectively.

For our baseline, we prompted the LLM to make each code snip-
pet compilable but without integrating the iterative feedback loop
between the compiler and LLM as in LAMDA, a process we refer to
as naive approximation. We input each snippet from the extracted
datasets to LAMDA to fill in exception-handling code including the
exception types and catch blocks. We then used Joern to build the
EFGs by first building the CFGs, following which we statically slice
from the beginning of the code to the exception handling blocks to
retrieve the EFG edges. For the ground truth, we ran Joern on the
manually-completed versions of the code snippets and generated
corresponding EFGs through the same CFG and slicing process.
We use the same evaluation procedure as in RQ1, substituting data
dependence edges with exception-flow edges.

9.1.2  Experimental Results. As seen in Table 3, LAMDA helps con-
struct EFGs closest to the ones for the manually completed code,
achieving an F1-score of 83.2% and 88.3% on both datasets. Similar
trends were observed as in the dependence analysis in RQ1: with
LLM and a compiler, LAMDA enhances both precision and recall.

9.2 Exception Handling Recommendation (RQ,)

9.2.1 Experimental Setup. In this experiment, we assess whether
LAMDA, as a framework, has utility beyond dependence analysis.
We replace the dependence analysis tool with one that identifies po-
tential exceptions in incomplete code snippets. By doing so, we test
whether the approximately-complete code generated by LAMDA
can enhance the accuracy of exception handling recommendations.
Specifically, we replaced the DA tool with PA-NEUREX, the program
analysis-based, exception handling recommendation tool developed
as part of NEUREX [6]. It takes a code snippet and recommends a
list of exception types to be handled. This can be empty if there is
no such candidate. PA-NEUREx examines each API element and the
import statements in the code snippet, aiming to resolve the type
of the API element and map it to associated exception types based
on a database of the libraries’ documentation. We also used GPT-
40 [7] with one-shot prompting as another baseline for exception
type handling recommendation. In this case, we feed to GPT-4o0 the
given code snippet (approximately-complete or incomplete), asking
it to wrap the suspicious API calls that might throw exceptions in
a try-catch block and extracted the corresponding exception types.
We used the same metrics as in NEUREX [6] (Precision, Recall, and
F1-score), and the same dataset as in Section 9.1.
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Table 4: Exception handling recommendations (RQ4)

Approach Evaluation Metrics (in %)

PP Precision | Recall | F1-Score
PA-Neurex + Dincomplete 10.8 31.0 16.1
PA-Neurex + Dypprox 15.7 36.7 22.0
GPT-40 + Dincomplete 57.5 29.1 38.6
GPT-40 + Dypprox 631 | 780 | 697

Table 5: Ablation on data dependence analysis (RQ5)

Eval. Metrics (in %)
Task Approach i R T1
Data Dependence | w/o refinement | 95.8 | 79.8 | 87.1
Analysis LAMDA 96.8 | 92.0 94.4
Exception Flow | wj/orefinement | 91.3 | 70.9 | 79.8
Analysis LAMDA 98.2 | 83.5 | 90.3

9.2.2  Experimental Results. As seen in Table 4, as using approxi-
mated code instead of incomplete code, its recall improves by 168%.
This increase stems from GPT-4o primarily using its existing knowl-
edge, with LAMDA providing assistance in the form of type informa-
tion, to help identify specific exception types. LAMDA’s type resolu-
tion aids it in identifying appropriate import packages, enabling a bet-
ter inference of which base Java packages to use. This significantly
reduces incorrect exception predictions, improving the precision by
9.7%. Overall, as reflected by the F1-score, GPT-40’s performance
in handling exceptions across both datasets improves by 80.6%.

In contrast, PA-NEUREX tends to be overly strict to avoid missing
an exception. Thus, it has a relatively low precision in both datasets.
With LAMDA'’s approximated code, the improvement of 45.4% in
precision and 18.4% in recall is due to the filled-in fully-qualified
names for certain APIs. This helps recover some associated excep-
tions, benefiting PA-NEUREX and increasing F1-score by 36.6%.

LAMDA is extensible to other dependency analysis, and useful in
exception-flow analysis and exception handling recommendation.

10 Ablation Study (RQ5)

In this experiment, we aim to assess the impact of code refinement.
Accordingly, we compared the performance of LAMDA in all tasks,
against that without the feedback loop, i.e., where the LLM utilizes
only the initial feedback from compiler.

As seen in Tables 5 and 6, the feedback loop is useful, helping
mitigate compilation errors from the LLM’s approximated code,
thus improving the precision; and makes sure there are no more
undeclared variables or unresolved APIs, thus improving the recall.

In the data dependence analysis task (rows 1-2 in Table 5), the
feedback loop results in a relative increase in recall by 15.3%, result-
ing in a relative improvement in F1-score by 8.4%. The improvement
in precision and recall for the exception-flow analysis task (rows
3-4 in Table 5) are 2.4% and 6.1%, respectively. The improvement
can specifically be attributed to the accurate resolution of unknown
APIs via code approximation (as opposed to both undeclared vari-
ables and unresolved APIs in data dependence analysis). Overall,
introducing such a feedback loop between the LLM and compiler
improves the performance by 4.4% in F1-score.
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Table 6: Ablation on exception handling recomm. (RQ5)

Evaluation Metrics (in %)
Precision | Recall | F1-Score
PA-Neurex + LAMDA w/o refinement 9.8 26.7 14.3
PA-Neurex + LAMDA w/ refinement 15.7 36.7 22.0
GPT-3.5 + LAMDA w/o refinement 28.5 22.78 25.32
GPT-3.5 + LAMDA w/ refinement 57.5 29.11 | 38.66

Approach

Table 7: Time efficiency and token costs (RQ6)

Baseline  |Code2API|GPT-3.5 Claude-2.1 Claude3.5 GPT-40
Input Tokens 897 2,350 4,484 3,926 1,901
Output Tokens| 369 731 1,649 1,793 819

Time(s) | 456 | 1491  17.34 7.35 8.76

PA-LAMDA’s improvement for exception type recommendation
(rows 1-2 in Table 6) are 60.2% in precision and 37.4% in recall. The
feedback is valuable as it ensures that most snippets are syntacti-
cally correct. As seen in earlier, 20% of the code snippets are still
not parseable by traditional PA tools with one round of refinement.

The baseline introduces an excessive statements: 29 import state-
ments, 29 variable declarations, and 13 method definitions more
than when using LAMDA as is. Not all of these program statements
are relevant, which further affects the baseline’s performance.

The feedback loop in LAMDA improves precision by mitigating
compilation errors and improving recall by handling undeclared
variables and APIs. This boosts compilation success rates, leading
to better context for recovering more missing dependencies.

11 Time Efficiency and Token Costs (RQg)

The following baselines: ¢.A, ¢.B, ® A, and ®.B, do not use LLMs,
and thus, do not have total tokens-specific API costs. Meanwhile,
the cost for the best variant of LAMDA with GPT-4o0 (including
multiple iterations) is about 2.15X more than that of Code2API
(Table 7). However, the former takes an average of 3-5 iterations
(i.e., fewer number of tokens per iteration), while Code2API has no
refinement (i.e., one iteration). The token counts for LAMDA with
Claude-2.1/Claude3.5 are higher due to their tokenization schemes.

For one code snippet, LAMDA takes 8.76 seconds—about twice
as long as Code2API—primarily due to its use of multiple reasoning
iterations. Despite this, the latency remains within a range that
is reasonably suitable for interactive use in IDEs or code analysis.
GPT-3.5 and Claude-2.1 exhibit longer processing times, while the
non-LLM solutions are faster. However, LAMDA+GPT-40 achieves
highest performance with reasonable time efficiency and API costs.

12 Limitations and Threats to Validity

LAMDA faces challenges in code hardening for partial code. While
it is adept at retrieving types and adding headers, it tends not to
insert necessary API setup calls in the middle of the code due to our
explicit instructions to preserve the original code (e.g., if file !=
null then file.close()). This affects its capabilities in code harden-
ing. The limitations of token input sizes for LLMs remain a barrier.
External Validity: Our evaluation is limited to Java programs and a
fixed set of benchmarks. While these may not be representative,
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they have been widely adopted in prior work. In addition, re-
sults may vary with other models or programming languages.
Internal Validity: The results in running time might vary due to
network traffic, latency issues or server loads when querying LLMs.
The third-party tools, e.g., Joern or the compiler, may cause errors.
Construct Validity: Variations in prompt can lead to differences in
input distributions, impacting LLMs’ outcomes. To mitigate this,
we define prompts using a consistent and well-specified structure.

13 Related Work

Program Analysis for Partial Code. PPA [10] estimates missing
bindings through type inference heuristics. GRAPA [41] enables
static analysis of partial programs by resolving unknown identifiers
with archive files. JCoffee [17] simulates all unresolved and missing
code elements with the same dummy name, introducing significant
ambiguity for DA. ReACC [24], a retrieval-augmented code comple-
tion model, uses sparse and dense retrieval techniques to enhance
code completion with partial code as queries. Some IDEs [13, 20]
build ASTs from partial code to help the compiler.

Machine learning for Partial Code Analysis. Code2API [25]
transforms semantically complete SO code snippets into reusable
API methods via Chain-of-Thought prompting. It does not incor-
porate any verification tool like compiler feedback or refinement.
Huang et al. [18] used fully qualified name (FQN) masking tech-
niques to train a masked language model for FQN retrieval from
partial code. However, it does not complete other missing elements.
SOChecker [8] uses vanilla prompting to CodeLlama (without iter-
ative refinement) for code completion. It then uses symbolic exe-
cution for security vulnerability analysis in smart contracts. NEU-
RALPDA [39] employs self-attention networks to directly learn pro-
gram dependencies. Ding et al. [11] propose TRACED, an execution-
aware pre-training strategy on UniXcoder [16] with a combination
of source code, inputs, and execution traces. LExecutor [33] aims to
execute code for any piece of code in an under-constrained manner.

Several ML approaches have been proposed for type inference
and prediction. The solutions range from statistical learning [28],
deep learning [5, 19, 22, 26, 27, 30, 36], to language models [8, 25].
While partial program dependence analysis needs type inference,
it also faces other challenges: missing external libraries and import
statements, missing variable and data type declarations, missing
call/return flows and exception flows, unknown parameters, etc.

14 Conclusion

We introduce LAMDA, a framework that uses large language mod-
els (LLMs) to aid dependence analysis (DA) in partial programs.
LAMDA mitigates the precision-recall tradeoff in traditional DA
tools by leveraging LLMs to infer missing information in par-
tial programs—-improving the recovery of dependence edges. Our
evaluation demonstrates improvements over both traditional and
learning-based baselines, with gains of 5%-265% and 16%-331% in
F1-score across StackOverflow benchmarks. Moreover, we showed
its applicability in exception-flow analysis and exception-handling.
Data Availability. Our datasets and code are available [3].
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