
DeepVD: Toward Class-Separation Features for
Neural Network Vulnerability Detection
Wenbo Wang

Department of Informatics
New Jersey Institute of Technology

New Jersey, USA
ww6@njit.edu

Tien N. Nguyen
Computer Science Department

The University of Texas at Dallas
Texas, USA

tien.n.nguyen@utdallas.edu

Shaohua Wang∗
Department of Informatics

New Jersey Institute of Technology
New Jersey, USA
davidsw@njit.edu

Yi Li
Department of Informatics

New Jersey Institute of Technology
New Jersey, USA

yl622@njit.edu

Jiyuan Zhang
Computer Science Department

University of Illinois Urbana-Champaign
Illinois, USA

jiyuanz3@illinois.edu

Aashish Yadavally
Computer Science Department

The University of Texas at Dallas
Texas, USA

Aashish.Yadavally@utdallas.edu

Abstract—The advances of machine learning (ML) including
deep learning (DL) have enabled several approaches to implicitly
learn vulnerable code patterns to automatically detect software
vulnerabilities. A recent study showed that despite successes,
the existing ML/DL-based vulnerability detection (VD) models
are limited in the ability to distinguish between the two classes
of vulnerability and benign code. We propose DEEPVD, a
graph-based neural network VD model that emphasizes on
class-separation features between vulnerability and benign code.
DEEPVD leverages three types of class-separation features at
different levels of abstraction: statement types (similar to Part-
of-Speech tagging), Post-Dominator Tree (covering regular flows
of execution), and Exception Flow Graph (covering the exception
and error-handling flows). We conducted several experiments to
evaluate DEEPVD in a real-world vulnerability dataset of 303
projects with 13,130 vulnerable methods. Our results show that
DEEPVD relatively improves over the state-of-the-art ML/DL-
based VD approaches 13%–29.6% in precision, 15.6%–28.9% in
recall, and 16.4%–25.8% in F-score. Our ablation study confirms
that our designed features and components help DEEPVD achieve
high class-separability for vulnerability and benign code.

Index Terms—neural vulnerability detection, graph neural
network, class separation

I. INTRODUCTION

Software vulnerability is a defect in software that can be ex-
ploited by attackers. Several automated approaches have been
proposed to detect vulnerable code. The existing vulnerability
detection (VD) approaches can broadly classified into three
categories: program analysis (PA), software mining (SM), and
machine-learning (ML) (including deep learning (DL)). First,
the PA-based VD tools [1]–[10] put the emphasis on specific
types of vulnerabilities, e.g., buffer overflow [7], SQL injec-
tion [8], cross-site scripting [9], authentication bypass [10],
etc. More general types of software vulnerabilities could man-
ifest in several forms, e.g., misuses in software libraries and
frameworks, incorrect exception handling, etc. For those types,
software mining approaches [11], [12] leverage the history of
∗

Corresponding Author

prior vulnerabilities to detect the current ones. The advances
in ML/DL [13]–[18] have enabled the implicit learning of the
patterns of vulnerable code for such detection.

Despite their successes, the ML/DL-based approaches still
have limitations. In their study in the real-world vulnerability
scenarios, Chakraborty et al. [17] reported four key issues with
the state-of-the-art ML/DL-based VD approaches: 1) learning
irrelevant features, 2) inadequate model, 3) data duplication
in training and testing, and 4) data imbalance. While the last
three issues are about the model and training/testing data, the
first issue is about the features relevant to code representation
learning, which is a crucial step as feature engineering in
data science. Using explainable artificial intelligence tech-
nique [19], the authors [17] found that the state-of-the-art
ML/DL-based vulnerability detection models are essentially
learning up the features that are too general and not directly
relevant to the actual cause of the vulnerabilities [17].

Let us explain the limitations of the state-of-the-art DL-
based VD approaches with regard to those points. Russell et
al. [15] treats source code as a sequence of tokens, and does
not consider the program dependencies among statements,
which plays a vital role in VD. In VulDeePecker [13], the
instances of vulnerable and benign code are represented via the
code gadgets, which are built from the program slices starting
at the function calls. SySeVR [14] includes the program slices
from more syntactic units: array usages, pointer usages, and
arithmetic expressions. Moreover, VulDeePecker and SySeVR
use sequence-based, bidirectional LSTM, which treats source
code as sequences, thus do not capture other crucial program
dependencies. To address that, Devign [16], Reveal [17], and
IVDetect [18] leveraged graph neural network models, e.g.,
Gated Graph Recurrent Layers [16], Gated Graph Neural Net-
work (GGNN) [17], Graph Convolution Network [18] to learn
from Data Flow Graph (DFG), Control Flow Graph (CFG),
Program Dependence Graph (PDG), and Code Property Graph
(CPG), a union of code sequences, AST edges, and PDG.

Despite the successes of those graph-based VD approaches,
as reported in [17], they do not focus on the class-separation
features between the vulnerability and benign classes. Those
graph-based representations (CFG, DFG, PDG, CPG) are im-
portant in representing program dependencies and semantics.
However, they often contain many program entities and their
dependencies that are irrelevant to the vulnerability (noises)
and do not help a model better recognize vulnerabilities.

We propose DEEPVD, a graph-based neural network VD
model with the goal of leveraging the features that emphasize
on the class separation between vulnerability and benign cate-
gories. We design DEEPVD with the following insights. First,
as a program is executed through a method, the execution can
flow in two ways: 1) a regular flow from the start of the method
m reaching an exit point of m, and 2) the exception/error
handling flow(s) from the start of m to the exception/error
handling point(s). One of the key reasons for a vulnerability
is the mishandling of exceptions and error cases. For example,
a program could miss a case in the data validation of an input,
leading to an injection attack via a crafted input (Section II).
Thus, for a method m, we capture the program slices from
the input of m to the exception/error handling point(s). Those
slices are combined into a data structure, called Exception
Flow Graph (EFG) [20]. EFG is expected to consist of the
key program elements and their dependencies pertaining the
mishandling of exceptions/errors, leading to vulnerability.

Second, while using EFG to address the exception flows
in a program, we also consider the Post-Dominator Tree
(PDT) [21] of each method for the regular flows. A PDT is
a tree in which each node represents a statement and each
edge represents a post-dominance relation. A statement d is
considered as a post-dominator of another statement s if all
the paths to the exit point of the method starting at s must go
through d. While PDT is simpler than CFG, it could help a
model learn the associations between the executions of s and
d in a regular flow leading to the exit point. If d crashes, the
execution path of s will never reach the exit point.

Third, according to the vulnerability analysis from Check-
marx [22], vulnerable code is often involved to the specific
syntactic types. Thus, we enhance the EFG with a technique
equivalent to the Part-of-Speech (POS) tagging in natural lan-
guage processing (NLP). POS tagging has been shown to
improve the performance of the downstream NLP tasks (text-
to-speech conversion [23], name entity recognition [24], etc.).
Such tagging was also applied in code completion to achieve
high accuracy [25]. For each statement node in the graph
representation, we associate it with a statement type since
a vulnerability is often relevant to specific statement types,
e.g., array declarations/references, pointer declarations/refer-
ences, assignments, and expressions [14], [22]. The statement
types complement to the semantic dependencies captured by
the EFG and PDT, and improve class-separation. EFG and
PDT are encoded and fed into a Label Graph Convolutional
Network (Label-GCN) [26] and Tree-LSTM [27] for VD.

We conducted several experiments to evaluate DEEPVD in
a real-world vulnerability dataset of 303 open-source projects

1 void Jp2Image::printStructure(...) {
2 ...
3 subBox.length=getLong((byte*)&subBox.length,bigEndian);
4 subBox.type=getLong((byte*)&subBox.type,bigEndian);
5 - // subBox.length makes no sense if it is larger than

the rest of the file
6 - if (subBox.length > io_->size() - io_->tell()) {
7 + // subBox.length makes no sense if it is larger than

the rest of the file || 0
8 + if (subBox.length == 0 || subBox.length > io_->size()

- io_->tell()) {
9 throw Error(kerCorruptedMetadata);
10 }
11 DataBuf data(subBox.length - sizeof(box));
12 io_->read(data.pData_,data.size_);
13 }

Fig. 1: CVE-2020-18899: a Denial of Service (DoS) from an
Uncontrolled Memory Allocation in Exiv2 0.27

with 13,130 vulnerabilities. Our empirical results show that
DEEPVD relatively improves over the state-of-the-art ML/DL-
based VD approaches from 13%–29.6% in precision, 15.6%–
28.9% in recall, and 16.4%–25.8% in F-score. The high per-
formance is also achieved across different vulnerability types,
e.g., Denial of Service, Overflow, Execute Code, etc. Our
ablation study confirms that all designed features/components
positively contribute to DEEPVD’s accuracy. With the t-SNE
technique, we show that our proposed features help DEEPVD
achieve better class separation, leading to better distinguish
the vulnerable and benign code. Our sensitivity analysis shows
that the proposed features (e.g., PDT, EFG) are better than the
traditional program graph representations (PDG, CFG, DFG,
CPG) in helping DEEPVD in VD. We also use Lemna [19],
an explainable AI model, to show that DEEPVD indeed uses
vulnerability-relevant statements in its correct prediction. In
brief, the key contributions of this paper include:

1) DEEPVD, a graph-based neural network VD model
that is the first to emphasize on the class-separation fea-
tures (EFG, PDT, calling relations, and statement types)
to help a model better distinguish the vulnerable code and
benign code.

2) Extensive empirical evaluation. Our empirical results
show that DEEPVD achieves better performance than
ML/DL-based VD models due to the better class-
separation features.

Our data and code is available in our website [28].

II. MOTIVATING EXAMPLES

A. Examples and Motivation

Fig. 1 shows the vulnerable code and the fix to a C++
project named Exiv2 0.27 with the Common Vulnerabilities
and Exposures (CVE) CVE-2020-18899: “An uncontrolled
memory allocation in Exiv2 0.27 allowing attackers to cause
a denial of service (DOS) via a crafted input”. The issue
was an integer overflow with the unexpected value of zero
for subBox.length. This made the function data() at line 11
attempt to consume too much memory, leading to a crash.
Thus, to fix this vulnerability, a developer added an extra
condition subBox.length == 0 (line 8).

1 public JSONObject rename() {
2 String oldFile = this.get.get("old");
3 String newFile = this.get.get("new");
4 oldFile = getFilePath(oldFile);
5 ...
6 String path = oldFile.substring(0, pos + 1);
7 File fileFrom = null;
8 File fileTo = null;
9 try {

10 fileFrom = new File(this.fileRoot + oldFile);
11 fileTo = new File(this.fileRoot + path + newFile);
12 if (fileTo.exists()) {
13 if (fileTo.isDirectory()) {
14 this.error(sprintf(lang("DIRECTORY_ALREADY_EXISTS");
15 error = true;
16 } else { // fileTo.isFile
17 this.error(sprintf(lang("FILE_ALREADY_EXISTS").));
18 error = true;
19 }
20 } else if (!fileFrom.renameTo(fileTo)) {
21 this.error(sprintf(lang("ERROR_RENAMING_DIRECTORY"));
22 error = true;
23 }
24 } catch (Exception e) {
25 if (fileFrom.isDirectory()) {
26 this.error(sprintf(lang("ERROR_RENAMING_DIRECTORY").;
27 } else {
28 this.error(sprintf(lang("ERROR_RENAMING_FILE"),..));
29 }
30 error = true;
31 }...

Fig. 2: CVE-2020-19155: Improper Access Control in Jfinal

The input value subBox.length was not validated, and
the exception/error-throwing statement at line 9 was sup-
posed to catch the case with the unexpected zero value of
subBox.length. This leaded to the uncontrolled large memory
allocation (line 11), i.e., the execution flow to the exception
handling-point was improperly constructed. The correct flow
goes to line 9 if subBox.length=0 as in the code after fix.

To be able to detect such an improper exception/error
handling cases, one needs to examine both data and control
dependencies among the program elements that are involved
in the exception flow. For example, we can observe that there
exist a data dependency between the assignment statement to
subBox.length at line 3 and the if statement referring to
subBox.length at line 6, and the control dependency between
that if statement and the throw statement at line 9.

Observation 1. A model could investigate the data and control
flows toward the exception/error-handling points to detect a
potential vulnerability.

Fig. 2 shows the vulnerable code in the JFinal project for
the CVE record CVE-2020-19155, reporting on “Improper
Access Control in Jfinal CMS v4.7.1 and earlier allows remote
attackers to obtain sensitive information and/or execute arbi-
trary code via the ’FileManager.rename()”. In this vulnerabil-
ity, despite of multiple validations for the renaming operation,
there is no restriction or filtering on the new file name passed
by the user, which allows the malicious attacker to rename the
file to a jsp file. For example, an attacker could login to the
background, upload a file named shell.jpg with a malicious
content, rename the file from shell.jpg to shell.jsp, and
access the shell and execute the malicious code.

Fig. 3: EFG and PDT for the Example in Fig. 1

The exit points for exception handling were defined with
this.error(...) at lines 14, 17, 21, 26, and 28. However,
none of them verifies the validity of the new file name new-

File. That is, there is a missing flow from the variable newFile

to fileTo, to a new exception-handling point, for a needed
validity checking on the file name. This example also suggests
that a model can examine the flows from the variables to the
exception-handling points for vulnerability detection.

While several state-of-the-art ML-based vulnerability de-
tection (VD) approaches have explored various program de-
pendencies with different graph-based program representations
such as PDG [13], [18], CFG [16], DFG [16], and CPG [17],
none of them has explored the flows to the exception-handling
points. In addition, too much information from those graphs
might add noises or redundant knowledge. An exception flow
is defined as an inter-procedural program slice from the entry
point to the exception-handling points. All of those slices con-
necting together form an Exception Flow Graph (EFG) [20].

B. Key Ideas

To improve accuracy in VD, we aim to extract the features
of source code that improve class separability, i.e., the sepa-
ration between the vulnerability and benign categories.

1) Exception Flow Graph (EFG): As shown in Sec-
tion II-A, EFG is expected to consist the key program elements
and their dependencies pertaining to the vulnerability. EFG is
expected to help a model distinguish the key characteristics
in the improper and proper handling of exceptions and error
cases, which is one of the key aspects of vulnerabilities.

2) Post Dominator Tree (PDT): While EFG is for ex-
ception flows, to accommodate the regular flows, we also
build the Post-Dominator Tree (PDT) [21] in which each
node represents a statement and each edge represents a post-
dominance relation. A statement d is considered as a post-
dominator of another statement s if all the paths to the exit
point of the method starting at s must go through d.

In Fig. 1 and Fig. 3, the statement at line 11, s11, is a post-
dominator of the assignment statement at line 6, s6, because all
the paths to the exit point starting at that assignment statement
must go through line 11. If s11 crashes, all the execution paths
from the line 6 will never reach the exit point. In other words,
if the condition at s6 is incorrect, the execution might crash
at the statement s11, which is the case of this vulnerability.

Fig. 4: DEEPVD: Architecture Overview

While being simpler than CFG and complementary to EFG,
PDT is expected to help a model learn the dependen-
cies between the executions of the statements and their
post-dominators in the regular flows leading to the normal
exit points in a program.

Fig. 3 displays the graph combined from the EFG and PDT
for the source code in Fig. 1. The node label is the line number
in the source code. The exception flow graph is from s3 → s6
→ s9 (solid arrows). The PDT from s12 → s11 → s6 → s4 →
s3 (dash arrows). First, the if statement s6 did not have the
correct condition (missing the checking on subBox.length).
Thus, in the case of subBox.length being assigned with 0 at
line 3, we can see that via EFG, the execution will not end
at the node s9. Via the PDT, all the paths from s6 to the exit
point of the method must go through the statements s11 and
s12. Thus, the consequence of incorrect condition at s6 could
lead to the incorrect result or crash at either s11 or s12.
That is, the crash at s11 could be an indication of incorrect
condition at s6. Second, following the edges in the PDT, a
normal execution from s3 to the end of the method must go
through s4, s6, s11, and s12. Thus, we expect that an ML/DL
model can learn to distinguish the vulnerable code and the
benign one through the conditions leading to the exception-
handling points and normal exit points. That is, the model
could learn from EFG and PDT the class-separation features
for vulnerability detection.

3) Statement Types as Class-Separation Feature: We
also associate with each node a label indicating the statement
type. The rationale has two folds. First, from Checkmarx’s vul-
nerability analysis [22], vulnerable code occurs at the state-
ments with specific syntactic types including array declara-
tions/references, pointer declarations/references, assignments,
and expressions [14], [22]. Thus, tagging the nodes with the
statement types would help a model distinguish better the
vulnerable and benign code. Second, Part-of-Speech tagging
has been shown to be effective in several downstream tasks in
both NLP [23], [24] and software engineering [25].

III. APPROACH OVERVIEW

Fig. 4 displays DEEPVD’s architecture. The model receives
as input the source code of all methods in training. For
prediction, it determines if a method is vulnerable or not.
The training and predicting processes share all the components
except that during training, the labels, V (vulnerability) and B
(benign), are available for the methods in the training dataset.
For each method, we extract the following features.

1) Code Sequence: The sequence of code tokens for a
method M is important in VD because it contains concrete
lexical values. We use a lexer to parse and collect all the lexical
code tokens in the given method. We consider a statement as
a sentence and a code token as a word, and use an embedding
model to produce the vector representations for all the code
tokens. After obtaining the embeddings for all the tokens, we
use Gated Recurrent Unit (GRU) [29] to produce the vector for
the entire sequence. Then, we apply Spatial Pyramid Pooling
(SPP) [30] to progressively reduce the spatial size of the vector
produced by the GRU. Finally, we obtain the feature vector
FCS representing the code sequence in a given method M .

2) Long Paths on AST: As an important part of source
code, Abstract Syntax Tree (AST) carries the structural and
syntactic information. Directly using the AST structure with
tree-based embedding model could incur the high computation
cost. Instead, we choose the long paths over the AST built
from the method’s body. A long path is a path that starts from
a leaf node and ends at another leaf node and passes through
the root node of the AST. As shown in previous works [31],
[32], the AST structure can be captured and represented via
the paths with certain lengths across the AST nodes. Taking
the nodes in the long paths, we use an embedding model, an
attention-based GRU layer [33] (for the AST structure), and
then an SPP [30] to build the vector FLP representing the long
paths for the given method (Section IV).

3) Post-Dominator Tree (PDT): We first build the PDT
according to the algorithm in Ferrante et al. [21]. Because

PDT is tree-structured, we choose to perform representation
learning for PDT using Tree-LSTM [27], a tree-based neural
network model that has been shown to perform well in
source code. An alternative design would be adding the post-
dominator relations into the EFG and use a graph-based neural
network model to learn the representations. We do not choose
that alternative because a graph-based model must learn to
distinguish both types of relations in PDT and EFG.

Each node in the PDT is a statement. We consider tokens
as words and statements as sentences, and use an embedding
model to build the vectors for all the tokens. The embeddings
will go through SPP, and then a Tree-LSTM model is used to
produce the feature vector FPDT for the method (Section V).

4) Exception Flow Graph (EFG): We follow the algo-
rithm in Allen and Horwitz [20] to build the EFG for the
given method. As in the PDT, each EFG node represents a
statement, thus, we perform the same procedure to produce
the vector for each statement using a word embedding model
and a SPP layer. After this step, we obtain a graph structure
in which each node (statement) is represented by a vector.
Finally, we feed that graph structure as the input of a Label-
GCN model to produce the feature vector FEFG (Section VI).

5) Calling Relations: For a method M , we consider the
calling/called statements in the caller/callee methods. Together
with the calling/called statements in M and the calling/called
statements of M , we build a star graph. Each node in that
graph represents a statement, thus, for the node content, we
use the same above procedure to build the vector for the
statements. We also apply network embedding Node2Vec [34]
to encode the nodes. The vectors representing the node content
and the calling structures are combined to produce the feature
vector FCR (Section VII). Finally, a multi-layer perceptron is
used on all the feature vectors to classify the method.

IV. LEARNING FEATURE EMBEDDINGS FOR LONG PATHS

Because learning the embeddings for the code sequence
feature is straightforward as explained in Section III, we will
explain our procedure to learn the feature embeddings for the
remaining feature types.

We adopted the long-path technique from Li et al. [35] to
approximate the AST structure via the paths on the AST.

Definition 1 (Long Path). A long path in AST is a path that
starts from a leaf node, ends at another leaf node, and passes
through the root node of the AST.

The reason for a path to start and end at leaf nodes is that
the leaf nodes are terminal nodes with concrete lexical values.
The long path from two leaf nodes captures their structural
relations via the intermediate nodes. Thus, with a large number
of long paths, we expect to approximate the AST structure.
Fig. 5 shows a few examples of long paths on the AST of
the vulnerable code in Fig. 1. An example long path (green
color) starts from the leaf node io_→size, passing through the
nodes <operator>.subtraction, <operator>.greaterThan,
CONTROL_STRUCTURE, BLOCK, to the root node Jp2Image ::

printStructure, and finally going down to io_→tell.

Jp2Image::printStructure

BLOCK... ...

IF-STATEMENT

BLOCK<operator>.greaterThan

throw

Error

kerCorruptedMetadata

<operator>.subtraction

io_->size io_->tell

<operator>.fieldAccess

subBox FIELD_IDENTIFIER

Path 1
Path 2
Path 3

Fig. 5: Examples of Long Paths on the AST for Fig. 1

Fig. 6: Learning Long-Path Feature Embeddings

Let us explain how we build the feature embeddings for
the long paths (Fig. 6). First, the set of long paths in a given
method is extracted: P = (T,D), where T = {e1, e2, ..., eM}
is the set of tokens/nodes from AST, and D = {S1, S2, ..., SN}
is a set of long paths (i.e., an ordered list of tokens/nodes). The
token at the position j in Si is denoted as Si[j] and Si[j] ∈ T .
We then use an embedding model to build the vectors for each
token in T as we treat a long path as a sentence. A token Si[j]
is represented as xj ∈ Rd and a long path Si as Hi ∈ Rm×d.

After obtaining the embeddings for all the tokens, we use
GRU [33] to produce the vector for the entire sequence by
summarizing the sequence of vectors Hi into one feature
vector. We choose GRU because it can adaptively capture the
dependencies of different sequence length scales. GRU also
has gating units that modulate the flow of information inside
the unit, however, without having a separate memory cells
compared to LSTM [36]. For each GRU unit, we define a
hidden gate ht, an update gate ut and a reset gate rt. The
transition equations of GRU are as follows:

hj = (1− uj)hj−1 + uj h̃j , (1)

uj = σ(Wuxj + Uuhj−1), (2)

h̃j = tanh(Wxj + U(rj ⊙ hj−1)) (3)

rj = σ(Wrxj + Urhj−1), (4)

where σ is a logistic sigmoid function, ⊙ is an element-wise
multiplication. Then the last hidden state vector hlast ∈ Rd

can be treated as the representation of Si. Stacking all the last
hidden state vectors of Si in D, then we get the representations
of D, namely Q (Q ∈ RN×d).

Next, we use a Spatial Pyramid Pooling (SPP) layer to
normalize it into a d-dimensional vector: FLP = SPP (Q,L),
where L is the set of pooling sizes of SSP layer.

Fig. 7: Learning PDT Feature Embeddings

V. LEARNING FEATURE EMBEDDINGS FOR PDT

Let us explain how DEEPVD learns the feature embeddings
for the Post-Dominator Tree (PDT).

Definition 2 (Post-Dominator Tree). Given a Control Flow
Graph G, a node p is said to post-dominate (p-dom) a node
v if every path from v to the exit point in a method contains
p. p is called a post-dominator of v.

A node m is called the immediate post-dominator of v if
m ̸= v; m p-dom v; ∀d ̸= v, d p-dom v ⇒ d p-dom m. A PDT
is a tree where each node’s children are those nodes that it
immediately post-dominates (im-pdom).

PDT describes the post-domination relations among the
statements in a method. PDT can be constructed by Control
Flow Graph (CFG) [37]. In a CFG G = (V,E′), where V
is a set of nodes with each node representing a statement of
control predicate, and E′ is a set of direct edges with each
edge representing the possible flow of control between a pair
of nodes. E is the subset of E′ in which the edges satisfy the
immediate post-domination condition in Definition 2.

Part of Fig. 3 shows the PDT: n12 im-pdom n11, n11 im-pdom

n6, n6 im-pdom n4, and n4 im-pdom n3. n4 im-pdom n3

because all the execution paths from the statement s3 to the
exit point of the method must go through s4. Node n9 is not in
the PDT because no execution path to the exit point must go
through it. To build the PDT of a method, we use Joern [38]
to generate CFG, then build the immediate post-dominators of
each node to form the PDT.

Let us explain how we build the feature embeddings (Fig. 7).
Each node in the PDT represents a statement in the given
method. We first tokenize each statement into the code tokens.
We then consider each statement as a sentence and each token
as a word, and use an embedding technique [39] to build
the embeddings for the tokens. Each node/statement now is
represented by a 2D matrix Hv ∈ Rm×d, where m is the
number of tokens in the statement, d is the dimension of token
embeddings. Because the number of tokens m in a statement
varies, we use a Spatial Pyramid Pooling (SPP) layer to nor-
malize the statement representation matrix Hv into a uniform
size, and reduce its total size: xv = SPP (Hv, L), where L is
a set of pooling layer’s sizes, xv ∈ Rd′

(d′ =
∑
l∈L

l2), in which

xv is the pooled representation of the node v with the fixed
length d′. For example, we use a 4-level spatial pyramid, the
pooling sizes of each level are L = {8×8, 4×4, 2×2, 1×1}
(85 total), then xv will be a vector with length 85.

After this step, we obtain the PDT T (V,E) in which each
statement/node is represented by a vector produced from the
SPP layer. We then use the Child-Sum Tree-LSTM [27] to
capture the structure of T into the final representation FPDT .
Let C(v) denote the set of children of the node v. For each
Tree-LSTM unit, we define an input gate iv , a forget gate fv ,
an output gate ov , a memory cell cv and a hidden state hv .
Then, the transition equations are as follows:

h̃v =
∑

k∈C(v)

hk, (5)

iv = σ(Wixv + Uih̃v + bi), (6)

fvk = σ(Wfxv + Ufhk + bf), k ∈ C(v), (7)

ov = σ(Woxv + Uoh̃v + bo), (8)

uv = tanh(Wuxv + Uuh̃v + bu), (9)

cv = iv ⊙ uv +
∑

k∈C(v)

fvk ⊙ ck, (10)

hv = ov ⊙ tanh(cv) (11)

where σ denotes the logistic sigmoid function, ⊙ denotes
element-wise multiplication; W , U are the weight matrices; bs
are the bias vector parameters. Finally, the hidden state vector
hroot of the root can be used as the feature vector FPDT .

VI. LEARNING FEATURE EMBEDDINGS FOR EFG

For the given source code, we follow Allen and Horwitz’s
algorithm [20] to extract the EFG. Compared to CFG, EFG
adds exception flows, which are the execution paths under the
exception-handling conditions to the exception-handling exit
points [40]. The EFG is defined as G = (V,E), where V is a
set of nodes with each node representing a statement, E is a
set of direct edges with each edge representing the control flow
edge or exception flow edge. In Fig. 3, each post-dominance
edge is a reverse of a control flow edge. Among all the control
flow edges, n6 → n9 is an exception flow, which is executed
only if the condition of the statement at line 6 (n6) holds.

Fig. 8: Learning EFG Feature Embeddings

Fig.8 illustrates how we build the feature embeddings for
EFG G = (V,E). First, we use the same embedding model as
building the feature embeddings for PDT in Section V. That is,
we process the statements, use an embedding technique, and
then use a SPP layer to obtain the vector for each statement.
The difference is that instead of obtaining the tree structure of
PDT whose nodes are the statement embeddings, we obtain

Fig. 9: Learning Feature Embeddings for Calling Relations

now the graph structure of EFG in which each node in V is
replaced by an embedding xv ∈ Rd with the fixed length d.

Moreover, we also consider the type of a statement by
using the type of the AST node of the statement. For ex-
ample, in Fig. 5, the type of the statement at line 6 is
IF_STATEMENT, while the type of its condition expression is
<operator>.greaterThan.

Next, we use Label-GCN [26] to capture the structure of
G with the feature vector FEFG. The idea of Label-GCN is
that the knowledge of the labels surrounding a center node can
help learn the feature of the center node [26]. Compared to the
traditional GCN [41], Label-GCN adds a label for each node,
then modify the first layer of a GCN to include the labels of
the neighbors. Finally, we aggregate the features of nodes at
the last layer of the GCN model using a mean operator to
obtain the feature embedding FEFG for the EFG.

VII. LEARNING FEATURE EMBEDDINGS FOR
CALLING RELATIONS

For a method M under study, we capture the calling
relations between M and its callers and callees. Since we
consider all the methods in a project, we keep only one hop
of calling relations from and to the method M . To obtain the
callers/callees of M , we analyze the source code of the entire
project. We represent M and its callers/callees as a star graph
G = (V,E), where a node v ∈ V is a method and a directed
edge (v1, v2) ∈ E represents the method v1 calling method v2.

Note that not all the statements in a caller or callee of M
are directly relevant to the potentially vulnerable statements
in M . Thus, to focus on the class-separation features, instead
of taking all the statements in a caller/callee, we extract only
the statements in a caller/callee that are directly relevant to
the method M . Specifically, we first generate the PDG for
the method and its callers/callees. For a caller method of M ,
there is a call to M(...) inside its body. We collect only the
statements that have data and control dependencies via the
arguments or the return value of the call to M . For a callee
method N of M (i.e., M calls N), we collect in the method N
all the statements having the data/control dependencies with
the formal arguments of N . For all of those statements in the
callers/callees, we collect the code sequences.

Fig. 9 shows the process of learning feature embeddings
for the calling relations for M . We collect the code tokens
of the relevant statements as explained earlier. Then, we
make DEEPVD learn the structure and content separately and

combines the embeddings. We use Node2Vec [34] to encode
the graph to get the node embedding FS of the method M .
For each caller or callee MC , we have its code sequence
representation: PC = (T,D), where T = {e1, e2, ..., eM} is
the set of tokens, D = {S1, S2, ..., SN} is a set of sequences
(for statements). We use an embedding technique to build
the embedding of each token as a statement is considered as
a sentence. Each statement now can be represented as Hi.
We stack all statement embeddings to get the representation
Q ∈ Rn×m×d of the entire caller or callee, where n is the
number of code sequence in MC , m is the number of tokens
in a statement and d is the dimension of each token embedding.
Similar to feature learning for long paths, we use GRU and
SPP layer to summarize it into a 1-D representation vector FC .
Next, we multiply FC by FS to merge the structure and content
embeddings, then concatenate them and use a fully connected
layer to reduce its size. Finally, we obtain the feature vector
FCR for the calling relations of the callers/callees of M .

VIII. EMPIRICAL EVALUATION

A. Research Questions

For evaluation, we seek to answer the following questions:
RQ1. Comparison with state-of-the-art DL-based Vulnera-

bility Detection Approaches. How well does DEEPVD
perform compared with the DL-based VD approaches?

RQ2. Detection on Different Types of Vulnerabilities. How
does DEEPVD perform on different vulnerability types?

RQ3. Sensitivity Analysis. How do different components in
DEEPVD affect its overall performance?

RQ4. Class Separability. How does DEEPVD provide the
separability of the feature vectors of two classes (vul-
nerable and benign code) compared with the baselines?

An approach extracts the features from source code and
converts them into a numeric feature vector/embedding to
be used to train a vulnerability detection (VD) model. The
performance of the approach/model depends on how separable
the feature vectors of the two classes of vulnerable and benign
code. This characteristic is referred to as the separability of the
classes. The greater the separability, the easier it is for a model
to detect vulnerabilities. Thus, the answer to RQ4 helps show
how well DEEPVD provides the separability of the classes,
which has impacts on its performance. The answer to RQ4
would show that the high accuracy in VD can be attributed to
DEEPVD’s design for feature embeddings.

RQ5. Learning Relevant Features. How well DEEPVD as-
sign the importance to the vulnerability-related code
features to make its prediction?

It is important to understand what features a model uses
to make its prediction. The answer to RQ5 helps understand
whether a model uses the vulnerability-relevant features by as-
signing a greater importance level, thus showing that DEEPVD
learns well vulnerability-relevant features for VD.

B. Experimental Methodology
1) Data Collection: We collected a dataset of vulnerabil-

ities from the CVE database [42]. Each CVE entry provides
the bug-fixing commit links to the code patches for each
vulnerability. Our mining tool first verified the link from a
CVE entry to make sure that it contains the correct project
name. If the commit number is available in the link, our tool
verifies that the link refers to the correct commit. We use
Git [43] to clone the source code repository to a local machine.
For each bug-fixing commit, we use git checkout command
to collect its buggy version Vbug and fixed version Vfix. Each
modified method M in Vfix is labeled as benign, and M ′ in
Vbug is labeled as vulnerable. Finally, the dataset contains 303
large and popular C/C++ projects covering the CVEs from
2000-2021 with 13,130 vulnerable methods. We use Scitool
Understand (version 6.0.1077-Linux-64bit) [44] to analyze
each project and collect the callers/callees of each method.

2) Experimental Setup and Procedures:
RQ1. Comparison with State-of-the-Art DL-based Vulner-
ability Detection Approaches

Baselines. We compare DEEPVD with the following DL-
based baselines: VulDeePecker [13], Devign [16], SySeVR
[14], Russell et al. [15], Reveal [17], and IVDetect [18].

Procedure. We use 13,130 vulnerable methods and randomly
select the same number of non-vulnerable methods from the
fixed version projects, to build a dataset with the vul:benign
ratio of 1:1. We randomly split all the data 80%, 10%, 10%
on the project basis without changing the vul:benign ratio for
training, tuning, and testing, respectively. We also evaluated
DEEPVD in the real-world vulnerability setting as well with
a 9:1 benign to vulnerability ratio. In this experiment, we
randomly selected 10% of the vulnerable instances in the test
set 10 times, and finally took the average of accuracies.

Parameter Tuning. We use AutoML [45] on all models to
automatically tune hyper-parameters on the tuning dataset. We
tuned DEEPVD with the parameters batch size, hidden size,
learning rate, dropout rate. The hyper-parameters we tuned
for the baselines can be found in their papers. We choose the
hyper-parameters with the best performance for a model.

Evaluation Metrics. We use the following metrics to mea-
sure the effectiveness of a model: Recall = TP

TP+FN ,
Precision = TP

TP+FP , and Fscore = 2∗Recall∗Precision
Recall+Precision .

where TP = True Positives; FP = False Positives; FN = False
Negatives; TN = True Negatives.
RQ2. Detection on Different Types of Vulnerabilities.

We use the same trained model, training and testing datasets,
baselines, and evaluation metrics as in RQ1. However, we

TABLE I: Comparison with DL-based VD Approaches (RQ1)

Approach Precision Recall F-score

VulDeePecker 0.55 0.77 0.64
SySeVR 0.54 0.74 0.63

Russell et al. 0.54 0.72 0.62
Devign 0.56 0.73 0.63
Reveal 0.62 0.69 0.65

IVDetect 0.54 0.77 0.67

DEEPVD 0.70 0.89 0.78

tabulate the results based on different types of vulnerabilities.
The type of each vulnerability is recorded in CVE Details from
which we mined our data.
RQ3. Sensitivity Analysis. We conduct an ablation study to
evaluate the impact of different components in DEEPVD on
its performance: PDT, EFG, and Calling Relations. We built
a base model with only code sequences (NS) and long paths
(LP), incrementally added each of those components to the
base model, and compared the results to evaluate the impacts.
We also added to the base model (NS+LP) different types of
traditional graph representations to compare with DEEPVD to
evaluate our proposed features in PDT, EFG, and CR.
RQ4. Class Separability. We use t-SNE plots to investigate
the class separability. t-SNE [46], a dimensionality reduction
technique, visualizes high-dimensional datasets into a smaller-
dimensional feature space. The separation in that space is
an indication of whether the vulnerability and benign classes
are distinguishable. We also compute the Euclidean distance
between the centroid of each of the two classes. The larger
the distance the greater class separation a model exhibits [47].
RQ5. Learning Relevant Features. To find whether a model
uses vulnerability-relevant features in its prediction, we use
Lemna [19], an explainable AI technique, to identify the
importance of features. Lemna assigns an entity in the input
a score indicating a contribution of that entity toward the
decision of a model. Similar to Reveal [17], for the graph-
based models, we use the activation value of each vertex in
the graph to obtain the feature importance.

IX. EMPIRICAL RESULTS

A. Comparison with State-of-the-Art, DL-based, Vulnera-
bility Detection Approaches (RQ1)

As seen in Table I, DEEPVD improves over all the baselines
in all the metrics. Specifically, DEEPVD relatively improves
over the baseline models from 13%– 29.6% in Precision, from
15.6%–28.9% in Recall, and from 16.4%–25.8% in F-score.

To understand how DEEPVD is complementary to the base-
lines, we compute how the top-100 result from DEEPVD over-
lap with that from the top-performing baseline, IVDetect [18].
As seen in Fig. 10, DEEPVD can detect 19 vulnerable methods
that IVDetect missed, while IVDetect can detect only 10
vulnerable methods that DEEPVD missed. Both detected the
same 25 vulnerabilities. This result shows that DEEPVD not
only detects more vulnerabilities than the baseline approaches,
but also is complementary to them well.

Fig. 10: Overlapping Results between DEEPVD and IVDetect

1 BIO *PKCS7_dataDecode(PKCS7 *p7, EVP_PKEY *pkey, BIO

*in_bio, X509 *pcert) {
2 ...
3 if (evp_cipher != NULL) {
4 ...
5 if (pcert == NULL) {
6 for (i = 0; i < sk_PKCS7_RECIP_INFO_num(rsk); i++) {
7 ri = sk_PKCS7_RECIP_INFO_value(rsk, i);
8 if (pkcs7_decrypt_rinfo(&ek, &eklen, ri, pkey) < 0)
9 goto err;
10 ERR_clear_error();
11 }
12 } else {...}
13 }

Fig. 11: CVE-2019-1563: A vulnerable code in OpenSSL with
186 lines of code (after removed comments and empty lines).
ReVeal and IVDetect failed to detect it but DEEPVD detected.

Examining the results, we found that DEEPVD often per-
formed better than the best baselines, Reveal [17] and IVDe-
tect [18], in the code with complex PDGs (which IVDetect
uses as a key feature for detection) and CPGs (which Reveal
uses for detection). Moreover, DEEPVD detects vulnerabilities
well in the code with improper exception/error-handling.

Fig. 11 shows the vulnerable code from OpenSSL that was
reported in CVE-2019-1563. The code (186 lines of code) has
the PDG with 145 nodes and 477 edges, and the CPG with 622
nodes and 1,393 edges. In contrast, PDT+EFG has 145 nodes
and 295 edges (including the error-handling flow from line
8 to lines 9–10). Thus, complex PDG or CPG produce much
noise for IVDetect and Reveal, which missed this vulnerability.
DEEPVD with its PDT+EFG features detects well this type of
vulnerability with improper error-handling (e.g., the incorrect
code at line 8, which was fixed with an additional condition).

In the setting of 9:1 benign-to-vulnerability ratio, DEEPVD
achieves F-score of 45.3% while the best baseline, IVDetect,
achieves F-score of 25.4%. Thus, DEEPVD exhibits a consis-
tent improvement trend over IVDetect while outperforming it
by 78.3% in F-score. This is lower than that in Table I due to
the imbalance data between benign and vulnerability classes.

B. Detection on Different Types of Vulnerabilities (RQ2)
Table II shows DEEPVD’s result for the most five popular

vulnerability types in the dataset. For Denial of Service (DoS),
with the highest number of vulnerabilities (1,636) in our
dataset, it detects well with the F-score of 70% (second highest
F-score value among the top-5 vulnerability types behind
Obtain Information with 75%). For Execute Code, it achieves
only 58% in F-score with high recall (95%) but lower precision

TABLE II: DEEPVD’s Result on Vulnerability Types (RQ2)

Vulnerability Type TN FP FN TP Total Precision Recall F-score

1 Denial Of Service 424 490 64 658 1,636 0.57 0.91 0.70
2 Overflow 225 371 28 340 964 0.48 0.92 0.63
3 Execute Code 129 279 11 202 621 0.42 0.95 0.58
4 Memory corruption 102 190 9 162 463 0.46 0.95 0.62
5 Obtain information 63 45 7 76 191 0.63 0.92 0.75

TABLE III: Contributions of Different Features (RQ3)

Variant Precision Recall F-score

1. NS + LP 0.55 0.76 0.63
2. NS + LP + PDT 0.64 0.80 0.71
3. NS + LP + EFG 0.64 0.83 0.72
4. NS + LP + PDT + EFG 0.66 0.85 0.74
5. NS + LP + PDT + EFG + CR 0.69 0.87 0.77
6. NS + LP + PDT + EFG + CR + Stmt Types 0.70 0.89 0.78
NS: Natural code Sequence; LP: Long Path; PDT: Post-Dominator Tree;

EFG: Exception Flow Graph; CR: Calling Relations

(42%). Examining this, we found that DEEPVD did not handle
well the cases with the manipulation of string literals/values.

For the other types of vulnerabilities (not shown), the F-
score values are also high. For example, DEEPVD detected
with F-score of 83%, 73%, and 71% for Cross-site scripting,
Restriction bypass, and Privilege Gaining, respectively.

Examining the results, we found that many Denial Of
Service (DOS) vulnerabilities are involved with the improper
exception/error-handling. For example in Fig. 11, the DoS
vulnerability involves the mis-handling of the error in line 8.

C. Sensitivity Analysis (RQ3)
1) Contributions of Different Features: Table III shows

the performance of different variant models, as we incremen-
tally added one feature at a time to the base model with natural
code sequences and long paths (NS+LP).

Comparing the rows (1) and (2), adding the PDT as features,
there are the relative improvements of 16.4%, 5.2%, and
11.4% in Precision, Recall, and F-score, respectively. This
result shows that PDT helps detect more precisely and more
completely the vulnerable code than NS+LP. This is reasonable
because NS+LP does not consider any execution flow at all,
while PDT considers the post-dominator relations.

Comparing the rows (1) and (3), adding the EFG as features
creates the relative improvements of 16.4%, 6.3%, and 13.2%
in Precision, Recall, and F-score, respectively. This result
shows that EFG helps more than PDT in covering more vul-
nerabilities and EFGs are more relevant to the vulnerabilities.

Comparing the rows (4) and (2), adding EFG to NS+LP+PDT

creates the improvements from 64% to 66% in Precision,
from 80% to 85% in Recall, from 71% to 74% in F-score.
Comparing (4) and (3), the improvement in Recall is from 83%
to 85%. Thus, EFG contributes to better recall more than PDT.

Comparing the rows (5) and (4), we see that adding calling
relations has the improvements from 66% to 69% in Precision,
from 85% to 87% in Recall, and from 74% to 76% in F-
score. Calling relations among the methods provide the global

TABLE IV: Impacts of PDT+EFG and other graphs (RQ3)

Variant Precision Recall F-score

1. NS + LP 0.55 0.76 0.63
2. NS + LP + CFG 0.63 0.81 0.71
3. NS + LP + DFG 0.63 0.79 0.70
4. NS + LP + PDG 0.68 0.76 0.72
5. NS + LP + CPG 0.58 0.83 0.68
6. NS + LP + PDT + EFG 0.66 0.85 0.74
7. NS + LP + PDT + EFG + CR 0.69 0.87 0.77
8. NS + LP + PDT + EFG + CR + Stmt Types 0.70 0.89 0.78

context among the methods while PDT+EFG provides the
internal context within individual methods. This result shows
that global context complements to the internal context for VD.

Finally, comparing the row (6) (DEEPVD) and the row (5),
the statement types help further improve both Precision and
Recall, as well as F-score as a result.

2) Comparison of the Impacts of PDT+EFG and Tradi-
tional Graphs: Table IV shows the performance of different
variants when we added different traditional program graphs
to the base model NS+LP. We compare them with the variants
of DEEPVD using PDT+EFG and PDT+EFG+CR.

First, comparing the row (7) and each row (2)–(5), we can
see that PDT+EFG provides better features than any of the
traditional program graphs (CFG, DFG, PDG, and CPG).

Second, comparing the rows (2)–(4) with (1), we can see
that the impacts of CFG, DFG, and PDG on improving the
base NS+LP are similar (0.71, 0.70, 0.72 in F-score), while the
variant with PDG achieves highest precision with lowest recall
among them. That could be explained by the fact that PDG
provides more details on dependencies than CFG and DFG,
thus, the corresponding variant model is more precise but
would miss more vulnerabilities. In contrast to the case with
PDG, the variant model NS+LP+CPG produces lower precision,
but higher recall, leading to lower F-score than the variant
models with CFG, DFG, and CPG. That could be due to that
CPG consists of more program dependencies and properties,
leading to covering more vulnerabilities. However, CPG could
add more noises, leading to imprecision in VD.

Third, comparing the variant model at row (6) and the
previous ones, the combination of PDT and EFG contributes
more than each of the traditional graphs. Compared with the
variant with PDG, despite that having slightly lower precision
(0.66 vs 0.68), the variant with PDT+EFG has higher recall
(0.85 vs 0.76), leading to higher F-score (0.74). This is due
to the fact that (1) PDT+EFG is less complex than PDG,
and (2) PDT+EFG has more class-separation features, leading
much higher recall and higher F-score. Finally, DEEPVD with
PDT+EFG, calling relations, and statement types, achieves the
highest in all metrics. The calling relations (CR) add the global
context among the methods, while together with PDT+EFG,
the statement types help with the internal context for VD.

D. Class Separability (RQ4)
1) t-SNE Plots: Fig. 12 illustrates the t-SNE plots for

DEEPVD and the baseline models when we projected the

Fig. 12: t-SNE Plots Illustrating the Separation between Vul-
nerability (denoted by +) and Benign (denoted by o) Classes

Fig. 13: Comparison of Silhouette Plots for Embeddings

vectors for all 4,606 instances (2,303 vulnerable and 2,303
benign ones). As seen in Fig. 12b–g, the baseline models
exhibit a significant degree of overlap in the feature space
between the two classes of vulnerability and benign code. This
is also reflected by the relatively low distances between the
centroids for the baseline models. The centroid distances for
the baseline models range from 0.01–0.09, with the lowest
being from Russell et al. (0.01). All three graph-based models
(IVDetect, ReVeal, and Devign) have higher centroid distances
of 0.09, 0.08 and 0.03. As seen in Fig. 12b–g, the vulnerability
class is almost inseparable from the benign class in the
feature space. The lack of class-separation explains why the
baseline models (despite that some of them using graph neural
networks) did not perform well in vulnerability detection.

With the designed features emphasizing on class separation,
DEEPVD has improvements over the baseline models. Com-
pare the centroid distances with the other graph-based neural
network approaches (Fig. 12), DEEPVD exhibits the higher
separation between the vulnerable and benign classes: 38%
and 48% relatively higher than the top two baseline graph-
based models in IVDetect and ReVeal, respectively. Compared
with VulDeePecker, Devign, SySeVR, and Russell et al.,
DEEPVD has 2.57x, 3.96x, 5.17x, and 7.23x, respectively,
higher separation between the vulnerability and benign classes.
As seen in Fig. 12a, for DEEPVD, the benign class (green)
tends to be on the left side, while the vulnerability class (red) is
on the right side. Thus, DEEPVD has better class separability
than the baselines, leading to better classification.

1 void vp9_rc_get_one_pass_vbr_params(VP9_COMP *cpi) {
2 if (!cpi->refresh_alt_ref_frame &&
3 (cm->current_video_frame == 0 ||

4 - (cm->frame_flags & FRAMEFLAGS_KEY) ||

5 rc->frames_to_key == 0 ||

6 - (cpi->oxcf.auto_key && test_for_kf_one_pass(cpi)))) {

7 cm->frame_type = KEY_FRAME;
8 rc->this_key_frame_forced = cm->current_video_frame != 0 && rc->frames_to_key;

9 - rc->frames_to_key = cpi->key_frame_frequency;

10 rc->kf_boost = DEFAULT_KF_BOOST;
11 rc->source_alt_ref_active = 0;
12 } else {
13 cm->frame_type = INTER_FRAME;
14 }
15 if (rc->frames_till_gf_update_due == 0) {

16 - rc->baseline_gf_interval = DEFAULT_GF_INTERVAL;

17 rc->frames_till_gf_update_due = rc->baseline_gf_interval;

18 - if (rc->frames_till_gf_update_due > rc->frames_to_key)

19 rc->frames_till_gf_update_due = rc->frames_to_key; ...
20 }

Fig. 14: Contributions of Different Code Components in
Correct Classification of Vulnerability by DEEPVD (RQ5)

2) Silhouette Plots: We also used the silhouette plot [48]
to present the data points for those above embeddings for
DEEPVD and the best baseline, IVDetect [18]. The silhouette
coefficient value (X-axis) is a measure of how similar an object
is to its own class compared to other classes. The silhouette
coefficient value is in [-1,1], where a high value indicates
that an object is well matched to its own class and poorly
matched to neighboring classes. The lines are sorted from
largest to smallest and drawn from top to bottom, creating
a knife shape. If most objects have high values, the class
configuration is appropriate. For VD, that corresponds to better
class-separation, facilitating VD. If many points have low or
negative values, the class separation is poor.

Considering the overlap between two plots in Fig. 13, the
knife shapes from DEEPVD for both classes (vulnerability and
benign) are wider and have less negative values than those
from IVDetect. Specifically, the average silhouette score in
DEEPVD is 0.025, while that of IVDetect is 0.0076. Thus,
this result shows that DEEPVD has better class-separation,
leading to better performance than the baseline models.

E. Learning Relevant Features (RQ5)
To visualize the feature importance, we use a heatmap to

highlight the most to least important statements decided by
Lemna. Fig. 14 shows a method in the libvpx project reported
in CVE-2016-1621. All five vulnerable lines of code were
ranked in the top-5 statements contributing to the correct VD
by DEEPVD: the line 6 (in magenta) has highest score; the
lines 4, 9, and 18 have the same range of scores (in brown),
which is higher than the score for line 16 (in yellow). The
non-color lines are given the lowest scores by Lemna (i.e.,
contributing the least to the model’s decision). Thus, DEEPVD
uses vulnerability-relevant features in its prediction.

We also computed the list L of the top-5 statements with
the highest Lemna scores for each method M that our model
correctly detected as vulnerabilities. If L overlaps with the set
of the fixed/vulnerable statements in M , we count it as a hit;
otherwise, it is a miss. Accuracy is defined as the ratio between
the hits and the total number of correctly detected methods. We

report that DEEPVD was able to use the vulnerability-relevant
statements in 84% of the cases of correct predictions.

Threats to Validity: We only tested on the vulnerabilities
in C and C++ code. DEEPVD can apply to other programming
languages. We tried our best to tune the baselines on same
dataset for fair comparisons. DEEPVD does not handle well
the vulnerabilities involving string literals, overflow/underflow,
and memory corruption because it does not consider values.

F. Complexity
Despite the different moving parts from the third-party

analysis tools, DEEPVD only has about 875K parameters. It
took 23m13s per epoch for training on an Nvidia Titan RTX
GPU, and 0.0165 seconds for the detection of an instance.

X. RELATED WORK

The traditional program analysis (PA)-based VD tools [1]–
[10] leverage static and dynamic analysis techniques to provide
the specific rules for each vulnerability type. Second, software
mining approaches leverage known vulnerability patterns to
discover possible vulnerable code (FlawFinder [1], RATS [2],
ITS4 [3], Checkmarx [4], Fortify [5] and Coverity [6]).

Machine Learning (ML) including Deep learning (DL)
has been applied to detect vulnerabilities [49]–[54]. Harer et
al. [55] train an RNN to detect vulnerabilities. Lin et al. [56]
automatically learns high-level representations of functions
based on AST for VD. Russell et al. [15] combine the neural
feature representations of functions with random forest as a
classifier. Harer et al. [57] compared the effectiveness in VD of
using source code and the compiled code. VulDeePecker [13]
uses a RNN trained on program slices from API calls for
VD. SySeVR [14] expands VulDeePecker by including the
program slices from more syntactic units: arrays, pointers,
and arithmetic expressions. Both of them do not consider
exception flows. Devign [16] uses Gated Graph Recurrent
Layers on CPG, PDG, CFG, AST and code sequences. As
shown, DEEPVD performs better than Devign and our class-
separation graph features is more useful than CPG/PDG/CFG.
Reveal [17] uses CPG with GGNN, which is not as effective as
EFG+PDT. IVDetect [18] directly uses PDG with GCN. Line-
Vul [58], a transformer-based vulnerability prediction, works
at the line level and improves significantly over IVDetect.

XI. CONCLUSION

We propose DEEPVD, a graph-based neural network VD
model that emphasizes on class-separation features between
vulnerability and benign code. DEEPVD leverages three types
of class-separation features at different levels of abstraction:
statement types, Post-Dominator Tree (covering regular flows),
and EFG (covering exception/error-handling flows). Empirical
results show that our proposed class-separation features con-
tribute significantly in improving the accuracy in VD over the
existing ML/DL models from 16.4% to 25.8% in F-score.

ACKNOWLEDGMENTS

This work was supported in part by the US National Science
Foundation (NSF) grants CNS-2120386.

REFERENCES

[1] Flawfinder. [Online]. Available: http://www.dwheeler.com/FlawFinder
[2] Rats: Rough audit tool for security. [Online]. Available:

https://code.google.com/archive/p/rough-auditing-tool-for-security/
[3] J. Viega, J.-T. Bloch, Y. Kohno, and G. McGraw, “Its4: A static

vulnerability scanner for c and c++ code,” in Proceedings 16th Annual
Computer Security Applications Conference (ACSAC’00). IEEE, 2000,
pp. 257–267.

[4] Checkmarx. [Online]. Available: https://www.checkmarx.com/
[5] Hp fortify. [Online]. Available: https://www.hpfod.com/
[6] Coverity. [Online]. Available: https://scan.coverity.com/
[7] Cwe-120: Buffer overflow. [Online]. Available:

https://cwe.mitre.org/data/definitions/120.html
[8] Cwe-89: Sql injection. [Online]. Available:

https://cwe.mitre.org/data/definitions/89.html
[9] Cwe-79: Cross-site scripting. [Online]. Available:

http://cwe.mitre.org/data/definitions/79.html
[10] Cwe-290: Authentication bypass by spoofing. [Online]. Available:

https://cwe.mitre.org/data/definitions/290.html
[11] N. H. Pham, T. T. Nguyen, H. A. Nguyen, and T. N. Nguyen,

“Detection of recurring software vulnerabilities,” in Proceedings of
the IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE ’10. New York, NY, USA: Association
for Computing Machinery, 2010, p. 447–456. [Online]. Available:
https://doi.org/10.1145/1858996.1859089

[12] B. Bowman and H. H. Huang, “VGRAPH: A Robust Vulnerable Code
Clone Detection System Using Code Property Triplets,” in 2020 IEEE
European Symposium on Security and Privacy (EuroS&P), 2020, pp.
53–69.

[13] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong,
“VulDeePecker: A deep learning-based system for vulnerability detec-
tion,” arXiv preprint arXiv:1801.01681, 2018.

[14] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen, “SySeVR: A
framework for using deep learning to detect software vulnerabilities,”
IEEE Transactions on Dependable and Secure Computing, 2021.

[15] R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O. Ozdemir,
P. Ellingwood, and M. McConley, “Automated vulnerability detection
in source code using deep representation learning,” in 2018 17th
IEEE International Conference on Machine Learning and Applications
(ICMLA). IEEE, 2018, pp. 757–762.

[16] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective vulner-
ability identification by learning comprehensive program semantics via
graph neural networks,” in Advances in Neural Information Processing
Systems, 2019, pp. 10 197–10 207.

[17] S. Chakraborty, R. Krishna, Y. Ding, and B. Ray, “Deep learning
based vulnerability detection: Are we there yet?” IEEE Transactions
on Software Engineering, vol. 48, no. 09, pp. 3280–3296, sep 2022.

[18] Y. Li, S. Wang, and T. N. Nguyen, “Vulnerability detection with
fine-grained interpretations,” in Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. New York, NY, USA:
Association for Computing Machinery, 2021, p. 292–303. [Online].
Available: https://doi.org/10.1145/3468264.3468597

[19] W. Guo, D. Mu, J. Xu, P. Su, G. Wang, and X. Xing,
“Lemna: Explaining deep learning based security applications,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 364–379. [Online].
Available: https://doi.org/10.1145/3243734.3243792

[20] M. Allen and S. Horwitz, “Slicing java programs that throw and
catch exceptions,” in Proceedings of the 2003 ACM SIGPLAN
Workshop on Partial Evaluation and Semantics-Based Program
Manipulation, ser. PEPM ’03. New York, NY, USA: Association
for Computing Machinery, 2003, p. 44–54. [Online]. Available:
https://doi.org/10.1145/777388.777394

[21] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program
dependence graph and its use in optimization,” ACM Trans. Program.
Lang. Syst., vol. 9, no. 3, p. 319–349, jul 1987. [Online]. Available:
https://doi.org/10.1145/24039.24041

[22] Checkmarx. [Online]. Available: https://checkmarx.com/
[23] M. Sun and J. R. Bellegarda, “Improved pos tagging for text-to-speech

synthesis,” in 2011 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2011, pp. 5384–5387.

[24] Ankita and K. A. Abdul Nazeer, “Part-of-speech tagging and named
entity recognition using improved hidden markov model and bloom
filter,” in 2018 International Conference on Computing, Power and
Communication Technologies (GUCON), 2018, pp. 1072–1077.

[25] M. Izadi, R. Gismondi, and G. Gousios, “CodeFill: Multi-Token
Code Completion by Jointly Learning from Structure and Naming
Sequences,” in Proceedings of the 44th International Conference
on Software Engineering, ser. ICSE ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 401–412. [Online].
Available: https://doi.org/10.1145/3510003.3510172

[26] C. Bellei, H. Alattas, and N. Kaaniche, “Label-GCN: An effective
method for adding label propagation to graph convolutional networks,”
arXiv preprint arXiv:2104.02153, 2021.

[27] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic represen-
tations from tree-structured long short-term memory networks,” arXiv
preprint arXiv:1503.00075, 2015.

[28] (2022) DeepVD. [Online]. Available:
https://github.com/deepvd2022/deepvd2022

[29] D. Tang, B. Qin, and T. Liu, “Document Modeling with
Gated Recurrent Neural Network for Sentiment Classification,”
in Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing. Association for Computational
Linguistics, Sep. 2015, pp. 1422–1432. [Online]. Available:
https://www.aclweb.org/anthology/D15-1167

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling
in deep convolutional networks for visual recognition,” CoRR, vol.
abs/1406.4729, 2014. [Online]. Available: http://arxiv.org/abs/1406.4729

[31] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning
distributed representations of code,” CoRR, vol. abs/1803.09473, 2018.
[Online]. Available: http://arxiv.org/abs/1803.09473

[32] H. A. Nguyen, T. T. Nguyen, N. H. Pham, J. M. Al-Kofahi, and
T. N. Nguyen, “Accurate and efficient structural characteristic feature
extraction for clone detection,” in Proceedings of the 12th International
Conference on Fundamental Approaches to Software Engineering: Held
As Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2009, ser. FASE. Springer-Verlag, 2009, pp. 440–455.

[33] K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation,” CoRR, vol. abs/1406.1078,
2014. [Online]. Available: http://arxiv.org/abs/1406.1078

[34] A. Grover and J. Leskovec, “Node2vec: scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, 2016, pp. 855–
864.

[35] Y. Li, S. Wang, T. N. Nguyen, and S. Nguyen, “Improving bug detection
via context-based code representation learning and attention-based
neural networks,” Proc. ACM Program. Lang., vol. 3, no. OOPSLA,
oct 2019. [Online]. Available: https://doi.org/10.1145/3360588

[36] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[37] F. E. Allen, “Control flow analysis,” ACM Sigplan Notices, vol. 5, no. 7,
pp. 1–19, 1970.

[38] (2022) Joern. [Online]. Available: https://joern.io/
[39] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors

for word representation,” in Empirical Methods in Natural Language
Processing (EMNLP), 2014, pp. 1532–1543. [Online]. Available:
http://www.aclweb.org/anthology/D14-1162

[40] S. Thummalapenta and T. Xie, “Mining exception-handling rules as
sequence association rules,” in 2009 IEEE 31st International Conference
on Software Engineering. IEEE, 2009, pp. 496–506.

[41] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[42] “CVE security vulnerability database,” https://www.cvedetails.com/, ac-
cessed: 2022-08-27.

[43] “Git,” https://git-scm.com/, accessed: 2022-08-27.
[44] “Understand: An IDE and Static Code Analysis Tool by SciTools,”

https://www.scitools.com/, accessed: 2022-08-27.
[45] Microsoft, “Neural network intelligence.”

https://github.com/microsoft/nni, last Accessed August 28th, 2020.
[46] L. van der Maaten and G. Hinton, “Visualizing Data using t-SNE,” Jour-

nal of Machine Learning Research, vol. 9, no. 86, pp. 2579–2605, 2008.
[Online]. Available: http://jmlr.org/papers/v9/vandermaaten08a.html

[47] C. Mao, Z. Zhong, J. Yang, C. Vondrick, and B. Ray, “Metric learning for
adversarial robustness,” in Advances in Neural Information Processing
Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, Eds., vol. 32. Curran Associates, Inc., 2019.

[48] “Silhouette (clustering),” https://en.wikipedia.org/wiki/Silhouette (cluster-
ing), last Accessed March 15, 2022.

[49] R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen, “Predicting
vulnerable software components via text mining,” IEEE Transactions on
Software Engineering, vol. 40, no. 10, pp. 993–1006, 2014.

[50] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller, “Predicting
vulnerable software components,” in Proceedings of the 14th ACM
conference on Computer and communications security, 2007, pp. 529–
540.

[51] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating
complexity, code churn, and developer activity metrics as indicators of
software vulnerabilities,” IEEE transactions on software engineering,
vol. 37, no. 6, pp. 772–787, 2010.

[52] S. Neuhaus and T. Zimmermann, “The Beauty and the Beast: Vulnerabil-
ities in Red Hat’s Packages.” in USENIX Annual Technical Conference,
2009.

[53] F. Yamaguchi, M. Lottmann, and K. Rieck, “Generalized vulnerability
extrapolation using Abstract Syntax Trees,” in Proceedings of the 28th

Annual Computer Security Applications Conference, 2012, pp. 359–368.
[54] F. Yamaguchi, F. Lindner, and K. Rieck, “Vulnerability extrapolation:

Assisted discovery of vulnerabilities using machine learning,” in Pro-
ceedings of the 5th USENIX conference on Offensive technologies, 2011,
pp. 13–13.

[55] J. Harer, O. Ozdemir, T. Lazovich, C. Reale, R. Russell, and L. Kim,
“Learning to repair software vulnerabilities with generative adversarial
networks,” in Advances in Neural Information Processing Systems, 2018,
pp. 7933–7943.

[56] G. Lin, J. Zhang, W. Luo, L. Pan, and Y. Xiang, “Poster: Vulnerability
discovery with function representation learning from unlabeled projects,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 2539–2541.

[57] J. A. Harer, L. Y. Kim, R. L. Russell, O. Ozdemir, L. R. Kosta,
A. Rangamani, L. H. Hamilton, G. I. Centeno, J. R. Key, and P. M.
Ellingwood, “Automated software vulnerability detection with machine
learning,” arXiv preprint arXiv:1803.04497, 2018.

[58] M. Fu and C. Tantithamthavorn, “LineVul: A Transformer-Based Line-
Level Vulnerability Prediction,” in Proceedings of the 19th International
Conference on Mining Software Repositories, ser. MSR ’22. New
York, NY, USA: Association for Computing Machinery, 2022, p.
608–620. [Online]. Available: https://doi.org/10.1145/3524842.3528452

