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Abstract

Dependence analysis (DA) plays a critical role in software engi-

neering, from code optimization to debugging. It is traditionally

limited to scenarios where entire source code is available. In prac-

tice, however, developers often encounter incomplete or partial

code snippets, as in StackOverflow (S/O) forums or during modular

development, where program constructs are missing. This presents

challenges for DA tools, which rely on syntactic and semantic cor-

rectness to correctly identify dependencies. Thus, existing DA tools

for partial code often face trade-offs in precision and recall.

In this work, we introduce L𝜆MDA, a framework that addresses

these limitations by leveraging large language models (LLMs) as

context augmenters to enrich partial code snippets with the pro-

gram elements required for enabling such analyses. Through our

evaluation, we showed that L𝜆MDA exhibits high correctness and

completeness guarantees, yielding a higher recall than traditional

approaches, and a higher precision than learning-based approaches.

Overall, L𝜆MDA improves over all baselines in partial program

dependence analysis by 5%-265% and 16%-331% across S/O bench-

marks. Moreover, we show L𝜆MDA’s effectiveness in providing

exception handling suggestions as well as exception-flow analysis.
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1 Introduction

Dependence analysis (DA) is a fundamental technique in program

analysis that examines the relationships between different program
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elements. Program dependence graph (PDG) [15] is a standard

representation used to model such dependencies. They are useful

in understanding program behaviors and serve as the basis for

multiple applications, including optimization [15, 21], slicing [37],

debugging [29], testing [42], and model checking [35].

Typically, dependence analysis assumes access to the complete

codebase, using syntactic and semantic information to construct

an accurate model of dependencies. However, in many real-world

scenarios, only partial programs (formally defined in Section 3.1)

are available–whether due to modular development, privacy con-

straints, or coming from online forums (e.g., StackOverflow). Specif-

ically, these partial programs often exhibit several challenges: (1)

missing variable declarations, which result in incomplete variable-

level dependencies (e.g., def-use/use-def chains); (2) unresolved data
types, which hinder type-sensitive analyses such as alias resolution

and field access tracking; (3) unknown parameters, which can mis-

lead dependence analysis; (4) missing import statements, leading to

unresolved API elements and incomplete call/return flow informa-

tion; and (5) absent exception flows, further reducing the accuracy

of control and data flow modeling. In such cases, it is not always

possible for compiler-based dependence analysis approaches to

completely disambiguate the syntactic constructs. As a result, they

are rendered ineffective for partial programs. Thus, it is pivotal to

enhance DA tools to build an accurate model of dependencies for
partial programs and broaden their utility in real-world scenarios.

Precision–Recall Conundrum. When applied to complete

code, classical DA tools (e.g., Joern [4]) correctly identify most or all

dependencies, achieving a high precision and recall. We denote this

in Figure 1 (left) with ⧫. However, since DA tools prioritize caution

over assumption, ambiguities arising from missing information in

partial code weaken their ability to fully identify dependencies. As

a result, some dependencies between program elements are missed,
leading to a high precision but lower recall (denoted by ⧫).

To address these challenges, recent work [23, 39] has leveraged

large language models (LLMs) to “predict” the dependencies among

program elements. The core principles driving these learning-based

approaches are: first, that missing type-specific information in par-

tial code, required for correctly identifying semantic dependencies,

can implicitly be learned in the latent space during the (pre)training

process. Second, that LLMs are useful in scenarios where low levels

of imprecision are tolerable. By design, employing LLMs to directly

analyze dependencies in partial code may yield a higher recall than
DA tools. Nonetheless, this would be at the cost of a lower precision,
as the LLMs do not provide correctness guarantees (denoted by ⊛).

Our Approach. Addressing this precision-recall trade-off in

partial code remains challenging yet critical. To this end, we advo-

cate for a novel paradigm called predictive dependence analysis

https://doi.org/10.1145/3744916.3773119
https://doi.org/10.1145/3744916.3773119
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3744916.3773119


ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Rong, Yadavally, and Nguyen

Low
Medium

High

Low

Medium

High

Partial Code

Complete Code

⧫

⧫

★
⊛

◦

Precision (→)

R
e
c
a
l
l
(
→
)

DA

DA

LLM+DA

LLM

0 20 40 60 80 100

0

20

40

60

80

100

Joern

NeuralPDA

PDBERT

LLM+DA

⊛.B

⊛.A

★

⧫

Precision (in %)

R
e
c
a
l
l
(
i
n
%
)

Figure 1: (left) A theoretical framework representing the efficacy of program dependence analysis approaches for partial and
complete code, without LLM (⧫), and with LLM (⊛, ★). A high precision denotes the correct identification of dependence, and

a high recall, the identification of all dependencies between program elements. (right) Our experimental results for partial

Java programs in COSTER-SO benchmark in alignment with the theoretical framework (Section 6). Here, → and ⇢ denote

improvements in Precision and Recall, respectively, with our proposed framework, L𝜆MDA.

(L𝜆MDA), which leverages LLMs in conjunction with the traditional

DA tools. Rather than using LLMs to directly predict dependencies

by implicitly inferring the missing program elements (as in LLM⊛),

L𝜆MDA leverages an LLM as a context augmenter to explicitly fill
them in and disambiguate partial code. We posit that by harnessing

the complementary capabilities of the LLMs for improving coverage
(i.e., high recall) and DA techniques for correctness (i.e., high preci-
sion), we can achieve optimality in partial code settings (denoted by

★). With necessary information, ★ would theoretically converge

to ◦, the spatial counterpart to applying DA tools on complete code.

L𝜆MDA operates in two phases: Context Augmentation and Anal-
ysis. In the first phase, L𝜆MDA uses feedback from a semantic

verifier (in this case, a compiler) to guide the LLM to fill-in missing

variable declarations, import statements, and type information. Note

that for other analyses, the verifier in L𝜆MDA can alternatively

be replaced with model checkers, specification verifiers, etc. By
augmenting the given partial program 𝑃 with the suggested pro-

gram elements, we transform it into a contextually augmented and

syntactically complete variant.We refer to this as the approximately-
complete program 𝑃𝐴𝐶 . In the second phase, traditional DA tools

are subsequently applied to 𝑃𝐴𝐶 to obtain dependencies, which are

then refined to retain only those relevant to 𝑃 , thereby aligning
with the initial scope of the analysis despite the augmented context.
Moreover, each project has its own requirements and standards,

and 𝑃𝐴𝐶 may not always resemble the developers’ version 𝑃𝐷 when

incorporating 𝑃 into their projects. However, 𝑃𝐴𝐶 is designed to

capture the essential dependencies and syntactic structure neces-

sary for preliminary analyses, allowing L𝜆MDA to proceed with a

reliable approximation of the program’s intended functionality.

We implemented L𝜆MDA framework using state-of-the-art LLMs,

including Claude 3.5 Sonnet and GPT-4o, along with the advanced

dependence analysis tool Joern [4]. The LLMs are enhanced with

feedback from a semantic verifier, which we implemented using a

compiler. L𝜆MDA selectively retains only compiler messages help-

ful in disambiguating unknown/unresolved identifiers. Moreover,

our feedback prompt guides the LLM to synthesize only minimal,

dependency-relevant code needed for reliable DA. Our experimen-

tal results on partial program dependence analysis, illustrated in

the Precision-Recall plot in Figure 1 (right), corroborate with the

theoretical framework outlined in Figure 1 (left). L𝜆MDA improves

over the learning-based approaches (⊛.A and ⊛.B) in precision for

the StatType-SO and COSTER-SO benchmarks by 18.6%–558.6%

and 32.4%–733.6%, respectively. We also observed improvements in

recall over traditional DA technique (⧫) by 26.2% and 71.3%. Overall,

L𝜆MDA improves over all baselines in partial program dependence

analysis by 5%–265.3% and 15.9%–331% (Section 6). We also show

L𝜆MDA’s applicability and effectiveness in two downstream tasks:

(a) analyzing exception flows in partial program to handle such

suggestions (Section 9.1), and (b) suggesting the exceptions to be

handled in partial programs (Section 9.2).

Novelty. This work makes the following key contributions:

• Predictive Dependence Analysis. A paradigm for analyzing depen-

dencies in (in)complete code with correctness and completeness.

• We carry out a rigorous evaluation using two StackOverflow

benchmarks, employing multiple LLMs.

• Usefulness. We show L𝜆MDA’s effectiveness in exception flow

analysis and exception handling suggestion.

2 Motivation and Key Ideas

2.1 Dependence Analysis in Incomplete Code

Developers frequently access online forums such as StackOver-

flow (S/O) for quick solutions to coding tasks, often using those

online code examples. While such code reuse can accelerate de-

velopment, it also introduces potential risks. For instance, these

examples might be outdated [31], or possess vulnerabilities [34],

and may inadvertently migrate to a codebase. Thus, a thorough

analysis and scrutiny of such “toxic” code snippets is crucial for

maintaining the integrity and robustness of the target codebase.

Figure 2 illustrates an example from an S/O answer (post #161801-

30 [1]). This was originally copied from the LineRecordReader class in

the Hadoop project on Github [2], intending to explain the usage of
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1 if (codec != null) {
2 in = new LineReader(codec.createInputStream(fileIn),job);
3 end = Long.MAX_VALUE;
4 } else {
5 if ( start != 0 ) {
6 skipFirstLine = true;
7 --start;
8 fileIn.seek ( start );
9 }

10 in = new LineReader(fileIn,job);
11 }
12 if (skipFirstLine) {
13 start += in.readLine (new Text(),0,(int) Math.min((long)

Integer.MAX_VALUE, end-start));
14 }

Figure 2: Incomplete code from S/O post #16180130

1 import java.io.IOException;
2 import java.io.InputStream;
3 import org.apache.hadoop.conf.Configuration;
4 import org.apache.hadoop.fs.FSDataInputStream;
5 import org.apache.hadoop.fs.FileSystem;
6 import org.apache.hadoop.fs.Path;
7 import org.apache.hadoop.io.LongWritable;
8 import org.apache.hadoop.io.Text;
9 import org.apache.hadoop.io.compress.CompressionCodec;

10 import org.apache.hadoop...CompressionCodecFactory;...
11 public class LineRecordReader implements ... { ...
12 public LineRecordReader(Configuration job, FileSplit split) throws

IOException {
13 start = split.getStart();
14 end = start + split.getLength();
15 final Path file = split.getPath();
16 compressionCodecs = new CompressionCodecFactory(job);
17 final CompressionCodec codec = compressionCodecs.getCodec(file);
18 FileSystem fs = file.getFileSystem(job);
19 FSDataInputStream fileIn = fs.open(split.getPath());
20 boolean skipFirstLine = false;
21 if (codec != null) { // copied from Figure 1
22 in = new LineReader(codec.createInputStream(fileIn),job);
23 end = Long.MAX_VALUE;
24 } else {
25 if (start != 0) {
26 skipFirstLine = true;
27 --start;
28 fileIn.seek(start);
29 }
30 in = new LineReader(fileIn,job);
31 }
32 if (skipFirstLine) {
33 start += in.readLine(new Text(),0,(int) Math.min((long)

Integer.MAX_VALUE,end-start));
34 }
35 this.pos = start;

Figure 3: A snapshot of LineRecordReader class inHadoop project,

from where the code snippet in Figure 2 was copied

the FileSplit object, which requires an offset of -1 in some use cases

and not in others. Notably, this has subsequently been modified to

better handle such offsets in the Hadoop project itself (not shown

here), significantly impacting its behavior and usage requirements.

Although this change was introduced several years ago, the code in

the S/O post remains outdated. Alarmingly, this outdated snippet

has since been adopted by multiple new projects [31], which may

encounter unexpected issues in their implementations.

Traditional DA tools have been shown to struggle with cap-

turing dependencies effectively in incomplete code snippets [38].

As an illustration, we used Joern [4] to analyze the data depen-

dencies of the potentially vulnerability-injecting code snippet in

Figure 2. When input as is, we found that Joern missed all data

dependencies. Next, we wrapped the code snippet in a dummy

Figure 4: Augmenting partial code with relevant context

helps retrieve missing dependencies (⇢ to →) with a depen-

dence analyzer

method signature, creating a pseudo-syntactically valid program.

We found that Joern captured a few data dependencies, while pro-

ducing several error messages of the form ‘Could not find type mem-
ber. type=ABC, member=xyz’. Here, ABC refers to a type name and

xyz is the respective identifier (e.g., the name of a variable/field).

To assess the precision of the detected data dependencies, we

ran Joern on the complete code in the Hadoop project listed in Fig-

ure 3. Since our focus was solely on those within the original code

snippet in Figure 2, we pruned the set of detected dependencies to

retain the ones relevant to the incomplete code snippet. In Figure 4

(left), we present the respective PDG, marking the dependencies

correctly predicted by Joern with a→ and the missed ones with⇢.

Despite of high precision, we can see that edges corresponding to

the variables codec, filein, in (missing variable declarations); and

LineReader (unresolved APIs), were missed, resulting in low recall.
Control dependencies are also impacted by incomplete code. For

instance, the control from a conditional statementmay flow through

either the true or false branch depending on the value of a vari-

able that may be unassigned. In general, the missed dependencies

illustrate the limitations of the traditional DA tools in effectively

handling incomplete code. The ability to assess risks associated with

integrating potentially vulnerable code is significantly hindered.

2.2 Key Ideas

In this paper, we propose, L𝜆MDA, to provide higher correctness

and completeness in the dependence analysis of partial programs.

LLMs can utilize typical usage patterns and identifier cues to gen-

erate contextually-appropriate completion for unsolved symbols

in partial programs. By inferring structures, types, and dependen-

cies, LLMs can approximate the intended semantics, producing an

approximately-complete program. Such completions, however, can

be highly project-specific with multiple valid implementations. For

instance, the complete version in Hadoop (Figure 3) represents just

one candidate for the partial program in Figure 2. While one can

incorporate user intent in completion with LLMs, our focus is on

incorporating the information needed for dependence analysis.
For illustration, LLMs can expand the code in Figure 2 in various

ways, specifically by: (1) identifying the possible data types for

fileIn, codec, job, start, end, etc.; (2) initializing these variables; (3)

adding necessary import statements. Figure 5 shows an approximate-

ly-complete version generated by GPT-4o for the incomplete code

in Figure 2. This version may not perfectly match a human-completed
version, but it provides sufficient structure for subsequent DA analysis.
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1 import java.io.IOException;
2 import java.io.InputStream;
3 import org.apache.hadoop.conf.Configuration;
4 import org.apache.hadoop.fs.FSDataInputStream;
5 import org.apache.hadoop.fs.Path;
6 import org.apache.hadoop.io.Text;
7 import org.apache.hadoop.io.compress.CompressionCodec;
8 import org.apache.hadoop...CompressionCodecFactory;...
9 public class FileProcessing implements ... {

10 public processFile (Configuration job, String fName, long start, long end,
boolean skipFirstLine, CompressionCodec codec) throws IOException {

11 FSDataInputStream fileIn = new FSDataInputStream(fName);
12 LineReader in;
13 if (codec != null) {
14 in = new LineReader(codec.createInputStream(fileIn),job);
15 end = Long.MAX_VALUE;
16 } else {
17 if (start != 0) {
18 skipFirstLine = true;
19 --start;
20 fileIn.seek(start);
21 }
22 in = new LineReader(fileIn,job);
23 }
24 if (skipFirstLine) {
25 start += in.readLine(new Text(),0,(int) Math.min((long)

Integer.MAX_VALUE,end-start));
26 }
27 this.pos = start;
28 }

Figure 5: Complete code predicted by the LLM in L𝜆MDA

Despite their ability in generating approximately-complete pro-

grams, LLMs do not guarantee syntactic or semantic correctness.

This can result in errors stemming from incorrect types or APIs

from external libraries. To address this issue, prior research in code

completion [9, 40] has proposed using semantic verifiers, such as

compilers, to ensure the correctness of generated code. Similarly,

we adopt a compiler for semantic verification, providing a feedback

signal to the LLM to refine the approximately-complete programs

(see Section 3.2). Alternative analyses may involve model checkers

to verify properties, symbolic execution engines to explore multiple

paths and identify potential runtime errors, runtime verification,

or test case execution, among other methods.

Key Idea 1 (LLMs for Approximating Partial Programs).

Leverage programming patterns learned during the extensive pre-
training of LLMs to create a syntactically and semantically-valid
approximately-complete program.

As seen in Figure 5, formal parameters are added to declare

the variables job, start, end, skipFirstLine, and codec; and the as-

sociated import statements are also included. Interestingly, it de-

clares fileName as a formal parameter and creates an instantiation

of FSDataInputStream that takes fileName as an argument is initialized

to fileIn at line 11. This statement is necessary to set up the API

call createInputStream at line 14. In Figure 4 (right), we present the
PDG for the approximately-complete program variant. Owing to

the code populated by the LLM in L𝜆MDA, for the lines 13-28 in

Figure 5, when compared with the corresponding pruned PDG for

the Hadoop code, we observed that Joern was able to produce cor-

rectly all the program dependencies. This includes dependencies

that were missed in Figure 4 (left) for the partial code, thus helping
capture more dependencies. That is, leveraging the approximately-

complete program helps achieve a high recall, and using the DA tool

to decide the dependencies helps achieve a high precision, despite
the differences with the correct intention in human-completed version.

Figure 6: An overview of predictive dependence analysis

framework with L𝜆MDA

Key Idea 2 (DA ⊢ High Precision, LLM ⊢ High Recall). An-
alyzing the syntactically and semantically valid, complete variant
generated by an LLM for a partial program can help the precise
retrieval ofmore (i.e., missed) dependencies.

3 Partial Program Dependence Analysis

3.1 Important Concepts

Definition 1 (Partial Program). A partial program 𝑃 is a syn-
tactically valid, non-empty subset of an otherwise complete program
(i.e., 𝑃 ⊂ 𝑃𝐶 ). The incompleteness of 𝑃 arises from the presence of un-
known symbols 𝑆 within 𝑃 (such as fields, methods, type expressions)
that are originally defined in 𝑃𝐶 (i.e., 𝑆 ∈ 𝑃𝐶 ).

The disambiguation of 𝑃 involves variable declarations, method
signatures, class definitions, import statements, try-catch blocks, type
casting, assignment of correct data types for typesafe (for local vari-
ables, return values, fields), code hardening, interface definitions, etc.

Definition 2 (Context). The context 𝐶 for a partial program
𝑃 comprises the additional program elements required to resolve all
unknown symbols 𝑆 within 𝑃 and disambiguate it.

Definition 3 (Approximately-Complete Program). An appro-
ximately-complete program 𝑃𝐴𝐶 is the result of augmenting a partial
program 𝑃 with context𝐶 (generated by an LLM in L𝜆MDA), such that
𝑃𝐴𝐶=𝑃+𝐶 . This integration resolves all unknown symbols 𝑆 within 𝑃 ,
ensuring that 𝑃𝐴𝐶 is both syntactically and semantically valid.

𝑃𝐴𝐶 (as obtained from L𝜆MDA) provides sufficient context for

the DA tool, e.g., Joern, to derive the missing dependencies.

3.2 Overview

Figure 6 illustrates L𝜆MDA for partial dependence analysis. In the

first phase of L𝜆MDA, an LLM is tasked with disambiguating a

given partial code by augmenting the necessary context required to

retrieve syntactically and semantically valid, complete variant (re-

ferred to as approximately-complete programs). The augmented con-

text can include: (1) variable declarations, (2) type information, (3)

method signatures, (4) class definitions, (5) import statements, among

other program constructs. To ensure its correctness, we guide and

validate the LLM in iterative cycles of self-correction, providing only
the compiler’s feedback helpful in disambiguating unresolved names.
This iterative process continues until the approximately-complete

program is compilable. If a specified number of iterations is reached,
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manual intervention may be necessary. Depending on the analysis

requirements, the compiler could be replaced with other semantic

verifiers, e.g., model or type checkers, specification verifiers, etc.

In the second phase, theDA tools are applied to the approximately-

complete programs to retrieve program dependencies (including

statements filled-in by the LLM as context). Finally, these dependen-

cies are pruned to retain only those relevant to the program state-

ments present in the original partial program. With the additional

context, it is possible for DA tools to identify dependencies between

program elements that were originally missed due to ambiguities

associated with the unknown symbols in the partial program (i.e.,
high recall). Furthermore, by design, DA tools provide soundness

guarantees (i.e., high precision). As a result, L𝜆MDA improves over

applying the DA tools directly to partial programs in recall; and

over the rule-based [17] or learning-based approaches in precision.

3.3 Problem Formulation

For a partial program 𝑃 , let 𝑃𝐻 represent a manually completed

variant by human developers (based on a specific use case) and let

𝑃𝐴𝐶 represent the approximately-complete variant generated by

the LLM in L𝜆MDA. Given a dependence analysis tool 𝑇 , let the

dependence graphs produced by 𝑇 for all program variants 𝑃𝑖 be

𝐺𝑖 = 𝑇 (𝑃𝑖). Let 𝐺̃𝐻 and 𝐺̃𝐴𝐶 denote the pruned versions of𝐺𝐻 and

𝐺𝐴𝐶 , respectively, such that each contains only program elements

present in 𝑃 . We aim to show that our tool’s design ensures that:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐺̃𝐴𝐶 , 𝐺̃𝐻 ) is ↑↑ (1)

𝑅𝑒𝑐𝑎𝑙𝑙(𝐺̃𝐴𝐶 , 𝐺̃𝐻 ) > 𝑅𝑒𝑐𝑎𝑙𝑙(𝐺, 𝐺̃𝐻 ) (2)

4 Context Augmentation: 𝑃 → 𝑃𝐴𝐶
For a given partial program 𝑃 , the objective is to generate a com-

pilable variant 𝑃𝐴𝐶 such that no program elements within 𝑃 are

modified. To facilitate this process, we leverage an LLMℳ and a

compiler 𝒱 (as a semantic verifier), which work in tandem itera-

tively to populate the necessary missing information in 𝑃 .

4.1 Approximating Partial Programs with LLM

We first check if the partial program 𝑃 is compilable, collecting all

its errors 𝒱(𝑃) if it is not. Next, in the first pass to the LLM (prompt

shown in Figure 7 (left)), we provide the partial program 𝑃 along

with compiler errors, and a set of instructions describing the task.

In the interest of making 𝑃 compilable, the two main objectives

of the LLM in this phase are (a) code approximation, and (b) type

analysis. The first task requires the LLM to fill-in essential program

elements including necessary headers, import statements, method

signatures, etc. which are crucial for the input program’s function-

ality. For this process, we instruct the LLM to inspect the compiler’s

error message, diagnose, and subsequently attempt to rectify these

errors. As seen in Figure 7 (left), an illustration of such unfiltered

compiler outputs, this involves fixing syntax errors as well as dis-

ambiguating all unknown identifiers. To further facilitate this, we

include the second task, which requires the LLM to accurately re-

solve types and enumerate all variables and their types, e.g., (fileIn,
FSDataInputStream). We expect this analysis help the LLM capture

type dependencies intrinsically, which could facilitate a better iden-

tification of fully-qualified names for the unknown symbols. Finally,

the LLM outputs a candidate approximately-complete program 𝑃
𝑐
𝐴𝐶

and the extracted type information 𝒯 . We adopt the few-shot set-

ting with an exemplar, which serves as a reference for the LLM.

4.2 Refinement/Validation via Semantic Verifier

In this work, we leverage a compiler as a semantic verifier. We be-

gin by checking the compilability of the candidate approximately-

complete program 𝑃
𝑐
𝐴𝐶 generated by the LLM (Section 4.1). If 𝑃

𝑐
𝐴𝐶

does not compile, a refinement process is initiated. We collect all

errors generated in a failed compilation attempt. These might cover

a range of syntactic/semantic issues. Some errors, however, are tied

to external dependencies, e.g., “package does not exist” and “class
name and file name do not match”. We discard these as the LLM fails

to resolve them. If a “symbol not found” error does not correspond to
an API, e.g., in the case of an undefined constant, we also discard it.

Next, we construct a feedback loop prompt (Figure 7 (right)) to

guide the LLM to generate new candidate approximately-complete

programs that address the errors identified by the compiler at the

end of an iteration. The tasks and objectives of the LLM in this

prompt are the same as in Section 4.1. We also include the following:

(1) original partial code snippet 𝑃

(2) LLM-generated candidate approximately-complete program

at the end of the 𝑖-th iteration 𝑃
𝑐(𝑖)
𝐴𝐶

(3) filtered error messages from compiler

It is essential to incorporate both the original and the current mod-

ified versions, especially for longer code snippets, as that helps the

LLM avoid getting stuck in a cycle of repeated errors and facilitates

a more accurate understanding of the necessary corrections.

Finally, the approximately-complete program 𝑃𝐴𝐶 is 𝑃
𝑐(𝑖)
𝐴𝐶 if there

are no more compilation errors. In contrast, if the threshold 𝜃 is

reached with not all errors being resolved (i.e., the LLM failed to

disambiguate the partial program 𝑃 ), manual intervention is needed.

5 Empirical Evaluation

To evaluate L𝜆MDA, we seek to answer the following questions:

(RQ1) Partial Program Dependence Analysis Effectiveness:

Can L𝜆MDA enhance dependence analysis for partial programs?

(RQ2) Sensitivity Analysis: How many dependencies are cor-

rectly recovered after each iteration of compiler feedbacks?

(RQ3) Program Constructs that L𝜆MDA Completes the Code.

What programming constructs does the LLM in L𝜆MDA fill-in

toward disambiguating unknown symbols?

(RQ4) Adaptability to Exception FlowAnalysis and Exception

Handling Recommendations: Can L𝜆MDA improve the analysis

of exception-flows in partial Java programs? Is L𝜆MDA useful for

suggesting exceptions that need to be handled in partial programs?

(RQ5) Ablation Study: How does L𝜆MDA’s feedback loop affect

its effectiveness in capturing dependencies in partial code?

(RQ6) Efficiency: How are L𝜆MDA’s efficiency and token costs in

LLM usages compared to those of the baselines?

6 Partial Program Dependence Analysis (RQ
1
)

We first evaluate how the code filled in by L𝜆MDA helps the DA tool

in better capturing the dependencies in the original, incomplete code.

6.1 Experimental Setup

6.1.1 Datasets. We selected two benchmark datasets from prior

work, namely, StatType-SO [28] and COSTER-SO [32]. Both cover
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Prompt for Approximating Partial Programs

Task. Given a partial Java code snippet, compiler output/errors, and the expected outcome, your task is to

generate the necessary code to complete the snippet. The additional code should address the issues indicated by

the compiler output and achieve the desired outcome. Focus on enhancing the code header to make the snippet

a compilable Java unit, without modifying the original code body.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Partial Code Snippet (Do Not Modify):
<code>

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Compiler Output/Errors:
<errors>

. . . . . . . . . . . . . . . . . . . . . . .
Expected Outcome:
Using the information provided by the compiler, the model should fill in the missing information of the partial

code snippet, focusing solely on enhancing the code header. The goal is to make the partial code snippet a

compilable Java unit without modifying any part of the existing code body. Your first task is to analyze the

provided code, identify what are missing and complete the Java snippet. Do not modify the original code.

Additionally, you do not need to write a method to solve missing API calls. After completing the code, your

second task is to fill in type information

Here is an example procedure of how you should construct answer. Suppose you are given a partial code snippet

<sample code snippet>

Here is what your response is supposed to look like:

Code Approximation:

```java
... // LLM approximated code here.

```
Type Information:

... // LLM proposed type information here.

. . . . . . . . . . . . .
Disclaimer:
Do not include any explanation or comments.

Prompt for Incorporating Compiler Feedback for

Self-Correction

Task. After incorporating the suggested code enhancements into

the original code snippet, the code was recompiled, resulting in

new compiler output/errors. Your task is to analyze these new

errors, understand the context of both the original and modified

code, and apply further modifications to correct the errors without

altering the core functionality or logic of the original code.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Partial Code Snippet (Do Not Modify):
<original_code>

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Modified Code with Errors:
<modified_code>

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
New Compiler Output/Errors:
<new_errors>

(i.e., after filtering the compiler’s outputs)

. . . . . . . . . . . . . . . . . . . . . . .
Expected Outcome:
Code Approximation:

```java
... // LLM approximated code here.

```
Type Information:

... // LLM proposed type information here.

Here is an example procedure of how you should construct answer.

**Same as in Fig. 7 (left)**
. . . . . . . . . . . . .
Disclaimer:
Do not include any explanation or comments.

Figure 7: Prompts to LLM in L𝜆MDA for: (left) approximating the partial program; (right) providing feedback for self-correction

six Java libraries: android, gwt, hibernate, joda-time, jdk, and xstream.

The authors of both benchmarks made these partial code snippets

compilable by manually adding all required libraries in an iterative

fashion and filling in missing details. Finally, they used Eclipse JDT

compiler to validate the compilability of the code snippets. In the

Context Augmentation phase in L𝜆MDA, in simple terms, we aim to

automate this process. Thus, we evaluated it on the incomplete S/O

code snippets, using the manually filled-in code as the ground-truth.

Overall, we collected 172 and 274 incomplete code snippets in two

datasets, respectively, each containing 2–45 and 4–90 statements.

6.1.2 Procedure. We used the state-of-the-art Joern [4] as a DA

tool. Our evaluation involved several baseline comparisons and

approaches for generating PDGs from the incomplete code snippets

(𝐷incomplete). First, we used a traditional baseline (⧫.A) by creating a
pseudo-syntactically valid variant for each incomplete code snippet

by wrapping around them a dummy method signature (𝐷dummy).

We also applied two baselines JCoffee [17] (⧫.B) and Code2API [25]
(⧫.C) to produce two complete versions for each code snippet. This

modification is necessary as Joern requires syntactically valid inputs

to construct PDGs. Second, we established learning-based baselines,

NeuralPDA [39] (⊛.A) and PDBERT [23] (⊛.B), whichwere trained

to “predict” the dependencies between program elements directly.

Third, for L𝜆MDA framework, we employed multiple LLMs includ-

ing GPT-3.5, Claude 2, Claude 3.5 Sonnet, and GPT-4o (★.A–★.D)

to obtain approximately-complete programs from the incomplete

code snippets (𝐷approx). Finally, we used the manually-completed

versions of the snippets (𝐷complete) to get the oracle dependencies.

For each dataset 𝐷𝑥 (𝑥 ∈ {dummy, approx, complete}), we con-
structed the corresponding PDGs using Joern, i.e.,𝐷𝑥+ Joern→ 𝐺𝑥 .

Next we sliced all𝐺𝑥 to select the sub-PDGs (𝐺
′
𝑥 ) corresponding to

the statements in 𝐷 incomplete. By comparing such sub-PDGs from

the partial and complete code, i.e.,𝐺 ′
dummy

with𝐺
′
complete

, we assess

the impact of code incompleteness on Joern’s ability to build PDGs.

Similarly, we quantify the impact of code approximation in L𝜆MDA

by comparing the sub-PDGs from the respective approximately-

complete and complete code, i.e., 𝐺 ′
approx

with 𝐺
′
complete

. For the

learning-based approaches, we aggregated the predicted dependen-

cies to build the PDGs (𝐺learning) and compared with 𝐺
′
complete

.

6.1.3 Metrics. We use Precision, Recall, and F1-Score to measure the

quality of the PDGs. A True Positive (TP) occurs when an edge in

𝐺 ∈ {𝐺 ′
dummy

, 𝐺
′
approx

, 𝐺learning} along with the associated nodes

matches exactly with those in 𝐺
′
complete

. False Positives (FP) occur
when: an edge in𝐺 between two nodes is decided, but does not exist

in𝐺
′
complete

; an edge in𝐺 between two nodes is decided, but one of

them does not exist in𝐺
′
complete

. The latter is common in𝐺
′
approx

, as

the LLM sometimes tends to modify some of the original program

statements to harden the code. False Negatives (FN) occur when an

edge is absent in 𝐺 , but is present in the corresponding 𝐺
′
complete

.

Formally, the evaluation metrics are defined as follows: Precision =

TP

TP+FP , Recall =
TP

TP+FN , and F1-Score = 2∗Precision∗Recall
Precision+Recall .

6.2 Empirical Results

In Table 1, we compare the PDGs constructed for partial Java code

using L𝜆MDA, with multiple LLMs (★.A–★.D), against traditional

and learning-based approaches. In the case of the former, i.e., when
compared to the edges constructed for partial programs wrapped

around in dummy method signatures (⧫.A), we saw that L𝜆MDA

improves in recall by 17.2%–33.5% and 27.6%–71.3% for the StatType-

SO and COSTER-SO benchmarks, respectively. Interestingly, while

there is a slight drop in precision by 3%–10.1% for the StatType-SO

benchmark, in the case of COSTER-SO, it still goes up by 0.7%–

3.1% (except for Claude 3.5 Sonnet). This difference in precision

can possibly be attributed to the difference in lengths of the partial

programs in StatType-SO and COSTER-SO, because with larger

lengths, the LLMs contextualize the programs in COSTER-SO better
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Table 1: Dependence analysis for partial code. Here, "–": NeuralPDA does not distinguish between dependence edges (RQ1)

Dataset (→) StatType-SO COSTER-SO

Approach (↓)
Data+Control Data Control Data+Control Data Control

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

𝐷
dummy

+ Joern (⧫.A) 99.0 69.8 81.9 98.8 68.0 80.6 100 82.6 90.4 96.2 48.5 64.5 94.9 40.6 56.9 100 71.1 83.1

𝐷
JCoffee

+ Joern (⧫.B) 99.0 69.9 81.9 98.8 68.2 80.7 100 82.6 90.4 96.2 48.5 64.5 94.9 40.6 56.9 100 71.1 83.1

𝐷
Code2API

+ Joern (⧫.C) 87.4 78.6 82.8 86.5 77.3 81.6 94.5 88.4 91.4 87.5 63.4 73.6 85.1 54.7 66.6 91.8 83.8 87.6

NeuralPDA (⊛.A) 14.5 92.4 25.1 – – – – – – 11.9 89.5 21.0 – – – – – –

PDBERT (⊛.B) 80.5 95.4 87.3 78.8 95.2 96.2 95.3 96.7 95.6 74.9 81.1 78.1 70 4 79.9 74.8 91.9 94.6 95.8

L𝜆MDA w/ GPT-3.5 (★.A) 94.9 81.8 87.8 94.5 79.7 86.4 98.4 96.7 97.5 96.9 71.2 82.1 96.5 63.6 76.6 98.1 93.0 95.5

L𝜆MDA w/ Claude-2 (★.B) 96.1 84.2 89.7 95.8 82.5 88.7 98.0 96.3 97.1 98.3 61.9 75.9 98.2 55.5 71.0 98.4 80.2 88.4

L𝜆MDA w/ Claude-3.5 (★.C) 89.9 93.2 91.6 88.7 93.0 90.8 99.1 95.0 97.1 89.0 81.5 85.1 86.7 77.8 81.9 96.5 92.4 94.3

L𝜆MDA w/ GPT-4o (★.D) 95.5 88.1 91.7 95.1 86.9 90.8 98.8 97.1 97.9 99.2 83.1 90.5 99.1 79.6 88.3 99.6 93.2 96.3

towards the correct identification of unknown symbols, eventually

resulting in better approximation. Moreover, the precision for both
benchmarks is high while achieving an improvement in recall. Overall,
L𝜆MDA improves over the traditional approaches in F1-score by

7.2%–12% and 17.7%–40.3% for both benchmarks.

Compared to program dependencies recovered byCode2API [25]+
Joern, L𝜆MDA with GPT-4o relatively improves in recall by 12.1%

and 31.1% for StatType-SO and COSTER-SO, respectively. Mean-

while, the improvement in F1-score is 10.7% and 23%. Upon further

examination, we found that Code2API struggles with incomplete

code snippets that missed variable declarations and explicit data
types, leading Joern to discard the dependence edges involving

those program elements. Code2API’s main goal is “APIzation,” i.e.,
transforming a given semantically complete code snippet into a

well-formed API method. To this end, it prompts LLMs to recover

missing import statements, construct the method signature (includ-

ing its name and parameters), and insert statements such as return

and throw. However, in doing so, Code2API converts local variables

into method parameters, which prevents Joern from constructing

all dependence edges originating from those variables.

Compared to the PDGs produced by JCoffee [17]+Joern, L𝜆MDA

with GPT-4o relatively improves in recall by 26% and 71.3% for

StatType-SO and COSTER-SO, respectively. The improvement num-

bers for F1-score are 11.9% and 40.3% for two datasets. Upon exam-

ining the results, we observed that JCoffee replaces any unresolved

data type or unknown class name with the identifier UNKNOWN. This

substitution causes confusion for Joern, which incorrectly interprets

all instances of UNKNOWN as references to the same program element.

As a result, Joern generates incorrect data flows involving these

elements. Furthermore, this approach prevents Joern from identify-

ing valid data dependencies between variables of unresolved types

and others, as the necessary information was not recovered.

Next, among the learning-based approaches, NeuralPDA (⊛.A)

shows a low performance in predicting program dependencies. This

can be attributed to to its lack of pretraining on a broader code cor-

pus, relying instead on specialized training with a limited dataset.

As a result, it lacks generalization capabilities. The notably high

recall and low precision suggests a bias toward over-predicting de-

pendencies between program elements. In contrast, PDBERT (⊛.B)

demonstrates the advantages of pretraining, achieving the high-

est recall among all approaches. However, its moderate precision

suggests a slight tendency toward over-predicting dependencies,

likely a trade-off to maintain high recall. While the precision-recall

tradeoff factors in with the smaller programs in StatType-SO, with

slightly more context, the LLM in L𝜆MDA outperforms PDBERT

in both precision and recall. Overall, L𝜆MDA improves over the

learning-based approaches by 5%–265.3% and 15.9%–331% in F1-

score for StatType-SO and COSTER-SO, respectively.

Among the LLMs employed in L𝜆MDA, GPT-3.5 and Claude-

2 demonstrate similar performance, as do Claude-3.5 Sonnet and

GPT-4o. We can see that Claude-2 excels at contextualizing smaller

programs, yielding a high precision and recall on StatType-SO;

while GPT-3.5 performs better at disambiguating unknown symbols

better in larger programs, as seen in its higher recall on COSTER-SO.

Similar trends are noted between GPT-4o and Claude-3.5 Sonnet.

Table 1 shows the results in recovering control dependencies for
partial code. As seen, all approaches perform generally better for

control than for data dependencies. This is expected, as the control

flow between sequential statements is less sensitive to the incom-

pleteness of code snippets. However, incompleteness still impacts

control flow in cases involving conditional expressions or incom-

plete loop constructs, where the branching logic depends on vari-

ables with missing/undeclared types, or unresolved method calls.

For data dependencies (Table 1), we observed a similar trend to

that reported earlier for PDGs. This is largely due to two factors: (1)

the number of data dependency edges is approximately five times

greater than that of control dependency edges, and (2) the models

exhibit reasonably high performance on control dependencies. As a

result, improvements in overall program dependency recovery are

strongly influenced by the accuracy of data dependency recovery.

Our results align with the theoretical framework presented in Sec-
tion 1, i.e., L𝜆MDA effectively navigates Precision-Recall Conun-
drum by exploiting the strength of each approach: DA and LLM.

7 Sensitivity Analysis (RQ2)

We study how the approximately-complete code from each refinem-

ent between LLM and compiler, helps Joern in dependence analysis.

7.1 Experimental Setup

Here, we utilized the approximately-complete programs from all

LLMs within the L𝜆MDA framework for both StatType-SO and
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Figure 8: Successful compilation across refinement iterations
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Figure 9: Edges recovered across refinement iterations
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Figure 10: Semantic similarity of approx.-complete withman-

ually completed programs across refinement iterations

COSTER-SO benchmarks. First, we quantified the interaction be-

tween the LLMs and the compiler by measuring the number of
iterations required to transform the incomplete code into a valid,

compilable version. Second, we evaluated the percentage of cor-
rectly recovered data dependencies from the ground truth after each

refinement iteration in L𝜆MDA. This process of recovering edges is

illustrated in Figure 4. Third, we also measured the semantic correct-

ness of the approximated code after each iteration. Specifically, we

compared L𝜆MDA’s approximated code (𝐷approx) obtained via com-

piler feedback-augmented prompting with the manually completed

versions of the code snippets in the two benchmarks.

To establish the semantic correctness of the approximated code in

𝐷approx, we leveraged CodeBERT [14], a pre-trained code language

model known for effectively capturing program semantics. As a

measure for semantic similarity, we computed embeddings for both

the approximated code and its manually-completed version and

computed their cosine similarity scores. These range from 0 to 1,

where 0 indicates no similarity and 1 represents an identical match.

7.2 Empirical Results

7.2.1 Sensitivity to Number of Refinement Iterations. In Figure 8, we
present the total number of instances where the approximated code

from each LLM becomes compilable by the end of each feedback
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Figure 11: Scatter plots of cosine similarity of approx. comple-

te code and semantically-correct, manually-completed code

cycle. In the first iteration—using only the initial feedback from

the compiler—L𝜆MDA enables the LLMs to generate compilable

code snippets for 73.8% (127 instances with Claude 2.1) to 96.5%

(166 instances with GPT-4o) on the StatType-SO dataset, and from

62.8% (172 instances with Claude 2.1) to 83.9% (230 instances with

GPT-4o) on the COSTER-SO dataset. This shows that L𝜆MDA can

produce syntactically correct and compilable code using only the

code approximation prompt and initial compiler feedback.

Furthermore, we can see that additional iterations of refinement

via compiler feedback progressively reduces compilation errors.

Almost 98% of the code snippets becoming compilable after only two
iterations with GPT-4o for StatType-SO, and 97% of them after only

three iterations with Claude-Sonnet-3.5 on COSTER-SO.

Figure 9 shows the correlation between compilability and the

number of data dependence edges recovered. As noted in Section 3.1,

the approximately-complete programs generated by the LLMs in

L𝜆MDA may not exactly match that from developers. However,

the data dependence edge recovery is tied to syntactic and semantic
completeness, as is reflected by the progressively increasing number
of data dependence edges recovered as the number of compilable
approximately-complete programs increase. With just four iterations

on the StatType-SO dataset and two iterations on the COSTER-

SO dataset, GPT-4o successfully recovered 96.5% and 84% of the

missing edges, respectively. These findings reinforce our Key Ideas

1 and 2–one can use LLMs to fill in missing statements such as

undeclared variables or import statements, to disambiguate partial

programs and improve the recovery of data dependencies.

7.2.2 Semantic Correctness of Approximately-Complete Code. In
Figure 10, we plot the mean cosine similarity scores between the

approximately-complete andmanually-completed program variants

in both StatType-SO and COSTER-SO benchmarks, across all refine-

ment iterations. We can see that these are generally high, ranging

between 0.94–0.98 for both datasets. In Figure 11, we present a scat-

ter plot for these measures for more insights. We can see that across

all instances, the approximately-complete programs from GPT-4o

and Claude-3.5 Sonnet and their respective manually-completed

are almost semantically similar (cosine similarity −→ 1).

There are a few outliers when using GPT-3.5 and Claude-2.1,

with lower cosine similarity measures. This is consistent with the

unsuccessful compilability observed using these LLMs, in which

case, the semantic similarity with manually completed programs

would be lower. However, these low-matching programs still con-
tribute to data dependence edge recovery, as indicated in Figure 9. This
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Figure 12: Different types of filled-in statements by L𝜆MDA

shows that even without exact matching with the human-written
code, L𝜆MDA still effectively augmented sufficient context to help
recover dependencies in partial code. Therefore, our findings align
with Key Idea 1 (see Section 2.2) that context-augmented programs

from L𝜆MDA need not perfectly match manually-written ones for

effective recovery of data dependencies.

Finally, vanilla LLM’s performance (i.e., without feedback loop)

was sub-optimal: many completions failed to compile (Figure 8) and

fewer edges were recovered (Figure 9). Thus, iterative refinement

significantly improves performance over the base LLM, indicating

that the gains stem from L𝜆MDA’s design, and not data leakage.

Our findings indicate that even when the approximately complete
code from the LLM in L𝜆MDA does not exactly match manually
completed versions, the augmented context combined with semantic
refinement aids the recovery of program dependencies.

8 Different Types of Filled-in Statements (RQ
3
)

In this experiment, we aim to assess the quality of code approxima-

tion by the LLM in the Context Augmentation phase in L𝜆MDA. To

this end, we analyzed the types of program statements filled-in for

approximation, across iterations. Figure 12 shows the frequencies

of these statements. Note that our code approximation prompt does

not explicitly refer to statement types when filling in the missing

information. The LLM rather uses the feedback from the compiler in

localizing and successfully fixing compilation errors. For example,

missing import statements, local variable declarations typically trig-

ger “cannot find symbol” errors at compile-time. These statements

constitute 76.9% and 68.05% of the different types of statements

populated by the LLM in the two datasets, respectively.

While filling in the import declarations, we observed that the

LLM identified appropriate fully-qualified names for the unknown

symbols. This aligns with research on type recovery on partial code

[5, 19, 26, 27, 30, 36], which, however, do not focus on populating

Table 2: import statement recommendations (RQ3)

Approach

Evaluation Metrics (in %)

Precision Recall F1-Score
SnR 98.2 82.1 89.4

Code2API 91.7 81.5 86.3

L𝜆MDA 98.1 85.8 91.6

local or global variable type declarations due to requiring an un-

derstanding of type-specific dependencies. Overall, coupled with

compiler feedback on the unknown symbols and their locations,

LLMs can gauge both external and local type-specific dependencies.
The LLM filled-in statements include method declarations in

20.7% and 22.5% of the cases in two datasets. Apart from the method

signatures for the given code, these also include dummy methods

that were added to resolve unresolved method calls. Having dummy

methods within the same class does not affect the data dependencies

within the method, but only helps in achieving syntactic validity.

We observed that the LLM also attempted to harden the code

examples at various levels: inserting a conditional that checks for
corner cases in 104 instances across both the datasets (e.g., protecting
code from invalid input data such as null or an out-of-bound index);

and handling any missing exceptions in 21 cases.

GPT-4o and Claude 3.5 successfully generated approximately-

complete code that passed the compiler for both datasets. In con-

trast, L𝜆MDA with GPT-3.5 failed to approximate 10 programs in

the COSTER-SO dataset, and Claude 2 failed 33 times. This differ-

ence may stem from the relatively worse coding abilities of GPT-3.5

and Claude 2, which likely limits their ability to resolve ambiguous

or unresolved types–an essential factor in accurate approximation.

This aligns with our earlier finding that, while GPT-3.5 and Claude-

2 handle smaller programs effectively, they struggle with longer

code snippets, which may require more complex type resolution.

We further evaluate the filled-in import statements in StatType-

SO dataset. To establish the ground truth, we extracted the respec-

tive import statements from the manually-completed versions for

unknown types and API elements. We skipped COSTER-SO as their

manually-completed versions do not contain the import statements

to the specific API elements. We compared our tool against the

state-of-the-art import recommenders, LLM-based Code2API [25]

and SnR [12]. SnR first extracts constraints that capture the rela-

tions between the types used in the snippet; then queries an internal

knowledge base to resolve these constraints to output the types.

As shown in Table 2, L𝜆MDA achieves a 6.2% relative improve-

ment in F1-score over Code2API, with 7% and 5.3% increases in

precision and recall. This shows the effectiveness of our feedback

loop, which equips the LLM with explicit knowledge about unre-

solved API elements that must be addressed via import statements.

Compared to SnR, L𝜆MDA achieves comparable precision but im-

proves recall by 4.5%. SnR relies on a predefined knowledge base of

API libraries and therefore fails to generate import statements for

libraries not in that database, resulting in lower recall and F1-score.

9 Exception-Flow-Related Dependence Analysis

9.1 Exception-Flow Analysis (RQ
4
)

9.1.1 Experimental Setup. Weaim to evaluate how the approximately-

complete code from L𝜆MDA helps Joern [4] in better capturing



ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Rong, Yadavally, and Nguyen

Table 3: Performance on exception flow analysis (RQ4)

Dataset 𝐷𝑥 + Joern, 𝑥 =
Evaluation Metrics (in %)

Precision Recall F1-Score

StatType-SO

approx-naive 75.6 37.1 49.8

approx (L𝜆MDA) 98.4 72.0 83.2

COSTER-SO

approx-naive 73.9 29.3 42.0

approx (L𝜆MDA) 100 86.6 88.3

exception-flow edges in an Exception-Flow Graph (EFG). An EFG is

part of the control flow graph (CFG) that connects to the exception

handling block(s). We used the same datasets as in Section 6, focus-

ing on instances containing try/catch blocks. We exclude those with

only general exceptions (e.g., Throwable e, Exception e), as these do

not aid in identifying exception types. Overall, this yielded 23 and

38 code snippets from StatType-SO and COSTER-SO, respectively.

For our baseline, we prompted the LLM to make each code snip-

pet compilable but without integrating the iterative feedback loop

between the compiler and LLM as in L𝜆MDA, a process we refer to

as naive approximation. We input each snippet from the extracted

datasets to L𝜆MDA to fill in exception-handling code including the

exception types and catch blocks. We then used Joern to build the

EFGs by first building the CFGs, following which we statically slice

from the beginning of the code to the exception handling blocks to

retrieve the EFG edges. For the ground truth, we ran Joern on the

manually-completed versions of the code snippets and generated

corresponding EFGs through the same CFG and slicing process.

We use the same evaluation procedure as in RQ1, substituting data

dependence edges with exception-flow edges.

9.1.2 Experimental Results. As seen in Table 3, L𝜆MDA helps con-

struct EFGs closest to the ones for the manually completed code,

achieving an F1-score of 83.2% and 88.3% on both datasets. Similar

trends were observed as in the dependence analysis in RQ1: with

LLM and a compiler, L𝜆MDA enhances both precision and recall.

9.2 Exception Handling Recommendation (RQ
4
)

9.2.1 Experimental Setup. In this experiment, we assess whether

L𝜆MDA, as a framework, has utility beyond dependence analysis.

We replace the dependence analysis tool with one that identifies po-

tential exceptions in incomplete code snippets. By doing so, we test

whether the approximately-complete code generated by L𝜆MDA

can enhance the accuracy of exception handling recommendations.

Specifically, we replaced the DA tool with PA-NeurEx, the program

analysis-based, exception handling recommendation tool developed

as part of NeurEx [6]. It takes a code snippet and recommends a

list of exception types to be handled. This can be empty if there is

no such candidate. PA-NeurEx examines each API element and the

import statements in the code snippet, aiming to resolve the type

of the API element and map it to associated exception types based

on a database of the libraries’ documentation. We also used GPT-

4o [7] with one-shot prompting as another baseline for exception

type handling recommendation. In this case, we feed to GPT-4o the

given code snippet (approximately-complete or incomplete), asking

it to wrap the suspicious API calls that might throw exceptions in

a try-catch block and extracted the corresponding exception types.

We used the same metrics as in NeurEx [6] (Precision, Recall, and

F1-score), and the same dataset as in Section 9.1.

Table 4: Exception handling recommendations (RQ4)

Approach

Evaluation Metrics (in %)

Precision Recall F1-Score
PA-Neurex + 𝐷

incomplete
10.8 31.0 16.1

PA-Neurex + 𝐷
approx

15.7 36.7 22.0

GPT-4o + 𝐷
incomplete

57.5 29.1 38.6

GPT-4o + 𝐷
approx

63.1 78.0 69.7

Table 5: Ablation on data dependence analysis (RQ5)

Task Approach

Eval. Metrics (in %)

P R F1
Data Dependence

Analysis
w/o refinement 95.8 79.8 87.1

L𝜆MDA 96.8 92.0 94.4

Exception Flow
Analysis

w/o refinement 91.3 70.9 79.8

L𝜆MDA 98.2 83.5 90.3

9.2.2 Experimental Results. As seen in Table 4, as using approxi-

mated code instead of incomplete code, its recall improves by 168%.

This increase stems from GPT-4o primarily using its existing knowl-

edge, with L𝜆MDA providing assistance in the form of type informa-

tion, to help identify specific exception types. L𝜆MDA’s type resolu-

tion aids it in identifying appropriate import packages, enabling a bet-

ter inference of which base Java packages to use. This significantly

reduces incorrect exception predictions, improving the precision by

9.7%. Overall, as reflected by the F1-score, GPT-4o’s performance

in handling exceptions across both datasets improves by 80.6%.

In contrast, PA-NeurEx tends to be overly strict to avoid missing

an exception. Thus, it has a relatively low precision in both datasets.

With L𝜆MDA’s approximated code, the improvement of 45.4% in

precision and 18.4% in recall is due to the filled-in fully-qualified

names for certain APIs. This helps recover some associated excep-

tions, benefiting PA-NeurEx and increasing F1-score by 36.6%.

L𝜆MDA is extensible to other dependency analysis, and useful in
exception-flow analysis and exception handling recommendation.

10 Ablation Study (RQ
5
)

In this experiment, we aim to assess the impact of code refinement.
Accordingly, we compared the performance of L𝜆MDA in all tasks,

against that without the feedback loop, i.e., where the LLM utilizes

only the initial feedback from compiler.

As seen in Tables 5 and 6, the feedback loop is useful, helping

mitigate compilation errors from the LLM’s approximated code,

thus improving the precision; and makes sure there are no more

undeclared variables or unresolved APIs, thus improving the recall.

In the data dependence analysis task (rows 1–2 in Table 5), the

feedback loop results in a relative increase in recall by 15.3%, result-

ing in a relative improvement in F1-score by 8.4%. The improvement

in precision and recall for the exception-flow analysis task (rows

3–4 in Table 5) are 2.4% and 6.1%, respectively. The improvement

can specifically be attributed to the accurate resolution of unknown

APIs via code approximation (as opposed to both undeclared vari-

ables and unresolved APIs in data dependence analysis). Overall,

introducing such a feedback loop between the LLM and compiler

improves the performance by 4.4% in F1-score.
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Table 6: Ablation on exception handling recomm. (RQ5)

Approach

Evaluation Metrics (in %)

Precision Recall F1-Score
PA-Neurex + L𝜆MDA w/o refinement 9.8 26.7 14.3

PA-Neurex + L𝜆MDA w/ refinement 15.7 36.7 22.0

GPT-3.5 + L𝜆MDA w/o refinement 28.5 22.78 25.32

GPT-3.5 + L𝜆MDA w/ refinement 57.5 29.11 38.66

Table 7: Time efficiency and token costs (RQ6)

Baseline Code2API GPT-3.5 Claude-2.1 Claude3.5 GPT-4o

Input Tokens 897 2,350 4,484 3,926 1,901

Output Tokens 369 731 1,649 1,793 819

Time (s) 4.56 14.91 17.34 7.35 8.76

PA-L𝜆MDA’s improvement for exception type recommendation

(rows 1–2 in Table 6) are 60.2% in precision and 37.4% in recall. The

feedback is valuable as it ensures that most snippets are syntacti-

cally correct. As seen in earlier, 20% of the code snippets are still

not parseable by traditional PA tools with one round of refinement.

The baseline introduces an excessive statements: 29 import state-

ments, 29 variable declarations, and 13 method definitions more

than when using L𝜆MDA as is. Not all of these program statements

are relevant, which further affects the baseline’s performance.

The feedback loop in L𝜆MDA improves precision by mitigating
compilation errors and improving recall by handling undeclared
variables and APIs. This boosts compilation success rates, leading
to better context for recovering more missing dependencies.

11 Time Efficiency and Token Costs (RQ
6
)

The following baselines: ⧫.A, ⧫.B, ⊛.A, and ⊛.B, do not use LLMs,

and thus, do not have total tokens-specific API costs. Meanwhile,

the cost for the best variant of L𝜆MDA with GPT-4o (including

multiple iterations) is about 2.15× more than that of Code2API

(Table 7). However, the former takes an average of 3-5 iterations

(i.e., fewer number of tokens per iteration), while Code2API has no

refinement (i.e., one iteration). The token counts for L𝜆MDA with

Claude-2.1/Claude3.5 are higher due to their tokenization schemes.

For one code snippet, L𝜆MDA takes 8.76 seconds—about twice

as long as Code2API—primarily due to its use of multiple reasoning

iterations. Despite this, the latency remains within a range that

is reasonably suitable for interactive use in IDEs or code analysis.

GPT-3.5 and Claude-2.1 exhibit longer processing times, while the

non-LLM solutions are faster. However, L𝜆MDA+GPT-4o achieves

highest performance with reasonable time efficiency and API costs.

12 Limitations and Threats to Validity

L𝜆MDA faces challenges in code hardening for partial code. While

it is adept at retrieving types and adding headers, it tends not to

insert necessary API setup calls in the middle of the code due to our

explicit instructions to preserve the original code (e.g., if file !=

null then file.close()). This affects its capabilities in code harden-

ing. The limitations of token input sizes for LLMs remain a barrier.

External Validity: Our evaluation is limited to Java programs and a

fixed set of benchmarks. While these may not be representative,

they have been widely adopted in prior work. In addition, re-

sults may vary with other models or programming languages.

Internal Validity: The results in running time might vary due to

network traffic, latency issues or server loads when querying LLMs.

The third-party tools, e.g., Joern or the compiler, may cause errors.

Construct Validity: Variations in prompt can lead to differences in

input distributions, impacting LLMs’ outcomes. To mitigate this,

we define prompts using a consistent and well-specified structure.

13 Related Work

Program Analysis for Partial Code. PPA [10] estimates missing

bindings through type inference heuristics. GRAPA [41] enables

static analysis of partial programs by resolving unknown identifiers

with archive files. JCoffee [17] simulates all unresolved and missing

code elements with the same dummy name, introducing significant

ambiguity for DA. ReACC [24], a retrieval-augmented code comple-

tion model, uses sparse and dense retrieval techniques to enhance

code completion with partial code as queries. Some IDEs [13, 20]

build ASTs from partial code to help the compiler.

Machine learning for Partial Code Analysis. Code2API [25]

transforms semantically complete SO code snippets into reusable

API methods via Chain-of-Thought prompting. It does not incor-

porate any verification tool like compiler feedback or refinement.

Huang et al. [18] used fully qualified name (FQN) masking tech-

niques to train a masked language model for FQN retrieval from

partial code. However, it does not complete other missing elements.

SOChecker [8] uses vanilla prompting to CodeLlama (without iter-

ative refinement) for code completion. It then uses symbolic exe-

cution for security vulnerability analysis in smart contracts. Neu-

ralPDA [39] employs self-attention networks to directly learn pro-

gram dependencies. Ding et al. [11] propose TRACED, an execution-
aware pre-training strategy on UniXcoder [16] with a combination

of source code, inputs, and execution traces. LExecutor [33] aims to

execute code for any piece of code in an under-constrained manner.

Several ML approaches have been proposed for type inference

and prediction. The solutions range from statistical learning [28],

deep learning [5, 19, 22, 26, 27, 30, 36], to language models [8, 25].

While partial program dependence analysis needs type inference,

it also faces other challenges: missing external libraries and import

statements, missing variable and data type declarations, missing

call/return flows and exception flows, unknown parameters, etc.

14 Conclusion

We introduce L𝜆MDA, a framework that uses large language mod-

els (LLMs) to aid dependence analysis (DA) in partial programs.

L𝜆MDA mitigates the precision-recall tradeoff in traditional DA

tools by leveraging LLMs to infer missing information in par-

tial programs–improving the recovery of dependence edges. Our

evaluation demonstrates improvements over both traditional and

learning-based baselines, with gains of 5%-265% and 16%-331% in

F1-score across StackOverflow benchmarks. Moreover, we showed

its applicability in exception-flow analysis and exception-handling.

Data Availability. Our datasets and code are available [3].
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