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Abstract—Several tasks in program analysis, verification, and
testing are modeled as constraint solving problems, utilizing SMT
solvers as the reasoning engine. In this work, we aim to investigate
the reasoning capabilities of large language models (LLMs)
toward reducing the size of an infeasible string constraint system
by exploiting inter-constraint interactions such that the remaining
ones are still unsatisfiable. We term this safe minimization.

Motivated by preliminary observations of hallucination and
error propagation in LLMs, we design SAFEMIN, a framework
leveraging an LLM and SMT solver in tandem to ensure a
safe and correct minimization. We test the applicability of our
approach on string benchmarks from LeetCode in the computa-
tion of minimal unsatisfiable subsets (MUSes). We observed that
SAFEMIN helps safely minimize 94.3% of these constraints, with
an average minimization ratio of 98% relative to the MUSes. In
addition, we assess SAFEMIN’s capabilities in partially enumer-
ating non-unique MUSes, which is baked into our approach via a
“sample-and-enumerate” decoding strategy. Overall, we captured
42.1% more non-unique MUSes than without such LLM-based
macro-reasoning. Finally, we demonstrate SAFEMIN’s usefulness
in detecting infeasible paths in programs.

Index Terms—Large Language Models, Constraint Solving,
Safe Minimization, Inter-Constraint Reasoning

I. INTRODUCTION

Several tasks in the domains of analysis, testing, and verifi-
cation are modeled as constraint satisfaction problems. These
include, but are not limited to, symbolic execution and au-
tomated test-case generation [1], [2], type checking, program
verification [3], [4], [5], security [6], and optimization [7]. For
these tasks, program states and their transitions are expressed
as logical formulae, and Satisfiability Modulo Theories (SMT)
solvers such as Z3 [8], CVC4/5 [9], [10], etc. are used as the
back-end reasoning engines. For example, in symbolic exe-
cution, a program path is represented as a logical constraint,
aiding a systematic exploration of all possible execution paths.
In model checking, specifications of certain properties (e.g., no
null pointer is ever dereferenced) are expressed in a temporal
logic, and the unreachability of the error state is verified.

Machine learning (ML) has been driving advancements to
improve SMT’s efficiency and scalability [11], [12], [13], par-
ticularly on enhancing and optimizing heuristic algorithms in
solvers. ML-based solvers can be classified into two cate-
gories: learning-aided solvers and stand-alone learning-based
ones. First, learning-aided approaches combine ML techniques
with modern solvers, replacing manually-crafted heuristics
with efficient ML-based ones [13], [14], [15], [16]. These in-

clude producing initialization assignments to achieve runtime
reduction on local search [15], replacing searching heuristics
with reinforcement learning to reduce the number of itera-
tions [16], learning the distribution of the subset of clauses that
is unsatisfiable (called UNSAT cores) to guide the solvers [14],
[13], or learning the correlations among clauses by treating
them as un-ordered sequences with Transformers [17] to
provide a learning-enhanced initialization heuristic for solvers.
Second, stand-alone learning-based solvers predict satisfia-
bility and decode value assignments with ML models. For
instance, DeepSAT [18] formulates a solution as a product
of conditional distributions and obtains the assignments by
maximizing joint probabilities. Its assertions rely on statistics.
NeuroSAT [19] trains an GNN for satisfiability prediction.

With the advances of Large Language Models (LLMs), it is
natural to study the extent they can aid SMT solvers. While
the state-of-the-art ML-based SMT solvers focus on deciding
whether a constraint system is satisfiable (SAT) or unsatisfiable
(UNSAT), in this work, we aim to explore the ability of LLMs
in providing the evidential explanation of such a decision. In
particular, we investigate the LLM’s ability in safe minimiza-
tion, which is defined as follows: given an UNSAT constraint
system, safe minimization reduces the size of the system such
that the UNSAT property is preserved. In other words, safe
minimization reduces the size of the constraint system from
n to m (m < n) such that the remaining m constraints are
still UNSAT. We refer to such subsets of the original constraint
system as smaller unsatisfiable subsets (SUSes). A special case
of SUSes is a minimal unsatisfiable subset (MUS). An MUS is
defined as an unsatisfiable subset of a constraint system such
that the removal of any constraint makes it satisfiable.

Safe minimization to SUSes or MUSes is crucial in several
tasks. It could enhance the analysis of inconsistencies in
a program, which may lead to unexpected behaviors. An
UNSAT path constraint system contains multiple constraints
representing the conditions in a program. An MUS is useful
in localizing the inconsistencies among the conditions along
the path due to its minimal size. These inconsistencies could
stem from bugs, incorrect assumptions, conflicts among pro-
gram components, or even design flaws and implementation
errors. Localizing the source of such inconsistencies is crucial
for software engineers to effectively tackle these challenges.
Moreover, MUSes can be viewed as representing the minimal
reasons or explanations of the infeasible paths.



In brief, we seek to answer the question: “is it possible to
safely minimize a constraint system, under the condition that
no inconsistency-causing constraints are eliminated”?

SMT solvers have specialized decision procedures spanning
theories on integer and real number arithmetic, arrays, and
strings. In this work, we focus on string constraints involving
string operations such as concatenation, character and regex
matching, string lengths, substrings, etc. The solvers on string
theory are relevant for various tasks, including automated test-
case generation for scripting languages, static analysis of secu-
rity vulnerabilities in web applications against code injection
(caused by improper handling of untrusted strings), etc.

We conducted a preliminary empirical study in safe mini-
mization with LLMs on multiple SMT-LIB string benchmarks
extracted from LeetCode interview questions. We observed
that LLMs are capable of analyzing dependencies among the
constraints and can decompose an unsatisfiable set of con-
straints into sub-groups and reason over them (let us call this
macro-reasoning) to discover the redundant constraints that
can safely be eliminated. However, one key issue with them is
hallucinations. We reported two classes of hallucinations in the
LLM-generated responses: (i) orthographic, where the con-
straints in generated candidate SUSes do not belong to the
original constraint system, (ii) rational, where the reasoning
used to produce the solution(s) or the candidate SUSes is
flawed, due to which it is incorrectly assumed to be (un)-
satisfiable. With GPT-3.5, we reported parsing errors in 13.1%
of the cases, i.e., the model did not adhere to the prescribed
output format due to which the SUS could not be retrieved. In
52.6% of the cases, it determined satisfiable constraint subsets
as unsatisfiable. Other LLMs, e.g., GPT-4, Gemini-1.5 Pro, and
Claude-3.5 Sonnet, have no parsing errors. The cases where a
model incorrectly determined satisfiable constraint subsets as
unsatisfiable dropped to 18.6%, 19.3%, and 12%, respectively.

Accordingly, we incorporated the following strategies to
mitigate hallucinations. First, for orthographic hallucinations,
we employed a parser which uses edit distance as a metric to
map the constraint generated by the LLM to the closest one in
the input formula. Second, we utilized an SMT solver to verify
the unsatisfiability of the candidate SUSes. Thus, we ensure
that the candidate SUSes are both correct and unsatisfiable.

As an application for safe minimization, we used the SUSes
produced by the LLM in combination with SMT solver as a
verifier, and input them to the SMT solver, CVC5 [10], to
compute the MUSes. This process of computing MUSes is
more efficient due to a reduction in search space of MUSes
from O(2n) to O(2m) (m < n). In terms of finding MUSes
in their constraint space, we can consider this as a soft-search,
which allows for the LLM to not be penalized for imprecision.

Another dimension of complexity in MUSes stems from the
fact that there can exist multiple non-unique ones for a given
over-constrained system. However, enumerating all MUSes is
typically intractable with respect to completion, and a formula
with n constraints can have an order of 2n MUSes. As a result,
traditional MUS enumeration algorithms [20], [21], [22] do
not complete enumeration within a reasonable time. Recently,

there has been a shift towards avoiding such an exhaustive enu-
meration and computing an approximate count of the MUSes
[23], [24], [25]. We bake such a parallelized, partial MUS
enumeration into our approach by adopting a “sample-and-
enumerate” decoding strategy within the LLM. We refer to this
as self-exploration, and the model as Explorer LLM. Our idea
is that the Explorer LLM samples combinations of different
macro-reasoning paths while analyzing the inter-constraint
relations, where each path aims at explaining a unique source
of unsatisfiability and potentially leads to a unique SUS.

Putting together the above ideas to enhance the capability
of the LLMs, we propose SAFEMIN, a learning-aided solv-
ing framework that employs an LLM and an SMT solver
in tandem to safely minimize a constraint system into its
unsatisfiable subsets (SUSes), such that it encompasses all
inconsistency-causing constraints. From our extensive evalua-
tion of SAFEMIN framework on SMT-LIB string benchmarks,
we were able to safely minimize 94.3% of the string con-
straints to their SUSes, with an average reduction of 98% rel-
ative to their respective MUSes, across all minimized ones.

By adapting the MARCO algorithm [21], which is de-
signed to enumerate minimal unsatisfiable subsets (MUSes) by
searching the constraint space, we explored the computation
of smaller unsatisfiable subsets (SUSes). Our results show that
SAFEMIN significantly outperforms both random selection and
search-based (breadth-first and depth-first) strategies in terms
of minimization accuracy and minimization ratio. We include
several stratified analyses probing the effect of the number of
constraints in the formula on SAFEMIN’s effectiveness. We
compared SAFEMIN when being used with an SMT solver
for MUS computation against using a traditional SMT solver
directly, toward partial MUS enumeration, and noticed that our
tool captures 42.1% more non-unique MUSes. Moreover, we
conducted an in-depth analysis of the LLMs’ macro-reasoning
capabilities in SAFEMIN, revealing their understanding of de-
cision procedures in SMT theories, as well as indicating its
potential to scale to complex systems. Finally, we conducted
a case study on the usability of our framework in identifying
the conflicting conditions toward detecting infeasible paths in
a real-world program. In brief, our key contributions include:
(1) To the best of our knowledge, this is the first study to

explore the reasoning capabilities of LLMs on complex
constraint benchmarks, such as SMT-COMP.

(2) SAFEMIN, a novel macro-reasoning approach for safely
minimizing the constraint systems towards optimizing
constraint solving. All our data is publicly available [26].

(3) SAFEMIN is a useful tool for computing MUSes, while
also facilitating their parallelized, partial enumeration.

II. ILLUSTRATIONS AND CONCEPTS

A. Infeasible Constraint Systems

In Fig. 1, we present the conjunctive normal form (CNF)
of a string formula extracted from the source code for an
interview question related to the partition problem Leet-
Code [27], as documented in the SMT-LIB benchmarks [28].
This constraint system is unsatisfiable, and the constraint set



1 At(s, 1) == At(s, 5)
2 Not(At(s, 1) == At(s, 4))
3 Length(s) <= 8
4 Length(s) == 8
5 At(s, 5) == At(s, 6)
6 At(s, 4) == At(s, 7)
7 Not(At(s, 4) == At(s, 6))
8 Not(At(s, 4) == At(s, 5))
9 Not(At(s, 5) == At(s, 7))

10 Not(Length(s) <= 7)
11 Not(Length(s) == 7)
12 Not(At(s, 6) == At(s, 7))
13 Not(Length(s) <= 6)
14 Not(Length(s) == 6)
15 Not(Length(s) <= 5)
16 Not(Length(s) == 5)
17 Not(Length(s) <= 4)
18 Not(Length(s) == 4)
19 At(s, 1) == At(s, 3)
20 Not(At(s, 3) == At(s, 7))
21 Not(At(s, 3) == At(s, 6))
22 Not(At(s, 3) == At(s, 5))
23 Not(At(s, 3) == At(s, 4))
24 Not(Length(s) <= 3)
25 Not(Length(s) == 3)
26 At(s, 1) == At(s, 2)
27 Not(At(s, 2) == At(s, 7))
28 Not(At(s, 2) == At(s, 6))
29 Not(At(s, 2) == At(s, 5))
30 Not(At(s, 2) == At(s, 4))
31 At(s, 2) == At(s, 3)
32 Not(Length(s) <= 2)
33 Not(Length(s) == 2)
34 Not(Length(s) <= 1)
35 Not(Length(s) == 1)
36 Not(Length(s) <= 0)
37 Not(Length(s) == 0)

Fig. 1. A motivating example

{C1, C5, C19, C21} (highlighted in orange) indicates one of
its minimal unsatisfiable subsets (MUSes). The inconsistency
is related to the string s, in which constraints C1, C5, and C19

assert that the characters at indices 1, 3, 5, and 6 are all the
same, and C21 asserts that those at indices 3 and 6 can not be
the same. Note: Removing any of the constraints in the MUS
will no longer preserve such a contradiction (thus, minimal).

For a constraint system C = {C1, C2, ..., Cn} over a set of
variables, if we can find an assignment to all variables such
that each Ci is satisfiable, i.e., all restrictions of every Ci

are met by the corresponding assignments, we say that C is
satisfiable. Otherwise, it is considered to be unsatisfiable, or
infeasible. In this work, we focus on analyzing infeasible string
constraint systems on the basis of the following concepts:

Definition 1 (Smaller Unsatisfiable Subset–SUS). A smaller
unsatisfiable subset of an unsatisfiable constraint system C is
a subset S ⊆ C such that S is still unsatisfiable.

Definition 2 (Safe Minimization). Given an unsatisfiable con-
straint system C, the identification of a subset S such that it
is still unsatisfiable (i.e., S is an SUS) is referred to as safe
minimization. Otherwise, if S is satisfiable, it is unsafe.

Definition 3 (Minimal Unsatisfiable Subset–MUS). A minimal
unsatisfiable subset of an unsatisfiable constraint system C is a
subset M ⊆ C such that M is still unsatisfiable and ∀Cj ∈ M ,
M\{Cj} is satisfiable. Note that the minimality in MUS refers
to a set minimality, and not to minimum cardinality.

Let us illustrate safe minimization via this example. For
achieving safe minimization of the above UNSAT constraint
system, consider constraint C4 in Listing 1 which asserts
that the length of a string s should be equal to 8. Next,
consider pairs of constraints {C10, C11}, {C13, C14}, {C15,
C16}, {C17, C18}, {C24, C25}, {C32, C33}, {C34, C35},
and {C36, C37}. Each of these resolves to Length(s) > 7,
Length(s) > 6, Length(s) > 5, Length(s) > 4, Length(s)

> 3, Length(s) > 2, Length(s) > 1, and Length(s) > 0, re-
spectively. Furthermore, C3 resolves to Length(s) == 8 in
conjunction with C4. Thus, including C4 and eliminating the
constraints C3, C10−C11, C13−C18, C24−C25, and C32−C37

would not affect the unsatisfiability of the resulting set.
Consider constraint C1 which asserts that the character at

index 1 in string s is the same as that at index 5. Accordingly,
constraint C2, which originally asserts that the character at
index 1 in string s is not the same as at index 4, can be
interpreted as the character at index 5 in string s not being the
same as that at index 4. We can see that this is the same as
constraint C8, which is repetitive. Thus, C8 can be eliminated
without affecting the unsatisfiability of the resulting set. Using
a similar analogy between constraint sets {C5, C9, C12}, {C5,
C21, C22}, {C5, C28, C29}, {C6, C20, C23}, {C6, C27, C30},
and {C21, C31, C28}, the constraints C12, C22, C29, C23, C30,
and C28, respectively, can safely be eliminated as well.

We refer to such a reasoning on sub-groups of constraints
in a constraint system as macro-reasoning. We hypothesize
that by exploiting the inter-constraint relationships via macro-
reasoning, we can identify redundant constraints from the input
formula while preserving the inconsistency in the SUS.

Definition 4 (Macro-Reasoning). Macro-Reasoning is the
reasoning on sub-groups of an UNSAT constraint system
that exploits the inter-constraint relationships to identify and
eliminate redundant constraints and enable safe minimization.

Recently, large language models (LLMs) have shown emer-
gent behaviors with the abilities to reason in various domains,
e.g., arithmetic [29], formal logic [29], [30], source code [31],
[32], etc. Moreover, they have been shown to effectively pro-
duce proof steps towards proof generation [33]. This work
aims to evaluate whether LLMs can be leveraged to decompose
a constraint system and macro-reason on groups of constraints
via tractable steps of thoughts towards identifying (inferred)
redundant constraints. That is, we model this as a soft-search
problem, to see whether the LLM can be leveraged to explore
the constraint space to approximately identify the constraints
that do not contribute to an inconsistency – the remaining
which, can be encapsulated as the SUS. This contrasts with tra-
ditional exhaustive search on the entire constraint space [20].
For illustration, Fig. 2 displays the Hasse diagram for the

power set lattice for a set of constraints C = {1, 2, 3, 4}. Edges
represent containment relations. Starting from {1, 2, 3, 4}, the
BFS (→) and DFS (→) strategies exhaustively explore the
state space by eliminating constraints from C and checking
the satisfiability of each subset. In contrast, SAFEMIN reasons
about the inter-constraint relations to get to {2, 4} (i.e., an



Fig. 2. Hasse diagram of the power set lattice for a generic set of four
constraints C = {1, 2, 3, 4}. Starting from {1, 2, 3, 4}, one can explore the
constraint space via local search strategies such as depth-first (→) and breadth-
first (→) search; compared to SAFEMIN’s macro-reasoning driven approach.

SUS) without exhaustive search, which helps converge faster
to {2} (i.e., MUS). Our evaluation results empirically demon-
strate this macro-reasoning capability of LLMs (Section IV).

B. Halluciation Mitigation

We conducted a preliminary experiment to study the ca-
pability of LLMs in macro-reasoning for safe minimization
(Section IV). A key limitation of LLMs is their hallucination,
i.e., generating plausible, but non-sensical information. This
is concerning, as the generated candidate SUSes cannot be
trusted to be correct, or even unsatisfiable. From our results,
we report two classes of hallucinations in the LLM-generated
response and leverage the following strategies for mitigation:

(i) Orthographic hallucinations: the constraints in candidate
SUSes do not belong to the original constraint system. For this
type of hallucinations, a parser is used in which we map the
generated constraint by the LLM to the closest one in the input
formula via edit distances.

(ii) Rational hallucinations: the reasoning used to produce
candidate SUSes is incorrect, due to which satisfiable ones
are marked unsatisfiable, and vice-versa. For the rational
hallucinations, an SMT solver is used as a verifier to validate
the LLM-generated candidates, and accept or reject them.

C. Parallelized Partial Enumeration of Multiple MUSes by
Exploring Diverse Reasoning Paths

While computing MUSes is an application of SUSes pro-
duced by our framework, a constraint system might have
multiple MUSes. An MUS for the above constraint system
is highlighted in Listing 1. However, this string formula has
multiple MUSes, including constraint sets {C1, C5, C26, C28},
{C1, C26, C29}, {C1, C5, C21, C26, C31}, etc. Finding all
MUSes is typically intractable with respect to completion, and
a formula with n constraints can have an order of 2n MUSes.
Thus, applications of MUSes tend to relax the completeness
criterion by not focusing on finding all of them, but depend
on the number produced within a certain time limit [23].

Complex reasoning tasks often have multiple reasoning
paths. Wang et al. [34] make use of this diversity via

a “sample-and-marginalize” decoding strategy in the LLM,
where the optimal answer for a question is decided by
marginalizing out the sampled reasoning paths and finding
the most consistent one. Due to the nature of our task of
minimizing constraint systems, we formulate it as a soft
search problem. Thus, we propose a contrasting “sample-and-
enumerate” decoding strategy. Here, the sampled reasoning
paths can lead to multiple SUS candidates pertaining to non-
unique MUSes. Such a design establishes a partial enumeration
of MUSes. We call this strategy self-exploration, which
encompasses the varied macro-reasoning perspectives of the
LLM within a specific constraint system.

Theoretically speaking, increasing the size of the sample
during self-exploration results in a more complete enumeration
of MUSes. Furthermore, combining all such candidate SUSes
with independent SMT-verifiers (as described in Section II-B)
helps parallelize partial MUS enumeration with LLMs.

III. MACRO REASONING FOR SAFE MINIMIZATION OF
UNSAT CONSTRAINT SYSTEMS

Our empirical results (Section V) showed that GPT-3.5 and
GPT-4 exhibit macro reasoning capabilities in safe minimiza-
tion of UNSAT constraint systems. However, they are still
limited by halluciations and partial enumeration of multiple
MUSes. Putting together the above ideas to enhance the
macro-reasoning capabilitiess of LLMs in safe minimization,
we propose SAFEMIN, a learning-aided solving framework
that employs an LLM and an SMT solver in tandem, to safely
minimize a constraint system into the unsatisfiable subsets
(SUSes). This section presents SAFEMIN framework (Fig. 3).

An infeasible constraint system C = {C1, C2, ..., Cn}
often contains constraints, some of them contributing to the
unsatisfiability of the system, and others that do not. Safe
minimization aims to find the subsets of C, which are both
unsatisfiable, and have fewer constraints than the input formu-
lae. These subsets are referred to as the smaller unsatisfiable
subsets (SUSes, S). An SUS contains all constraints that lead
to unsatisfiability in an MUS, possibly also including a few
that do not. We posit that this approximation is desirable, as
the imprecision provides better correctness guarantees in the
form of unsatisfiability of the candidates.

SAFEMIN is designed to have the following key phases:

A. Self-Exploration

The goal, here, is to explore the constraint space of a given
constraint system and identify candidate SUSes. Accordingly,
we call this process self-exploration, and enable it by leverag-
ing large language models (LLMs) along two dimensions:

1) Large Language Model as a Macro-Reasoning Agent:
Inter-constraint relationships within MUSes encapsulate the
underlying conflicts that lead to the unsatisfiability of a given
constraint system. The primary role that the LLM serves is
to capture such constraint interactions and decompose the
constraint system into sub-groups of constraints. We surmize
that reasoning on such sub-groups facilitates the identification
of the root causes for inconsistencies, and subsequently, the



Fig. 3. Overview of SAFEMIN framework

You are playing the role of an SMT solver on strings.
Instructions

Given a list of constraints or clauses, your goal is to identify a subset of
these such that it is still unsatisfiable, i.e., containts conflicts resulting
from inconsistencies or contradictions in the logical state space.
Follow these thought steps to find the conflicts or contradictions:
Step 1: Read and understand the given logical string formula to identify
the variables, operators, and logical connectives used in the formula.
Step 2: Analyze dependencies both within, and between constraints.
These can arise from string operations such as concatenation, length,
position, substring extraction, etc., as well as the variables they share.
Step 3: Macro-reason on these constraints to find pairs or groups that
can possibly be combined and resolved. It is okay for there to be
overlap among the different groups of constraints. The motivation for
this grouping, however, should be to find redundant constraints in the
input, which can be inferred from combining parts of these groups. Note
that such redundant constraints CAN be eliminated.
Step 4: Next, try to identify constraints or groups of constraints which
also satisfy another constraint or group of constraints. In such a case,
the latter constraint or group CAN be eliminated.
For steps 3 and 4, try to find as many such groups as possible.
Step 5: Try to identify pairs of constraints that directly conflict with
each other. These need to definitely be part of the output subset. Note
that such conflicts or inconsistencies WILL arise in the given example.
Think step by step.

Output Format
After identifying all such constraints that can safely be removed, output
a comma-separated list of all remaining clauses. Each clause should
be inserted between <c> and </c> tags, and the output between
<output> and </output> tags.

Disclaimer
Try to minimize the input constraints as best as possible, while also
ensuring the output subset’s unsatisfiability.

Fig. 4. System prompt for Explorer LLM in SAFEMIN.

SUSes. Furthermore, this process establishes tractable steps of
thoughts for minimizing the constraint space.

In Fig. 4, we present the prompt given to the LLM for
this purpose, which primarily illustrates the Instructions for
it to pursue a Chain-of-Thought (CoT) [35] reasoning and
decompose the input constraint system into constraint sub-
groups, to macro-reason about them; and the prescribed Output
Format for the candidate SUSes. In our preliminary experi-
ments, we observed that directing the LLM to output the entire
list of constraints that belong to the candidate SUSes nudges
it to recall the inferred knowledge from the macro-reasoning
steps, as opposed to using special markers for identifying the

constraints. In this way, the LLM plays the role of exploring
the constraint space towards summarizing the conflicts in a
constraint system in the form of their SUSes.

2) Exploring Diverse Reasoning Paths: As noted earlier, it
is possible for a constraint system to have multiple MUSes,
i.e., multiple sources of inconsistencies. In this context, an-
other dimension of LLM operability is the parallelized, partial
enumeration of such non-unique MUSes.

To enable this process, we propose a “sample-and-
enumerate” decoding procedure, where we first sample from
the LLM’s decoder to generate a diverse set of reasoning paths.
While the basis of these paths is rooted in macro-reasoning on
the input formula (as in Section III-A1), each might be focused
on a different source of inconsistency – thus leading the LLM
to explore non-unique candidate SUSes. Subsequently, we can
leverage these candidates to extract non-unique MUSes.

While self-exploration is similar in spirit to self-consistency
decoding strategy [34], a notable difference is that the lat-
ter follows the “sample-and-marginalize” approach, wherein,
marginalization is used to converge to the most consistent
response. As our task is rooted in search space exploration,
we do not aggregate the reasoning paths in this manner, but
use the divergence to enumerate multiple candidates instead.

Another major advantage of this design is that it naturally
facilitates parallelization, as the candidate SUSes can be inde-
pendently analyzed towards computing the MUSes. In theory,
sufficiently increasing the sample size during self-exploration
can result in a complete enumeration of all MUSes.

B. Correctness Assurance

LLMs can hallucinate, and the candidate SUSes generated
by Explorer LLM can contain constraints that do not belong
to the input constraint system, or they themselves can possibly
not be unsatisfiable (as is required by the definition of an SUS).
To mitigate hallucinations of this form, we incorporate two
forms of correctness verification into SAFEMIN’s design:

1) Constraint Validity: The first class of hallucinations is
orthographic, as it is possible that a constraint in the candidate
SUS could not belong to the input constraint set altogether. To
mitigate this, we incorporate a Parser into our design, which
maps the incorrect constraint to the closest constraint in the
input formula using edit distance as a heuristic. We adopt this



metric for such an “auto-correction“ as it is lightweight. Note
that this can be swapped with embedding-based similarity
metrics as well, which is left for future work. Overall, this
step ensures the validity of the candidate SUSes.

2) Unsatisfiability Verification: The next class of halluci-
nations is rationale-specific, as it is possible for the LLM-
generated candidate SUSes, which it deduces to be unsatisfi-
able via several macro-reasoning steps, is not actually so.

In this case, we see two ways of ensuring correctness, by
using an SMT solver to verify (a) the correctness of the macro-
reasoning steps, (b) the unsatisfiability of the final generated
candidate SUS. While the former ensures a robust generation
where only valid macro-reasoning steps are considered to infer
the SUS, it can require multiple calls to the solver and can
be prohibitively expensive. Moreover, during our preliminary
evaluation, we also observed that the LLM sometimes tends
to self-correct through the course of generation. Thus, we
chose to include an SMT verifier after the fact, i.e., which
checks whether the final generated candidate SUS is indeed
unsatisfiable – ensuring the correctness of candidate SUSes.

Overall, the Explorer LLM (for self-exploration, as in Sec-
tion III-A), Parser and SMT Verifier (for correctness verifica-
tion, as in Section III-B) work in tandem to ensure the safe
minimization of unsatisfiable constraint systems, enabling a
parallelized enumeration of SUSes and MUSes later.

C. Mathematical Formulation
For an unsatisfiable input constraint system

C = {C1, C2, ..., Cn}, let P{C} be its power set, i.e., P(C) =
{ϕ, {C1}, {C2}, ..., {Cn}, {C1, C2}, ..., {C1, C2, ..., Cn}}.
The Explorer LLM in self-exploration phase takes C as
input, and returns multiple candidate SUSes ∪k

i=1Si, where
Si ∈ P(C) and k is its decoding sample size.

Next, we check ∪k
i=1Si for correctness to obtain ∪l

i=1Si

(l ≤ k) such that, Si ∈ P(C) (i.e., from Parser) and Si is
indeed unsatisfiable (i.e., from SMT-Verifier). Finally, MUSes
can be extracted in parallel from ∪l

i=1Si.

IV. EMPIRICAL EVALUATION

We conducted several experiments, seeking to answer the
following research questions:

(I) Intrinsic Evaluation
RQ1. Effectiveness in Safe Minimization of String

Constraints: (i) Can the LLMs in SAFEMIN exploit inter-
constraint relations toward safe minimization?, and (ii) How
well do they safely minimize string constraint systems?

(II) Qualitative Analysis of Macro-Reasoning
RQ2. How accurate is the LLM’s macro-reasoning on input

string constraint systems toward safe minimization?

(III) Extrinsic Evaluation
RQ3. Safe Minimization toward MUS Computation:

How close are the SUSes produced by SAFEMIN to the actual
MUSes?

RQ4. Diverse Reasoning Paths for SUSes toward MUSes:
How useful is SAFEMIN in using diverse reasoning paths in
enumerating different MUSes for a constraint system?

TABLE I
DATA STATISTICS.

#-Constraints #-Instances #-Operations

0 – 10 47 23.3
10 – 20 110 57.7
20 – 30 80 89.7
30 – 40 118 114.7
40 – 50 33 140.2
Overall 388 84.5

RQ5. Detection of Infeasible Paths in Source Code: How
useful is SAFEMIN in detecting infeasible paths?

V. EFFECTIVENESS IN SAFE MINIMIZATION

A. Data Collection

With the first objective being to evaluate the LLM’s capa-
bilities in safe minimization, we used the string benchmark
set in SMT-COMP’23 [36] that contains quantifier-free string
formulae with constraints reasoning about string lengths (i.e.,
QF SLIA from QF Strings division). In particular, we picked
the LeetCode benchmark containing 2,666 string formulae ob-
tained from several LeetCode interview questions. These cover
a wide range of complex string equations, inequalities, regular
expressions, and include string functions such as str.indexof,
str.substr, and str.at. In Table I, we list the total number
of instances, and the mean number of string operations.

To build the ground truth, we leveraged the state-of-the-
art tool CVC5 [10] to solve these constraints. Of the 2,666,
we identified a total of 774 unsatisfiable instances. Since
SAFEMIN takes unsatisfiable sets of constraints as input, we
disregard the remaining 1,892 instances. Next, we simplified
the unsatisfiable instances algebraically via rewriting opera-
tions to extract corresponding lists of constraints. Finally, we
stratified them based on the number of constraints in each
formula, and split them equally into validation and test sets.
We use the former for tuning the prompt in Explorer LLM
(Fig. 3), and report the final performance on test split.

B. Experimental Setup

1) Baselines: In this experiment, we aim to assess how well
the LLMs in SAFEMIN reduce the given unsatisfiable set of
constraints to the corresponding SUS toward safe minimiza-
tion. First, we adopted Chain-of-Thought (CoT) [35] prompt-
ing to assess the models’ macro-reasoning capabilities. Then,
we used Chain-of-Thought prompting with Self-Exploration
(CoT-SE), enabling them to explore diverse reasoning paths
and capture multiple SUSes. We compare the performance of
SAFEMIN when using both prompting strategies, with GPT-
3.5, GPT-4, Gemini-1.5 Pro, and Claude 3.5 Sonnet.

Consider a constraint system C={C1, C2, ..., Cn} which
has a power set lattice P(C) = {ϕ, {C1}, {C2},..., {Cn},
{C1, C2}, ..., {C1, C2, ..., Cn}}. As the baselines for our
advanced prompting in SAFEMIN, we considered state space
exploration with systematic search-based, as well as random
strategies. First, we compared the CoT-based approaches with
a baseline that randomly selects an element from P(C) (i.e.,



TABLE II
EFFECTIVENESS EVALUATION ON STRING CONSTRAINTS.

Evaluation Metrics
#-Constraints (→) 0 – 10 10 – 20 20 – 30 30 – 40 40 – 50 Total mSUS, Du mSUS, D

Approach (↓) (|D| = 47) (|D| = 110) (|D| = 80) (|D| = 118) (|D| = 33) (|D| = 388)

Random (pass@1) 15 39 18 42 14 128 (32.9%) 0.46 0.15
CoT w/ GPT-3.5 14 48 27 34 7 130 (33.5%) 0.41 0.14
CoT w/ GPT-4 41 91 69 85 24 310 (79.9%) 0.61 0.48
CoT w/ Gemini-1.5 Pro 41 90 58 85 23 297 (76.5%) 0.72 0.58
CoT w/ Claude-3.5 Sonnet 40 84 73 99 28 324 (83.5%) 0.81 0.78
Random (pass@5) 39 87 52 97 27 302 (77.8%) 0.45 0.35
Depth-First (max visited=5) 29 90 69 109 31 328 (84.5%) 0.05 0.05
Breadth-First (max visited=5) 31 104 76 114 33 358 (92.3%) 0.06 0.05
CoT-SE w/ GPT-3.5 38 90 56 101 22 307 (79.1%) 0.48 0.38
CoT-SE w/ GPT-4 44 107 77 115 29 372 (95.9%) 0.70 0.67
CoT-SE w/ Gemini-1.5 Pro 42 92 59 96 27 316 (81.4%) 0.76 0.64
CoT-SE w/ Claude-3.5 Sonnet 45 97 75 117 32 366 (94.3%) 0.83 0.82

random pass@1). These are equivalent, since both check the
unsatisfiability of the candidate SUS once. Second, to bench-
mark our CoT-SE , we also established a baseline that ran-
domly selects k elements from P(C) (i.e., random pass@k),
where k is the number of samples produced in CoT-SE .

Finally, adapting the traditional, non-LLM-based MARCO
algorithm [21], which employs systematic state space explo-
ration to enumerate MUSes, we also established baselines
that eliminate the constraints in the input constraint set C by
exploring P(C) via breadth-first (BFS) and depth-first search
(DFS), checking the unsatisfiability of the subsets in order to
enumerate the SUSes. For a fair comparison with CoT-SE ,
which checks for unsatisfiability of k candidate SUSes, we
limit the traversal in BFS and DFS to a maximum of k nodes,
involving a maximum of k checks of unsatisfiability. In Fig. 2,
we present an illustration of such search-based baselines. Also,
given the computational cost of the unsatisfiability checks with
an SMT solver, we set k as 5 in this work. In Table II, we call
these baselines Depth-First and Breadth-First (max visited=5).

2) Metrics: To intrinsically measure the models’ perfor-
mance in macro reasoning for safe minimization, we define
Minimization Accuracy (Am), which measures the ratio of
the number of instances in which the candidate SUSes are
unsatisfiable to the total number of instances. If D represents
the test set and Du represents the set of instances in which
the candidate SUSes are indeed unsatisfiable, mathematically,
Am = |Du|

|D| . In the case of Chain-of-Thought prompting
with Self-Exploration (i.e., CoT-SE), where there are multiple
candidate SUSes, we consider the prediction of even one
unsatisfiable candidate SUS as a correct instance.

While Am measures the proportion of instances in the
dataset in which the input formula is safely minimized, it does
not quantify the reduction in search space. Thus, we measure
the quality of safe minimization of the constraint system C to
the SUS S (i.e., C → S) with Minimization Ratio, which is
defined as mSUS = |C|−|S|

|C| . Finally, we define two aggregated
variants of m: (a) that on the entire test set, i.e., mSUS, D
= 1

|D|
∑

∈D mSUS, and (b) that where candidate SUSes are
unsatisfiable, mSUS, Du = 1

|Du|
∑

∈Du
mSUS.

C. Experimental Results

1) Comparative Results: In Table II, we report the perfor-
mance of different variants of the models. Interestingly, when
prompted without self-exploration from SAFEMIN, GPT-3.5
(row 2) performs slightly better than the naive approach (row
1), despite the latter only picking a random constraint subset
from P(C) as the SUS. Upon further analyzing the failures, we
discovered that there were parsing errors in 13.1% of the cases,
i.e., the model did not adhere to the prescribed output format
due to which the SUS could not be retrieved. Moreover, in
52.6% of the cases, it determined satisfiable constraint subsets
as unsatisfiable, which we were able to reject with the SMT
verifier. This shows the limitations of GPT-3.5 in following
our instructions for computing the SUS.

In contrast, by prompting GPT-4 with the same instruc-
tions (i.e., CoT, row 3), we observed an improvement in
performance by 138.5%. This establishes a direct comparison
between both GPT variants in their ability to follow our
instructions and CoT steps. Such improvement is 128.5% for
Gemini-1.5 (row 4) and 149.2% for Claude-3.5 (row 5). In
particular, there were no parsing errors with these LLMs, and
the number of cases in which the model incorrectly determined
satisfiable constraint subsets as unsatisfiable dropped to 18.6%,
19.3%, and 12.4% (rows 3–5).

SAFEMIN aims to address these limitations and enhance the
LLM’s ability to safely minimize constraint sets. Compared
to the baseline with 5 random selections, we observed the
improvements for SAFEMIN with GPT-4, Gemini-1.5 Pro and
Claude-3.5 Sonnet from 4.6%–23.2% in Am and 8.6%–91.4%
in mSUS. This improvement for SAFEMIN with GPT-3.5 over
that random picker is smaller as GPT-3.5 is limited as seen.

We also compared SAFEMIN with the MARCO algorithm
with systematic BFS and DFS searches. With the traversal
limited to a maximum of 5 nodes, eliminating constraints to
navigate the state space results in a limited exploration depth.
Accordingly, we observed low minimization ratios for both
baselines. However, the possibility of hitting a candidate SUS
which is a superset of the MUS in the constraint state subspace
is high. As a result, the search-based baselines achieve a high
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Fig. 5. Performance comparison of CoT-SE in LLMs on the most-occurring
string operations: at, concat, indexof, len, and substr.

minimization accuracy. This trade-off shows the limitation of
search-based strategies for safely minimizing constraint sets.

Next, we compare the performance of our self-exploration
prompting with different LLMs (i.e., rows 9–12). As seen,
SAFEMIN improves the performance over only-CoT in mini-
mization accuracy by 136.1%, 20%, 6.4%, and 13% when us-
ing GPT-3.5, GPT-4, Gemini-1.5 Pro, and Claude-3.5 Sonnet,
respectively. Moreover, all LLMs with CoT-SE outperform
their non-SE variants across all intervals, when stratified on
the number of constraints, demonstrating the effectiveness of
CoT-SE in SAFEMIN. Finally, while SAFEMIN with GPT-4
and Claude-3.5 Sonnet achieve similar minimization accuracy,
the minimization ratio for the latter is 17.1% higher.

2) Performance on String Operations: Fig. 5 shows the
LLMs’ performance with CoT-SE prompting on Top-5 most
occurring SMT2 string operations. Among the instances con-
taining str.at (string-character function), str.concat (string
concatenation function), str.len (string length function), and
str.substr (substring function), all LLMs make correct pre-
dictions in more than 80% of the cases (with GPT-4 and
Claude-3.5 showing a better understanding of these opera-
tions). GPT-3.5 records a particularly low performance for
str.indexof (returns the index of the first occurrence of the
specified value), minimizing only 21% of these occurrences
correctly. This can be attributed to the complexity of the
str.indexof function, which often occurred in more complex
constraints with other operations, which GPT-3.5 failed to
resolve. In contrast, GPT-4 correctly predicts 72.2% of these
instances, while Gemini-1.5 and Claude-3.5’s correctly predict
all of them. This result exhibits the improved macro-reasoning
capabilities of the other LLMs over GPT-3.5.

Overall, with SAFEMIN’s CoT-SE prompting strategy, we
record the best performance with GPT-4 (row 10) and Claude-
3.5 Sonnet (row 12), safely minimizing the input formulae
to SUSes in ∼ 95% of the cases. It outperforms the other
baselines in minimization accuracy by 3.9%–190.6% and

minimization ratio by 17.1%–1540%. In brief, we can see that
SAFEMIN with GPT-4 or Claude-3.5 Sonnet, when prompted
with CoT-SE , was able to navigate the intricacies of the
constraints and inter-constraint relations/inconsistencies.

RA1. (1) GPT-4 and Claude-3.5 Sonnet demonstrate
superior macro-reasoning capabilities in exploring inter-
constraint relationships to achieve safe minimization.
(2) SAFEMIN with CoT-SE enhances the LLMs’ macro-
reasoning about sources of inconsistencies, enabling safe
minimization of ∼95% of the string constraints.

3) Time Efficiency for Safe Minimization: We report the
time for safe minimization taken by all LLMs for safely min-
imizing the input formulae when prompted with SAFEMIN’s
CoT-SE strategy. For GPT-3.5, the minimum observed pro-
cessing time was 0.84 seconds, while the maximum recorded
time was 142.3 seconds. The mean processing time for GPT-
3.5 was 26.3 seconds (with a standard deviation of 31.8 sec-
onds). Conversely, GPT-4 recorded minimum and maximum
processing times of 1.13 and 111.3 seconds, respectively. The
mean processing time for GPT-4 was 20.97 seconds (with a
standard deviation of 25.87 seconds). For Claude-3.5 Sonnet,
the times ranged from 0.64 seconds to 103.2 seconds, with a
mean of 16.9 seconds and a standard deviation of 14.1 seconds.
Similarly, Gemini-1.5 Pro recorded a minimum processing
time of 0.72 seconds and a maximum of 122.6 seconds, with a
mean of 22.1 seconds and a standard deviation of 21.2 seconds.
While being subject to network latency, these metrics provide
insights into scaling to real-world systems with LLMs.

VI. QUALITATIVE ANALYSIS OF MACRO-REASONING

In this experiment, we aim to assess the quality of macro-
reasoning of LLMs used within SAFEMIN. Due to the effort
involved in manually parsing through the LLM’s textual re-
sponses, we randomly picked 5 examples from each of the
input formulae sub-groups in Section V-A (i.e., 0–10, 10–
20, ..., 40–50), collecting a total of 25 instances and their
corresponding LLM responses, when prompted with CoT-SE .

From our analysis, we could overarchingly identify the
following strengths in all LLMs’ macro-reasoning:
(S1) Able to pick contradicting logic pairs.
(S2) Able to resolve intricate combinations of operations.

Other LLMs – not GPT-3.5:
(S3) Able to combine constraints via transitive inference.
(S4) Understands str.substr and str.at operations well.
(S5) Able to combine and resolve combinations of operations,

e.g., the length of a substring (str.len and str.substr).

We observed the following categories of inaccuracies in all
LLMs’ macro-reasoning on constraint sub-groups:

(W1) Makes some logical errors when constraints involve not

operation. For e.g., GPT-3.5 resolved not(a≤b) as a≤b.
(W2) Some errors in combining constraints. For e.g., GPT-3.5

resolved (a==1) and not(a≤1) as not(a==1).
(W3) Some errors in understanding complex constraints. For

e.g., str.len(str.substr(s, 0, 1)) == 1



TABLE III
QUALITATIVE STUDY ON MACRO-REASONING OF LLMS.

Weaknesses (→)
W1 W2 W3 W4 W5 W6LLM (↓)

GPT-3.5 5 4 5 7 4 2
GPT-4 4 1 1 – – –

Claude-3.5 Sonnet 2 2 1 – 3 –

Only GPT-3.5:
(W4) Tends to forget some of the previously inferred steps.
(W5) Combines constraints based on incorrect reasoning.
(W6) Fails to localize sources of inconsistencies.

Table III displays the counts of LLMs for all inaccuracies
listed above (except Gemini-1.5, which only produced the
output constraint subsets without any analyses, due to which
we could not identify the weaknesses). Note that these counts
are not mutually exclusive, i.e., one instance can be counted
multiple times across categories. Furthermore, in some cases,
we noticed that GPT-4 and Claude-3.5 tend to ignore the pre-
scribed thought steps, even more so than GPT-3.5. However,
its superior performance is indicative of its adaptability during
constraint resolution. Refer to [26] for more details.

As an illustration, consider the string formula in Fig. 6.
GPT-4, when prompted with CoT-SE , was able to not only
safely minimize it, but also accurately predict the corre-
sponding MUS, i.e., {C1, C4, C6}. Notably, it was able to:
(a) resolve constraints involving multiple variables (C1 and
C6); (b) understand and analyze constraints involving intricate
Concat and str.substr operations (C3, C4 and C5).

We also tested the motivating example from Fig. 1 with
GPT-4 using CoT-SE . Interestingly, we observed that GPT-
4 was able to: (a) group all constraints about Length(s) to
combine them into a single constraint Length(s) == 8; (b)
reason about the transitive relationships between C1, C26, and
C29, to recognize that C1 and C26 together would contradict
C29, since At(s, 1) == At(s, 5) and At(s, 1) == At(s,

2) would resolve to At(s, 2) == At(s, 5), which contradicts
with its negation (C29). These reasoning steps align with
our hypotheses in Section II, thus confirming the LLMs’
capabilities in reasoning-based safe minimization.

RA2. LLMs demonstrate superior macro-reasoning capa-
bilities to reason about the inter-constraint inconsistencies
and safely minimize infeasible constraint systems with a
high accuracy, thus exhibiting a potential to scale.

VII. SAFE MINIMIZATION TOWARD MUS COMPUTATION

In this study, we aim to explore the usefulness of SUSes pre-
dicted by SAFEMIN in the application of computing MUSes
with the reduction of search space via safe minimization.

A. Data Collection

First, we leverage CVC5 to compute the MUSes for all
constraint sets in the test set in Section V-A. At its core,
CVC5 uses either the constructed proof, or an assumption-
based approach for MUS extraction. Due to its lightweight

1 Not(beginWord == endWord)
2 Not(Length(beginWord) <= 0)
3 endWord == Concat(str.substr(beginWord, 0, 2),

Concat("t", str.substr(beginWord, 3, -3 +
Length(beginWord))))

4 endWord == Concat(str.substr(beginWord, 0, 1),
Concat("o", str.substr(beginWord, 2, -2 +
Length(beginWord))))

5 endWord == Concat("d", str.substr(beginWord, 1, -1 +
Length(beginWord)))

6 beginWord == "dot"
7 Length(beginWord) >= 3
8 Length(beginWord) >= 2
9 Length(beginWord) >= 1

Fig. 6. String formula safely minimized by GPT-4 with CoT-SE prompting.

nature, we opt for the latter. Accordingly, for each instance
in the test set, we establish ⟨C,S,M⟩ tuples, where, each
corresponds to the input constraint set, candidate SUS from
SAFEMIN, and the corresponding MUS computed by cvc5,
respectively. Note that we can extract multiple M’s for a C.
In this experiment, we ensure that both C and S correspond
to the same M.

B. Experimental Setup

1) Baselines: We compare all LLMs with the best-
performing CoT-SE prompting for SAFEMIN (in Section V),
as used for computing MUSes from the corresponding SUSes.

2) Metrics: While Section V measures the reduction in
search space of the input formula, it does not measure this
reduction relative to the size of the MUS. To this effect, we
define minimization ratio as mMUS = |C|−|S|

|C|−|M| . By definition,
mMUS ranges from 0 to 1. If mMUS → 0, it means that Explorer
LLM in SAFEMIN removed few or no constraints from C,
and S ≈ C. On the contrary, if mMUS → 1, it indicates
that Explorer LLM removed most of the non conflict-causing
constraints from C, i.e., S ≈ M. Similar to RQ1, we define
two aggregated variants, i.e., mMUS, D and mMUS, Du

.

C. Experimental Results

In Table IV, we report the minimization ratios for all LLMs
with SAFEMIN’s CoT-SE prompting strategy. This illustrates
the usefulness of the SUSes generated in Section V-C, in the
context of their corresponding MUSes. Overall, we can see
that among the 366 safely minimized SUSes (as noted in
Table II), Claude-3.5 Sonnet records an average minimization
ratio with respect to their MUSes by 98%, followed by
Gemini-1.5 Pro at 90%, GPT-4 at 82%, and GPT-3.5 at 57%.
That is, the SUSes generated by Claude-3.5 Sonnet are on
average only 2% larger than the corresponding MUSes. When
also including the 22 instances for which Claude-3.5 Sonnet
could not safely minimize to the SUS (here, m=0), the average
is 96%. For Gemini-1.5 Pro and GPT-4, these aggregated
minimization ratio variants are 76% and 79%, respectively.

The breakdown in Table II on the basis of the number of
constraints further sheds light on the quality of the SUSes.
For instance, consider the string formulae containing 40–50
constraints. GPT-3.5 safely minimizes 66.7% of them (as noted
in Table II). The average minimization in these formulae is



TABLE IV
USEFULNESS OF SUSES PRODUCED BY SAFEMIN: EFFECTIVENESS OF SAFE MINIMIZATION TOWARD MUS COMPUTATION.

Evaluation Metrics (i.e., mMUS, Di
)

#-Constraints (→) 0 – 10 10 – 20 20 – 30 30 – 40 40 – 50 Total
Approach (↓) Du D Du D Du D Du D Du D Du D

CoT-SE w/ GPT-3.5 0.65 0.53 0.56 0.46 0.63 0.44 0.54 0.46 0.39 0.26 0.57 0.45
CoT-SE w/ GPT-4 0.84 0.79 0.82 0.79 0.86 0.83 0.81 0.79 0.73 0.65 0.82 0.79
CoT-SE w/ Gemini-1.5 Pro 0.88 0.81 0.88 0.81 0.92 0.72 0.90 0.73 0.89 0.73 0.90 0.76
CoT-SE w/ Claude-3.5 Sonnet 0.98 0.96 0.96 0.93 0.98 0.97 0.98 0.98 0.99 0.96 0.98 0.96

39.4%, i.e., the corresponding MUS computation involved
starting from SUSes containing only 24–31 constraints. In
contrast, GPT-4 safely minimized 87.9% of the formulae for an
average minimization of 73.4%; Gemini-1.5 Pro, 81.8% for an
average minimization of 89%; and Claude-3.5 Sonnet, 87.9%
for an average minimization of 98%. Thus, with Claude-3.5
Sonnet, the MUS computation for these formulae involved
SUSes containing only 7–9 constraints, while the average size
of these MUSes is 3.2. In terms of the search space for MUSes,
this represents a reduction from O(250) → O(231) with GPT-
3.5, and O(250) → O(29) with Claude-3.5 Sonnet.

Furthermore, for 244 string formulae, we noticed that
Claude-3.5 Sonnet with CoT-SE minimizes exactly to their
MUSes (i.e., m = 1). In comparison, GPT-4, Gemini-1.5 Pro,
and GPT-3.5 do so only 73, 57, and 9 times. Upon further
inspection, we observed that for 80.9% of the instances in
the 0–10 constraint range, Claude-3.5 Sonnet safely minimizes
exactly to the MUSes. Among the 10–20, 20–30, 30–40, and
40–50 constraint ranges, CoT-SE minimizes to the MUS via
macro-reasoning for 69, 47, 72, and 18 instances, respectively.

RA3. SAFEMIN with Claude-3.5 Sonnet helps minimize
infeasible string constraint systems to SUSes that are
only ∼2% larger than the corresponding MUSes, reducing
their search space from O(250) → O(29) and localizing
exactly to the MUSes in 62.9% of the cases.

VIII. DIVERSE REASONING PATHS FOR PARALLELIZED,
PARTIAL ENUMERATION OF MULTIPLE MUSES

By design, SAFEMIN is able to explore diverse reasoning
paths to generate multiple SUS candidates via parallelized
partial enumeration. Thus, for a decoding sample size of k
in the Explorer LLM, it can generate O(k) SUSes. In this
experiment, we use Claude-3.5 Sonnet as the LLM within
SAFEMIN and assess its ability to identify multiple SUSes
in parallel for a given constraint set, which highlights its
usefulness in producing non-unique MUSes.

A. Experimental Setup

Let us use D to denote our dataset of string formulae. The
MUS computation from an input formula by using an SMT
solver is deterministic, and exhibits a one-to-one correspon-
dence. Accordingly, we compare the partial enumeration of
MUSes by SAFEMIN along two dimensions, and establish
loose lower and upper bounds for the total number of unique
MUSes produced by the SMT solver as follows:

Our first experiment setting helps establish the benefits of
using self-exploration in SAFEMIN toward partial enumera-
tion. Specifically, for the lower bound, we extract MUSes for
each of the input string formulae (C → M) from the SMT
solver, as well as the candidate SUSes (k = 5) generated
by SAFEMIN for each formula (∀i≤kSi → M). Thus, it rep-
resents the comparison between the sets ∪j(C → Mj) and
∪j(∪k

i (Si → Mij)), where j = 1..|D|.
The second setting acts as a benchmark for SAFEMIN. Spec-

ifically, we mimic the partial enumeration of the MUSes from
the original constraints C by using k unique random seeds
within SMT solver, and collect the MUSes (∀i≤kCi → Mi).
The basis for selecting those k seeds is to make the comparison
consistent with the k candidates SUSes, and establish a loose
upper bound for all possible unique MUSes (having a search
space of O(2|C|)). Thus, it represents the comparison between
∪j(∪k

i (Ci → Mij)) and ∪j(∪k
i (Si → Mij)) where j=1..|D|.

B. Experimental Results

First, we conducted an overlapping analysis of MUS enu-
meration, using the SMT solver directly on the input formula
(i.e., C → M), and by combining GPT-4 in CoT-SE with
the solver (i.e., S → M). Of the computed MUSes, we can
see that 246 are common to both approaches. Furthermore,
SAFEMIN helps localize 277 additional MUSes that were not
captured by the solver directly, and misses 120 that were
deterministically computed by the solver directly.

SAFEMIN also computes non-unique MUSes for 32.8% of
the instances, resulting in it localizing 42.9% more MUSes
than when the input formulae were solved directly. That is, in
32.8% of the instances, it explored different reasoning paths
to successfully identify non-unique sources of inconsistencies.

In the second setting, with multiple runs of the SMT solver
on the input formula, we observed that it computes a total of
887 distinct MUSes. Of these, 385 were also computed by
SAFEMIN, and 138 were computed by SAFEMIN but not the
solver. Overall, SAFEMIN computes 58.9% of the total MUSes
in the benchmark. Thus, our findings corroborate our design
that self-exploration helps the LLMs exploit diverse reasoning
paths, facilitating a parallelized enumeration of MUSes.

RA4. The SUSes from SAFEMIN helps SMT solver
capture non-unique MUSes in 32.8% of the instances, thus
computing 42.9% more MUSes than the original solver
without SAFEMIN, and 58.9% of the total ones.



1 public static byte opaques(byte x, byte y) {
2 byte z;
3 if ((byte) (151 * (39 * ((x ˆ y) + 2 * (x & y))
4 + 23) + 111) >(byte) ((x ˆ y) + 2 * (x & y)))
5 {
6 ...//BLOCK1
7 }
8 else if
9 ((byte) (x - y + 2 * (˜ x & y) - (x ˆ y)) == 0x17)
10 {
11 ...//BLOCK2
12 }
13 else if
14 ((byte) (195 + 97 * x + 159 * y + 194 *
15 ˜ (x |˜ y) + 159 * (x ˆ y) + (163 + x + 255 * y +
16 2 * ˜ (x |˜ y) + 255 * (x ˆ y)) * (232 + 248 * x +
17 8 * y + 240 * ˜ (x |˜ y) + 8 * (x ˆ y)) - 57) < 100)
18 { ...//BLOCK3
19 } else
20 { ...//BLOCK4
21 }
22 return z;
23 }

Fig. 7. A case study on detecting infeasible paths in source code. Lines high-
lighted in green and red indicate feasible and infeasible paths, respectively.

IX. DETECTION OF INFEASIBLE PATHS IN SOURCE CODE

In this section, we illustrate via a case study an application
of SAFEMIN in detecting infeasible paths in source code. We
selected a C code snippet from a website containing source
code with infeasible paths [37]. We converted the code into
Java (Fig. 7). The feasible paths are highlighted in green and
infeasible paths in red. After converting the paths into the
SMT-Lib format, we used CVC5 to test the path constraints.

The constraint system comprises three constraints, two of
which, as in lines 3–4 and line 9, contain conflicts and are
unsatisfiable, resulting in two MUSes. Here, we extracted
all possible path constraints and input them to SAFEMIN. It
successfully minimized the constraint system, and accurately
identified the UNSAT-causing constraints, directly returning
the MUSes and thereby identifying the infeasible paths.

This case study illustrates a useful scenario of SAFEMIN
in identifying the infeasible path that could help developers
in fixing the issue of unreachable code. It is able to safely
minimize directly to a MUS, providing an explanation for de-
velopers in understanding the reason for an unfeasible path by
pointing out the MUS with a minimum number of constraints.

X. RELATED WORK

While not formally defined, the notion of safe minimiza-
tion occurs in various software engineering tasks, including
conditioned slicing [38], constraint slicing [39], symbolic
execution [40], [41], [1], [2], [42]. However, they do not
leverage any contextual information. There has been research
along two dimensions to further optimize these processes.

The first dimension includes efforts to incorporate heuristic-
based conflict analysis strategies in SMT solvers [8], [9],
[10]. To this end, Lagniez et al. [12] proposed factoring out
assumptions eagerly, while Belov et al [43] trimmed input
formulae based on proofs. Marques-Silva et al. [44] proposed
a tree search-based algorithm that constructs a solution through

a combination of backtracking and learning new clauses from
conflicts. These strategies are still limited and can not scale.

The next dimension includes the incorporation of learning-
based components in CDCL solvers. This includes learning
to predict conflict causing-variables to guide branch selec-
tion [14]. Wang et al. [13] focus on the bottlenecks in clause
deletion, and predict what value a variable should have. The
closest to our work is SatFormer [17], where Shi et al. try
to directly predict the conflict-causing clauses. Nonetheless,
these are trained on specific theories and can not generalize,
thus limiting their extension to complex SMT theories.

In this work, we propose a fundamentally different ap-
proach, aiming to leverage the LLM’s macro-reasoning capa-
bilities. We are encouraged by recent research on automated
reasoning with LLMs, where they have shown promising
results [29], [29], [30], [33] and a potential to achieve scale.

XI. THREATS TO VALIDITY

First, we only evaluated SAFEMIN on the LeetCode bench-
marks in string theory. This choice is grounded in the inherent
complexity of string constraints and the particular relevance
of these formulae to software engineering, due to being
sourced from real-world coding challenges. Besides, they
involve both string operations (e.g., concatenation, substring)
and linear integer arithmetic operations (e.g., length-based
computations), highlighting SAFEMIN’s potential applicability
to other domains beyond string theory, the results for which
might be different. Second, we used CVC5 [10] as the SMT
solver in our experiments. Thus, the results for Section VII
may vary with other SMT solvers. However, our “sample-
and-enumerate“ framework involving an LLM and SMT-based
verifier is general and can be extended to all SMT solvers.
Third, while we tested our approach on multiple LLMs, the
results for others might vary and requires further investigation.
Fourth, the manual investigation in Section VI might have hu-
man errors. Nonetheless, we employed multiple evaluators to
reach a consensus. Finally, we showed SAFEMIN’s usefulness
in MUS computation and detecting infeasible paths. However,
our approach to safe minimization could also motivate other
tasks, including constraint-based program slicing, testing, etc.

XII. CONCLUSION

This study introduces SAFEMIN, which leverages LLMs
to safely minimize formulae by employing macro-reasoning
on constraint sub-groups. By exploring various reasoning
paths through a “sample-and-enumerate” strategy, SAFEMIN
generates multiple candidate subsets of the constraints while
retaining conflict-causing ones. When applied to searching
non-unique MUSes, it brings substantial advantages, reducing
search space in 94.3% of instances by an average reduction
of 98% and capturing 42.9% more MUSes than traditional
solvers. We showed its usefulness in infeasible path detection.
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