
(Partial) Program Dependence Learning
Aashish Yadavally and Tien N. Nguyen

Computer Science Department
The University of Texas at Dallas

Texas, USA
{aashish.yadavally, tien.n.nguyen}@utdallas.edu

Wenbo Wang and Shaohua Wang
Department of Informatics

New Jersey Institute of Technology
New Jersey, USA

ww6@njit.edu, davidshwang@ieee.org

Abstract—Code fragments from developer forums often mi-
grate to applications due to the code reuse practice. Owing to
the incomplete nature of such programs, analyzing them to early
determine the presence of potential vulnerabilities is challenging.
In this work, we introduce NEURALPDA, a neural network-
based program dependence analysis tool for both complete
and partial programs. Our tool efficiently incorporates intra-
statement and inter-statement contextual features into statement
representations, thereby modeling program dependence analysis
as a statement-pair dependence decoding task. In the empirical
evaluation, we report that NEURALPDA predicts the CFG and
PDG edges in complete Java and C/C++ code with combined
F-scores of 94.29% and 92.46%, respectively. The F-score values
for partial Java and C/C++ code range from 94.29%–97.17% and
92.46%–96.01%, respectively. We also test the usefulness of the
PDGs predicted by NEURALPDA (i.e., PDG*) on the downstream
task of method-level vulnerability detection. We discover that the
performance of the vulnerability detection tool utilizing PDG*
is only 1.1% less than that utilizing the PDGs generated by a
program analysis tool. We also report the detection of 14 real-
world vulnerable code snippets from StackOverflow by a machine
learning-based vulnerability detection tool that employs the PDGs
predicted by NEURALPDA for these code snippets.

Index Terms—neural partial program analysis, neural pro-
gram dependence analysis, neural networks; deep learning

I. INTRODUCTION

Developers often use online question and answering (Q&A)
forums, e.g., StackOverflow (S/O), to learn how to use soft-
ware libraries and frameworks. Sometimes, the answer to a
question comes as a fragment/chunk of code, which later
makes it to the production applications, stemming from the
copy-and-paste software reuse practice. Unfortunately, if the
copied code fragments are vulnerable, i.e., possess defects that
can potentially be exploited, it will lead to the applications
being prone to attacks. Verdi et al. [1] reviewed more than 72K
C++ code snippets that migrated from 1,325 S/O answers. Of
these, they reported a total of 99 vulnerable code snippets of
31 different types that made their way to 2,589 GitHub repos-
itories. Thus, it is crucial to detect early the vulnerabilities in
the code snippets from online forums.

Security researchers have proposed several automated ap-
proaches for vulnerability detection (VD) using program anal-
ysis [2]–[11], as well as machine learning (ML) including
deep learning (DL) techniques [12]–[16]. However, these
approaches warrant the code to exist as complete program
units, often making use of program representations such as
Abstract Syntax Tree (AST), Program Dependence Graph

(PDG) [12], [16], Control Flow Graph (CFG) [14], Data Flow
Graph (DFG) [14], Code Property Graph (CPG) [13], etc. At a
minimum, they operate at the method-level granularity, making
it impossible to utilize them for directly detecting vulnerabil-
ities in code snippets. A possible alternative would be to plug
the code snippet into the method, resolve any ambiguities, and
test it with a VD tool. However, such a strategy is limited.
First, if found vulnerable, the efforts of integrating the code
snippet into the existing method would be lost. Second, due
to the black-box nature of DL models, we would not know
the origin of the vulnerability, i.e., whether it arises due to the
flawed code snippet or the existing part of the code.

Besides, analyzing code snippets is not straightforward.
Currently, there exist tools such as PPA [17], which parses
an incomplete code fragment to extract data types and build
an AST in a best-effort manner. StatType [18] resolves the
libraries and recovers the fully-qualified names for references.
By manual intervention, one can use program analysis tools
(e.g., Joern [19]) to derive CFG/PDGs for incomplete code
snippets. However, in the code snippets with the statements
that contain: (a) references to undeclared libraries, (b) missing
variable declarations, (c) unresolved data types, they ignore
the edges to/from such statements. Thus, deriving all program
dependencies for such incomplete code fragments is not yet
possible. Let us call this partial program dependence analysis.

In addition to vulnerability detection, such partial program
dependence analysis is also beneficial to the other software
engineering (SE) tasks that can tolerate a low level of errors
and imprecision in building the dependencies. For example,
consider code completion [20], [21], in which a model pro-
vides suggestions to complete partial code. Existing ML/DL-
based code completion models are just based on the code
sequences or utilize the syntactic structure in ASTs, but none
leverage the program dependencies due to the nature of partial
code. Next, consider the task of analyzing the code fragments
in a bug report to connect it to the relevant source files for bug
localization purposes [22], [23]. Here too, a need for partial
program dependence analysis can be observed.

In this paper, we propose NEURALPDA, a neural network-
based partial program dependence analysis approach that
learns to derive the program dependencies for any code frag-
ments (i.e., both complete and incomplete). We find motivation
for such a data-driven, learning-based approach from the
following observations. First, in an empirical study on the

repetitiveness, containment, and composability of PDGs in
open-source projects, Nguyen et al. [24] reported that among
17.5M PDGs with 1.6B PDG subgraphs, 14.3% of the PDGs
have all of their subgraphs repeated across different projects.
Furthermore, in 15.6% of the PDGs, at least 90% of their
subgraphs are likely to have appeared before in other projects.
Thus, we design NEURALPDA to learn from PDGs with com-
plete control and data dependencies retrieved from existing
code repositories and derive the program dependencies for the
(partial) code fragment under study. Second, such a solution
is analogous to the neural network-based dependency pars-
ing approaches in natural language processing (NLP), which
learn the dependencies signifying the semantic relationships
between words in a sentence from text corpora.

NEURALPDA is designed to capture two basic insights
about program structure: intra-statement context, and inter-
statement context. This is facilitated via a hierarchical, self-
attention network (SAN)-based model architecture. The mo-
tivation behind intra-statement context learning (IntraS-CL),
which aims to learn the context within individual statements,
is that IntraS-CL provides the knowledge for a model to learn
better the roles and relations among the code tokens in a state-
ment (e.g., definition or usage of a variable), thus, leading to
the better discovery of dependencies between two statements.
In contrast, inter-statement context learning (InterS-CL) helps
a model recognize the dependence of one statement on the
other taking into account the surrounding statements.

Assessing the performance of NEURALPDA is not straight-
forward, mainly due to the lack of ground-truth inter-statement
program dependencies for partial code fragments. Thus, we
intrinsically evaluated it on programs in Java and C/C++ as
follows. First, we trained NEURALPDA on complete code.
For testing, we treated each method individually and chose a
consecutive portion within the method to predict the program
dependencies, and compared them against the actual depen-
dencies. Overall, NEURALPDA predicts CFG and PDG edges
in Java with an F-score of 94.29%, and in C++ with an F-score
of 92.46%. Upon further investigation, we discovered that
for Java, NEURALPDA predicts sequential CFG edges, if-else
CFG edges, data-dependence edges, and control-dependence
edges with an accuracy of 99.4%, 95.52%, 82.78%, and
96.33%, respectively. We also performed an ablation on vari-
ous model components in NEURALPDA, which enabled us to
tie the fine-grained performance gains to each component.

To evaluate the usefulness of the PDGs predicted by NEU-
RALPDA (say, PDG*), we designed experiments around the
task of vulnerability detection at two levels of granularity:
complete code at the method-level, and partial code at the
snippet-level. For the method-level VD task, we leveraged
VulCNN [25], an image-inspired DL-based VD model which
utilizes PDGs to predict whether a given method has vulner-
abilities or not. Here, we aimed to assess how well PDG*s
predicted for the methods in the dataset approximate the
performance of the actual PDGs retrieved from a program-
analysis tool. For this task, VulCNN achieved an F-score of
73.26% with the PDGs predicted by NEURALPDA, as op-

1 std :: shared ptr<FILE> pipe(popen(cmd,"r"), pclose);
2 if (! pipe) return "ERROR";
3 char buffer[128];
4 std :: string result = "";
5 while (! feof (pipe.get())) {
6 if (fgets (buffer , 128, pipe.get()) != NULL)
7 result += buffer;
8 }

Fig. 1: Execute a command within a C++ program and get
output – Answer ID 478960 on S/O provided in response is
prone to OS command injection (CWE-78, CWE-1019) [1].

posed to 74.01% in the case of actual PDGs (1.1% reduction).
For the task of partial code VD, we first trained VulCNN on a
VD dataset comprising complete C++ methods [26]. Next, we
leveraged our tool to predict PDGs for the vulnerable S/O code
snippets in Verdi et al. [1]. Utilizing these PDGs, VulCNN was
able to correctly identify 14 code snippets as vulnerable.

In brief, this paper makes the following major contributions:
1) NEURALPDA is the first neural network approach to

predict program dependencies in complete as well as partial
programs, which are accurate as well as 380× faster to
generate. This opens up a research direction for improving
program analysis (PA) for partial programs by combining
our ML/DL approach and top-down PA approaches.

2) An extensive evaluation showing NEURALPDA’s high
accuracy in deriving program dependencies and its useful-
ness in the application of vulnerability detection for both
complete and incomplete snippets.

3) An analysis showing the usefulness of intra-statement and
inter-statement context learning, capturing the higher-order
interaction features between statements in a code snippet.

II. MOTIVATION

A. Motivating Examples

The code snippet in Fig. 1 is a response to the question
ID 478960 on StackOverflow, seeking to execute a user-input
command within a C++ program and retrieve its output. This
code is vulnerable to code injection (OS command injection)
attacks, as the commands input by the user were not vali-
dated. For example, it is possible for an attacker to execute
privilege-level commands without any errors or warnings.
This vulnerability was reported in two Common Weakness
Enumeration (CWE): CWE-78 and CWE-1019 (13 different
Common Vulnerabilities and Exposures - CVEs).

We can observe that this code snippet is incomplete: (a)
variable cmd is undeclared; (b) object type FILE and the library
std are undefined; (c) it contains references to functions from
external libraries such as pipe, popen, pclose, feof, fgets,
pipe.get, etc. On StackOverflow, there is more conversational
context to the code snippet which helps developers understand
these names and make sense of it. However, neither program
analysis nor vulnerability detection tools can analyze this code
snippet, resulting in an undetected vulnerability making its
way to the programs that directly used this code. Thus, it is

1 #include <cstdio>
2 #include <iostream>
3 #include <memory>
4 #include <stdexcept>
5 #include <string>
6 #include <array>
7
8 std::string exec(const char* cmd) {
9 std::array<char, 128> buffer;
10 std::string result;
11 std::unique_ptr<FILE, decltype(&pclose)>

pipe(popen(cmd, "r"), pclose);
12 if (!pipe) {
13 throw std::runtime_error("popen() failed!");
14 }
15 while (fgets(buffer.data(), buffer.size(), pipe.get())

!= nullptr) {
16 result += buffer.data();
17 }
18 return result;
19 }

Fig. 2: Complete Code with same POSIX elements as Fig. 1

desirable to have an automated analysis tool that can analyze
incomplete code. PPA [17] can parse a code fragment to build
an AST and extract data types in a best-effort manner, and Stat-
Type [18] can derive the fully-qualified names for references.
However, none of the state-of-the-art approaches can retrieve
the inter-statement program dependencies in incomplete code,
which is crucial in understanding/analyzing the vulnerabilities
in a code snippet. With manual intervention, one could use
program analysis tools (e.g., Joern [19]) to derive CFGs/PDGs
on such an incomplete code snippet. However, those tools
will ignore the dependencies to and from the statements
with undeclared variables (cmd), undefined types (FILE), and
undeclared libraries (std). Let us refer to such an analysis as
partial program dependence analysis.

Aside from detecting vulnerabilities in incomplete code,
such partial program dependence analysis (Partial PDA) is
beneficial to automated code completion (CC) tools as well.
For example, in Fig. 1, assume that a developer editing the
code invokes the CC tool at line 5: ! feof (pipe._. With
the program dependencies retrieved from partial PDA, the CC
tool could suggest pipe.get due to the knowledge of a control
dependency between the statement pipe(popen(...)) on line
1 and the potentially suggested candidate pipe.get.

Observation 1 (Partial Program Dependence Analysis).
Partial program dependence analysis is desirable for the tasks
in which the completely analyzable code is unavailable. Such
an analysis is useful for tasks that can tolerate a low level of
errors and imprecision in deriving those dependencies

Now, consider the complete code example in Fig. 2, from
S/O post 10702464 [27]. While there are slight differences in
a few details (constants, error messages, etc.) between the in-
complete code snippet in Fig. 1 and the complete code example
in Fig. 2, the presence of many similar statements indicates
that the data and control dependencies are comparable: line 1
(Fig. 1) and line 11 (Fig. 2), line 2 (Fig. 1) and lines 12–14
(Fig. 2), lines 3–4 (Fig. 1) and lines 9–10 (Fig. 2), lines 5–6

(Fig. 1) and line 15 (Fig. 2), line 7 (Fig. 1) and line 16 (Fig. 2).
Thus, the program dependencies between the statements in the
incomplete code snippet in Fig. 1 can be learned from those
extracted for the complete code example in Fig. 2.

Observation 2 (Learn to Analyze Program Dependencies).
Finding patterns from complete code in existing code corpora
could be a good strategy to learn to analyze the inter-statement
program dependencies in a given incomplete code snippet.

B. Key Ideas

Following Observations 1–2, we design NEURALPDA for par-
tial program dependence analysis with the following key ideas:

1) [Key Idea 1] Neural Network-Based Approach to
Partial Program Dependence Analysis: Instead of deter-
ministically producing the program dependencies in a best-
effort manner, following Observation 2, we design a deep
learning model (DL) to learn to analyze the program depen-
dencies among the statements in the given source code. By
leveraging the program dependencies extracted by program
analysis techniques [28] for the complete code in the open-
source projects (e.g., GitHub) in the training process, the DL
model can derive the inter-statement program dependencies
for a given code snippet.

2) [Key Idea 2] Program Dependence Decoding from
Dense Statement Representations: We seek inspiration from
the neural network-based dependency parsing approaches [29]
in NLP. They successfully learn the semantic relations between
the words in a sentence by learning the dependencies between
their latent representations obtained from mapping them into
an embedding space. Following suit, we design NEURALPDA
to learn the representations for the statements in source code
so as to learn the program dependence relations between them.

3) [Key Idea 3] Enhancing Statement Representations
with Intra-Statement and Inter-Statement Context Learn-
ing: The quality of the statement representations determines
how accurately NEURALPDA can predict the program de-
pendence relations. To this effect, we rely on two types
of contextualization. Intra-statement context refers to the
program entities represented by the code tokens within an
individual statement, which helps the model derive the con-
trol/data dependencies among the statements. For example, in
Fig. 1, the variable declaration statement on line 3 contains
the token (variable) buffer, which is also referred to in the
assignment statement on line 7. Intra-statement contextual-
ization makes information about the local context within the
individual statements on line 3 and line 7 available globally,
thus helping the model recognize the declaration and reference
of the same variable. This facilitates the recognition of the data
dependency between the two statements via a def-use relation
with variable buffer.

For the two statements under study, inter-statement context
helps NEURALPDA model the effect that all the other state-
ments in the code snippet have on the relationship between
them. For example, in Fig. 1, knowing that the if statement
on line 6 is nested within a while loop on lines 5–8 will help

Fig. 3: NEURALPDA: Model Architecture

the model recognize that the execution of assignment statement
on line 7 depends not only on the condition on line 6, but also
on the loop-condition on line 5.

III. NEURALPDA: MODEL OVERVIEW

Given a code snippet covering the statements s1, s2,.., sN ,
where the statement si contains the tokens t

(i)
1 , t(i)2 .., t(i)M , as

illustrated in Fig. 3, NEURALPDA has the following essential
components to learn the program dependencies between the
statement pairs <si, sj> (where 1 ≤ i, j ≤ N):

A. Intra-Statement Context Learning
For the tokens t(i)1 , t(i)2 .., t(i)M in the statement si, the goal of

this component is to map them into an embedding space Rd,
and generate a context-dependent representation ui ∈ Rd for
statement si. Such an intra-statement contextualization helps
NEURALPDA model the syntactic and semantic relationships
between the individual tokens within the context of an individ-
ual statement and relay this knowledge to the other statements
in the code snippet. We enable this via a position-encoded,
simple (i.e., NX = 1) self-attention network (SAN).

B. Inter-Statement Context Learning
Given statement representations ui ∈ Rd for the statements

s1, s2,.., sN in a code snippet that are local context-aware,
the goal of this component is to learn their latent vector
representations vi ∈ Rd that model the inter-statement context
including the dependencies between the statements. Such an
inter-statement contextualization helps NEURALPDA learn the
important dependencies between the statements in the context
of the surrounding statements. We enable this via a multi-layer
(NY =6) bidirectional Transformer encoder [30].

C. Pairwise Dependence Decoding
Given intra-statement and inter-statement contextualized

vector representations vi ∈ Rd for the statements s1, s2,..,
sN in a code snippet, the goal of this component is to
score program dependence edges and control-flow edges for
all the statement pairs <si, sj>, a combination of which
can be formalized as the directed graphs in CFG/PDG. We

enable such an edge-scoring approach by using two multi-
layer perceptrons (MLP), one corresponding to the control-
flow graph (MLPCFG), and the other corresponding to the
program dependence graph (MLPPDG).

IV. NEURAL PROGRAM DEPENDENCY ANALYSIS

In this section, we will present our model’s architecture,
training and inference processes to predict CFG/PDGs for
complete and partial programs.

A. Model Architecture

As explained in Section III, better contextualization is the
main idea behind NEURALPDA’s design. Given that attention
is the component in the ubiquitous Transformers’ [30] success
in efficiently learning representations for different entities in
different contexts, we chose to make it the foundation of our
model. In brief, we realize NEURALPDA via a hierarchical,
self-attention network (SAN)-based model architecture, where
each sub-network is intended to capture different aspects of
contextualization. Its details are as follows:

1) Intra-Statement Context Learning (IntraS-CL): The
syntactic and semantic knowledge of the code tokens within
a single statement must be made available globally to other
statements in a program to learn the inter-statement program
dependencies effectively. We enable this via a 1-Layer (i.e.,
NX=1) Self Attention Network (1L-SAN). The self-attention
layer in an 1L-SAN inputs x1, x2, ..., xn ∈ Rd, performs self-
attention once by projecting the inputs from all attention heads
∈ Rdh into the head dimension space dh via linear transforma-
tions, and generate outputs y1, y2, ..., yn ∈ Rd which are linear
combinations of the concatenated attention head values. We
use one attention head (i.e., h=1) for the self-attention layer in
1L-SAN, and the size of the input representations, i.e., d is set
to 512. Our experiments revealed only a marginal performance
gain by expanding the 1L-SAN to a 2L-SAN, which also came
with high computational overhead. Besides, increasing the
number of attention heads did not help either performance or
interpretability. A more detailed analysis on hyper-parameters
and subsequent trade-offs is left to future work.

(a) Intra-Statement Context Learning (b) Inter-Statement Context Learning

Fig. 4: Input representations of (a) tokens in a statement are the sums of token embeddings, and (token) position embeddings; (b)
statements in a snippet are the sums of statement embeddings, statement-type embeddings, and (statement) position embeddings.

Token Input Representations. For a program with N state-
ments s1, s2, ..., sN , NEURALPDA takes as input a concate-
nation of N sequences of M tokens each, ⟨t(1)1 , t(1)2 .., t(1)M ⟩, ...,
⟨t(N)

1 , t(N)
2 .., t(N)

M ⟩. Next, each token sequence ⟨t(i)1 , t(i)2 .., t(i)M ⟩
is input to the 1L-SAN for intra-statement contextualization.
Previous works [31], [32] have demonstrated the advantages
of a byte-level Byte-Pair Encoding (BPE)-scheme for tok-
enization. We follow suit to train a byte-level BPE tokenizer
for converting a given statement into a sequence of tokens.
Here, M is the maximum number of tokens allowed in a
statement. For statements with token sequences having less
than M tokens, a special [PAD] token is appended. In contrast,
token sequences having >M tokens are truncated to M tokens.

Token Embeddings. For all the words in the vocabulary V ,
we leverage a learnable embedding to learn and store their
representations (i.e., R|V |×d). Using this as a lookup table,
token embeddings are retrieved for all the tokens generated
by the tokenizer for a given statement.

Token Position Embeddings. Attention mechanism in the
self-attention layer is invariant to position information. How-
ever, this knowledge is key to understanding the sequential
nature of code tokens in a statement. We enable this via
learnable position encoding scheme, where a vector ∈ Rd

unique to each position is learned during the training process.

Statement (Output) Representations. Input representations to
the 1L-SAN corresponding to the tokens in a given statement
are taken as the sums of the token embeddings, and their
position embeddings (as in Fig. 4a). The 1L-SAN yields intra-
statement contextualized token representations as its output,
which are then averaged to retrieve the statement representa-
tion. Note that the token representations corresponding to the
[PAD] tokens are not considered for averaging. Such statement
representations ui (∈ Rd) for all the statements si ∈ s1...sN
are then passed on for inter-statement contextualization.

2) Inter-Statement Context Learning (InterS-CL): The
knowledge of surrounding statements in the context of a
given statement helps NEURALPDA model the dependencies
between them better. We enable this via a multi-layer bidirec-
tional Transformer encoder based on the work by Vaswani et
al. [30]. Owing to its common usage, we will omit exhaustive
background details on Transformers’ model architecture and

will refer the readers to its paper [30]. As shown in Fig. 3,
we denote the number of layers in the Transformer encoder
by NY , which we set to 6. We employ 4 attention heads, i.e.,
h=4 to increase parallelization (since dh= d

h , i.e., dh=128) and
learn different aspects of the syntactic and semantic structure
in the statements, while still being interpretable. We also
set the feed-forward module size to be 4 times that of the
size of the input representations d, i.e., 2048. Overall, the
Transformer encoder in InterS-CL phase inputs local context-
aware statement representations ui ∈ Rd for all statements
si in a given program, and outputs statement representations
vi ∈ Rd that are both local and global context-aware.

Statement Input Representations. For all the statements si in
a program, statement embeddings (i.e., ui ∈ Rd) are obtained
from the 1L-SAN in the IntraS-CL phase. N is the maximum
number of statements in a method in the dataset. If a given
program has less than N statements, zero vectors (∈ Rd) are
padded to the inputs.

Statement Position Embeddings. To make our model under-
stand the sequential nature of statements in a program, as in
Section IV-A1, we leverage a learnable position encoding sch-
eme to learn unique vectors (∈ Rd) for all statement positions.

Statement Types. Most neural network-based dependency
parsers leverage parts-of-speech (POS) tags for the words in
a sentence for better dependency learning. Thus inspired, we
chose to associate with each statement a label indicating the
statement type, which is essentially the type of the AST node
rooted at the sub-AST for the statement. We extract labels
such as METHOD, CONTROL_STRUCTURE, BLOCK, etc., which helps
augment the statement with such syntactic information. We
learn unique vectors (∈ Rd) for each of the statement types.

Statement (Output) Representations. As shown in Fig. 4b,
the input representations for the statements in a program are
taken as the sums of the statement embeddings, statement-type
embeddings, and the statement position embeddings. These
are then passed on to the Transformer encoder, to retrieve
contextualized statement representations vi ∈ Rd for all the
statements si ∈ s1...sN , that model the syntactic and semantic
knowledge from both within and across the statements. After
this, we obtain the contextualized statement representations.

3) Pairwise Dependence Decoding: From the sequence
of contextualized statement representations vi ∈ Rd corre-
sponding to all the statements in a program passed on by
the Transformer encoder in the InterS-CL phase, pairs such
as ⟨vi, vj⟩ (1≤ i, j ≤ N) are taken to detect the presence
of CFG/PDG edges between the two statements si and sj .
We leverage 2-layered multi-layer perceptron networks (each
for detecting the CFG and PDG edges, i.e., MLPCFG and
MLPPDG, respectively) in the pairwise dependence decoding
phase, which are scored as follows:

scorerel(i, j) = MLP rel(vi ◦ vj ◦ (vi ∗ vj) ◦ |vi − vj |) (1)

where ◦, ∗ and |.| correspond to concatenation, element-
wise product, and absolute element-wise difference operations
respectively; and rel represents either the control-flow or
program dependence relations. Attaining a scorerel(i, j) > 0.5
represents the detection of the corresponding CFG/PDG edge
from the statement si to the statement sj . The combination
of all the CFG/PDG edges extracted via such an arc-factored
approach is realized as the CFG/PDG for the given program.

B. Training Process
Training NEURALPDA requires the knowledge of ground-

truth CFG and PDG edges between program statements. Thus,
it can only be trained on complete programs (at a minimum,
which are at a method-level granularity) so as to be able to
leverage program analysis tools to extract them. The CFG and
PDG edge information can then be utilized to compute the
training objective loss (i.e., L) for our model as follows:

L = LCFG + LPDG (2)

where LCFG is the loss for CFG edge-decoding, and LPDG is
the loss for PDG edge-decoding. Moreover, LCFG and LPDG
are computed as the sums of all binary-cross entropy (BCE)
losses corresponding to the CFG and PDG edge predictions
between different statements in a program. Note that the
inter-statement losses corresponding to the edges from/to the
zero-padded statements do not contribute to either LCFG or
LPDG. The model parameters which are learned to minimize L
include learnable embeddings (token, token position, statement
type, and statement position), attention, Tr-FFNN (i.e., feed-
forward neural network in Transformer encoder), MLPCFG, and
MLPPDG. Overall, NEURALPDA has about 39M parameters.

C. Inference for Dependency Discovery
Despite being trained on only complete code, one can lever-

age NEURALPDA to extract the control-flow and program
dependence edges for both complete and partial code. The
following, however, are the important points of consideration:
• Statement Types: To extract the syntactic information en-

coded in statement types, one would need the program’s
AST. In Java, for example, this can be retrieved even if the
code is incomplete using tools such as PPA [17]. However,
this is not possible for all programming languages. In such
cases, NEURALPDA can be trained without statement types,
i.e., by computing the input representation for statements

in a program as just the sums of the statement and their
position embeddings. In Section VI-D, we demonstrate the
practicality of such an alternative.

• Programs with ≤N statements: Making use of a trained
NEURALPDA model on both complete and partial pro-
grams, the number of statements in which is less than the
maximum statements allowed in the model is straightfor-
ward. In such cases, NEURALPDA predicts the CFG/PDG
edges from one statement to another by contextualizing over
all the other statements in the program.

• Programs with >N statements: For (both complete and
partial) programs having number of statements greater than
that allowed in the trained NEURALPDA model, we have the
following strategies in NEURALPDA: (a) train a model with
a higher value of N , (b) chunk the program into N -statement
code fragments, predict CFG/PDG edges for each of the
code fragments independently, and finally, combine the
CFG/PDG predictions for all the fragments. For example,
if a trained model allows a maximum of 16 statements, to
predict for a program with 46 statements, one can break it
down into code fragments with 16, 16, and 14 statements,
respectively. A potential downside to strategy (b), however,
is that a statement in a fragment will be contextualized only
over the other statements in that fragment, and the control-
flow and program dependencies across fragments will not
be captured. Increasing N could address this issue, albeit
with more computational overhead.

V. EMPIRICAL EVALUATION

To fully evaluate NEURALPDA, we design a series of
experiments seeking to answer the following questions:
(RQ1) Effectiveness Evaluation on Java code
1.1 Intrinsic Evaluation. How accurate is NEURALPDA in

generating CFG/PDGs for complete/partial Java code?
1.2 Qualitative Evaluation. With what accuracy does NEU-

RALPDA predict specific program dependence relations?
1.3 Ablation Study. How do the different components in

NEURALPDA contribute to its model performance?

(RQ2) Effectiveness Evaluation on C/C++ code
How accurate is NEURALPDA in generating CFG/PDGs for
C/C++ code? How about specific dependency relations?
(RQ3) Vulnerability Detection in Complete Methods
How do the predicted PDGs from NEURALPDA approximate
the extrinsic task of vulnerability detection on complete code?
(RQ4) Vulnerability Detection in StackOverflow Snippets
How do the predicted PDGs from NEURALPDA help with ext-
rinsic task of discovering vulnerabilities in S/O code snippets?

VI. EVALUATING EFFECTIVENESS FOR JAVA AND C/C++

A. Data Collection, Procedure, and Evaluation Metrics

To enable the effectiveness evaluation (RQ1–RQ2), we col-
lected and filtered Java and C/C++ data in the following way:
• Java. GitHub Java Corpus [33] is a large-scale collection

of Java code containing 10,968 training and 3,817 testing
projects. Within each project, we retained only the source

TABLE I: Effectiveness on Complete Methods in Java (RQ1.1)

P/L Graph Accuracy Precision Recall F-Score
Java CFG 99.79 98.31 98.58 98.44

PDG 98.87 89.89 87.53 88.70
Overall 99.33 94.75 93.83 94.29

code files. Each file has from 100 to 512 tokens. We then
collapsed the directory structure within the projects and
randomly selected 57,600 Java files from the projects in the
training set, and 14,400 from the ones in the testing set.

• C/C++. Fan et al. [26] collected Big-Vul, a large C/C++
vulnerability dataset from the Common Vulnerabilities and
Exposure database. We further expanded this dataset to span
across 2000–2021 and extracted ∼50K methods from it.
Next, we leveraged the Joern program analysis tool [19] to

extract the AST edges (to retrieve syntactic type information),
CFG edges, and PDG edges for the files in the Java dataset,
and the methods in the C/C++ dataset. We also filtered out the
Java and C/C++ methods without any CFG or PDG edges.

Finally, we split both Java and C/C++ datasets into: (a)
40,000 Java methods for training, and 4,000 each for validation
and testing; (b) 12,767 C/C++ methods for training, and 1,500
each for validation and testing. With an initial learning rate of
5x10−4, and by setting the maximum number of tokens in a
statement (i.e., M) to 32, and the maximum number of state-
ments in a program (i.e., N) to 8, we trained NEURALPDA
on both datasets. The training process was carried out on a
machine with an Nvidia Quadro P4000 GPU. The training
time per epoch was ∼4.5 hours and ∼1.5 hours for Java and
C/C++ datasets, respectively (see Section X).

We model the program dependence decoding step in
NEURALPDA as a classification problem. Thus, we adopt the
standard evaluation metrics: Accuracy = TP+TN

TP+FP+FN+TN , Recall

= TP
TP+FN , Precision = TP

TP+FP , and F-Score = 2∗Recall∗Precision
Recall+Precision .

Here, TP = True Positives, FP = False Positives, FN = False
Negatives, and TN = True Negatives.

B. Effectiveness on Java code (RQ1.1)

1) Effectiveness on Complete Java Code: Table I shows the
performance of NEURALPDA on the test set comprising the
complete methods from the Java dataset. Clearly, our model
produces competitive results. In particular, NEURALPDA pre-
dicts the control-flow edges with an F-score of 98.44% and
the program-dependence edges with an F-score of 88.70%.
Overall, it approximates the combination, i.e., CFG + PDG
generated by the program analysis tool for the complete
methods with an F-score of 94.29%.

2) Effectiveness on Partial Java Code: To show NEU-
RALPDA’s flexibility in handling both complete and partial
code, we evaluated our model’s performance on consecutive
lines of code in a method, starting from the first statement.
We refer to this as the Top-N experimental setting. In this
experiment setting with N ranging from 3 to 8, if a method
has n ≤ 8 statements, it is treated as a partial method for
N from 3→n, and as a complete method for N from n→8.

TABLE II: Effectiveness on Partial Code in Java (RQ1.1)

N F-Score
CFG PDG Overall

3 99.70 93.24 97.17
4 99.41 92.51 96.61
5 99.26 91.23 95.96
6 99.04 90.36 95.40
7 98.75 89.45 94.82
8 98.44 88.70 94.29

TABLE III: NEURALPDA’s Performance for different types of
Control-Flow and Program Dependence Edges in Java (RQ1.2)

Graph Edge Type %C
CFG sequential 99.54

if-else 95.52
PDG data dependence 82.78

control dependence 96.33

However, in cases where a method has n > 8 statements, it
is treated as a partial method for all values of N . As seen in
Table II, the overall F-score decreases gracefully as the size of
partial code fragment increases because more edges need to be
predicted. Also, F-score decreases only <3% as N increases
from 3→8. Thus, NEURALPDA is effective for partial code.

NEURALPDA approximates the combined CFG + PDG
for Java code with an overall F-score of 94.29 – 97.17%.

C. Qualitative Analysis of NEURALPDA for Java (RQ1.2)

To better understand the model performance, we analyzed
how precisely NEURALPDA can predict different types of
control-flow and program dependence edges in the Java
dataset. We enable this by retrieving two kinds of control-flow
edges: sequential and if-else. Here, we identify all edges whose
control flows from an if-statement to an else-statement as an
if-else edge. In addition, we retrieve two kinds of program
dependence edges: data and control dependence.

In Table III, we report the results for our qualitative eval-
uation, where %C corresponds to the percentage of correctly
predicted edge relations. Overall, NEURALPDA predicts the
sequential, if-else, data dependence, and control dependence
edges with an accuracy of 99.54%, 95.52%, 82.78%, and
96.33% respectively. The relatively lower accuracy in pre-
dicting data dependence edges can possibly be attributed
to a class-imbalance problem since the percentage of the
statement pairs having data dependencies is much smaller
than that of pairs without them. This can be boosted by: (a)
expanding the dataset to contain more data dependence edges,
(b) incorporating class-imbalance mitigation strategies.

NEURALPDA predicts the sequential and if-else CFG
edges with an F-score of 99.54% and 95.52% respec-
tively; data and control dependence PDG edges with an
F-score of 82.78% and 96.33% respectively.

TABLE IV: Ablation over Model Components (RQ1.3)

Baselines Accuracy Precision Recall F-Score
(a) w/o Statement PE 97.10 82.26 64.61 72.37
(b) w/o Statement Types 99.15 93.16 92.39 92.78
(c) w/o IntraS-CL 97.77 89.49 70.29 78.74
(d) w/o InterS-CL 98.53 89.89 84.56 87.14
NEURALPDA 99.33 94.75 93.83 94.29

TABLE V: Qualitative Evaluation of LOO-NEURALPDA

Baselines CFG PDG
sequential if-else data control

(a) w/o Statement PE 55.30 68.66 58.39 63.63
(b) w/o Statement Types 98.31 92.54 81.63 95.78
(c) w/o IntraS-CL 93.13 31.34 43.60 47.50
(d) w/o InterS-CL 99.02 79.10 84.19 95.41

D. Ablation Study and Analysis (RQ1.3)

We performed an ablation over different components in
NEURALPDA to better understand their relative importance.
We refer to such an ablation setting as Leave-One-Out (LOO)-
NEURALPDA in which we built different baselines by remov-
ing one of the components. These include:

1) W/o Statement Position Embeddings (PE): In Section
IV-A, we hypothesized that the knowledge of statement posi-
tions is crucial to learn the sequential nature of source code.
Thus, we created this baseline to evaluate the importance of
statement positions. Here, the input representations for the
statements in a code snippet are computed as just the sums of
the statement embeddings and the statement-type embeddings.

2) W/o Statement Types: To better learn the syntactic nature
of a statement, we hypothesized the inclusion of statement
types. In this baseline, we assess their importance by comput-
ing the input representations for the statements in a snippet as
just the sums of the statement and their position embeddings.

3) W/o IntraS-CL: We created this baseline to better evalu-
ate the importance of intra-statement context learning. Instead
of using a self-attention network (Fig. 3) to compute the
statement representations, we use Word2Vec [34] to compute
the word embeddings for each token in the statement and
consider their average as the statement representation.

4) W/o InterS-CL: We created this baseline to better eval-
uate the importance of inter-statement context learning. The
statement representations generated by IntraS-CL (Fig. 3) for
all the statements in a code snippet are directly input to
the pairwise-decoder MLPs, instead of being passed to the
Transformer encoder for inter-statement contextualization.

Results: As shown in Table IV, our design choices help
achieve higher overall accuracy than all LOO-NEURALPDA
baselines. In particular, our model improves over the baselines
(a)–(d) by over 30.29%, 1.63%, 19.75% and 8.21% respec-
tively. Furthermore, it can be seen that NEURALPDA w/o
statement types achieves the performance closest to that of
NEURALPDA. This is particularly useful when leveraging it
to derive the CFG and PDG edges for code snippets in which
extracting such syntactic type information is not possible.

TABLE VI: Effectiveness on Complete C/C++ Methods (RQ2)

P/L Graph Accuracy Precision Recall F-Score

C/C++
CFG 99.50 96.76 96.56 96.66
PDG 98.55 83.55 90.01 86.66

Overall 99.02 91.10 93.87 92.46

TABLE VII: Effectiveness on Partial Code in C/C++ (RQ2)

N F-Score
CFG PDG Overall

3 98.39 91.10 96.01
4 98.33 90.18 95.28
5 97.91 89.10 94.37
6 97.14 87.91 93.31
7 96.69 86.45 92.39
8 96.66 86.66 92.46

TABLE VIII: Model Performance for different Types of
Control-Flow and Program Dependence edges in C/C++ (RQ2)

Graph Edge Type %C
CFG sequential 98.91

if-else **
PDG data dependence 88.21

control dependence 94.65

Ablation Baselines and Different Types of Dependencies:
We also extend the qualitative analysis (as in Table III) to the
LOO-NEURALPDA baselines, to investigate how the absence
of different model components contributes to the imprecision
in predicting different kinds of control-flow and program
dependence edges. From Table V, it can be seen that:
• In the absence of the position information of statements,

the ability of NEURALPDA to predict all CFG and PDG
edges drops significantly, which is justified. For example,
without such knowledge, the model might not know that
the control should always flow from an if-statement to its
corresponding else statement, or that the direction of the
data dependence should be from a variable definition to its
reference in a def-use chain, etc.

• Statement types like call, return, etc. help the model capture
the control dependencies better. Thus, in the absence of such
syntactic information, the drop in F-score in predicting the
control-flow and control-dependent edges is expected.

• In Key Idea 3 (see Section II-B), we establish the importance
of intra-statement context (IntraS-CL) in determining a data
dependency between two statements. The drop in F-score in
the prediction of data-dependence edges by 89.86% in the
absence of such contextualization corroborates that claim.

All model components in NEURALPDA directly con-
tribute to its ability in predicting different types of control-
flow and program dependence relations.

E. Effectiveness on C/C++ code (RQ2)

1) Effectiveness on Complete C/C++ Code: In Table VI,
we report NEURALPDA’s performance on test set compris-

ing complete methods from the C/C++ dataset. Overall, our
model approximates the combination, i.e., CFG+PDG gener-
ated by the program analysis tool for the complete methods
with 92.46% in F-score, which is consistent with that for Java.

2) Effectiveness on Partial C/C++ Code: Next, as in
Section VI-B2, we extend the Top-N experimental setting
to the C/C++ methods as well (Table VII). As N increases
from 3→8, F-score decreases by only <4%, thus showing
NEURALPDA’s efficacy in handling partial C/C++ code.

3) Qualitative Analysis of Effectiveness on Different Types
of Dependencies for C/C++: We conducted a qualitative anal-
ysis to test our tool’s effectiveness in predicting different kinds
of control-flow and program dependence edges. As seen in
Table VIII, it predicts sequential, data dependence, and control
dependence edges with an accuracy of 98.91%, 88.21%, and
94.65%, respectively. None of the C/C++ methods in test set
have if-else CFG edges, as indicated by ”**”. However, note
the increase in the prediction of data dependence edges (i.e.,
88.21%) from 82.78% for the Java methods. That increase can
be seen despite a significant decrease in the sizes of the Java
and C/C++ datasets (∼48K in Java to ∼15K in C/C++). This
further confirms that the ability of NEURALPDA to predict
different types of CFG and PDG edges is directly dependent
on the distribution of the relations in the dataset.

The efficacy of NEURALPDA is programming language-
agnostic, as it approximates the combined CFG+PDG for
C/C++ methods with an F-score of 92.46 – 96.01%.

VII. WHAT DOES NEURALPDA LEARN? A CASE STUDY

Consider the source code example illustrated in Fig. 5 (top),
which was retrieved from the test-split in the Java dataset
(see Section VI-A). We predict PDGs for this Java method
by employing three NEURALPDA variants: (a) baseline; (b)
w/o IntraS-CL, i.e., by dropping the 1L-SAN; (c) w/o InterS-
CL, i.e., by dropping the Transformer encoder. The PDGs so
predicted are depicted in subfigures (a)–(c) in Fig. 5.

As seen in Fig. 5(a), NEURALPDA predicts all CFG/PDG
edges accurately and misses one control-dependence edge
S2 →S7. However, given that the baseline correctly identifies
the control-flow edge S2→S7, it is possible that it could not
conclude whether S2 determines the execution of S7, resulting
in the miss. In contrast, the variant w/o IntraS-CL misses a
data-dependent edge S1→S2, and a control-dependent edge
S2→S3. This can be due to how statement representations
are computed in this variant (see Section IV-A1), causing the
model to lose the sense of data propagation. Interestingly, this
variant captures a control-dependence edge S2→S7, while not
capturing any control-flow between them – thus appearing
to be less intelligent. This further verifies our hypothesis in
Key Idea 3, that IntraS-CL component is essential to relay the
intrinsic knowledge within a statement globally.

Next, in Fig. 5(c), we can see that the variant w/o InterS-CL
misses both control-flow and control-dependent edges from
S2 to S7 and incorrectly predicts (false positive) both of

Fig. 5: CFG/PDGs predicted for a Java program by: (a)
NEURALPDA, (b) w/o IntraS-CL, (c) w/o InterS-CL.

these from S2 to S5. In addition, NEURALPDA’s performance
drops from 95.52% (in Table III) to 79.10% (w/o InterS-CL
in Table V) in the case of if-else relations, prompting us to
reckon it is a general trend. Thus, we can corroborate Key Idea
3 by demonstrating the inadequacy in understanding program
semantics without inter-statement contextualization.

Previous works [30], [35] have shown that the attention
heads in multi-layer SAN-based models tend to capture spe-
cific syntactic and semantic properties. To better interpret what
NEURALPDA learns in this example, we plotted the attention
maps for all the heads across six layers in our model’s InterS-
CL component, some of which we illustrate in Fig. 6. In
Fig. 6(a)–(c), a higher dependence of Si on Sj is indicated
by a darker edge. For example, in Fig. 6(a), we can see that
in the 4th attention head on the 6th layer (L6-H4), S4 attends to
S1, S2, S3, S4, and S7. More interestingly, in Fig. 6(b), i.e., in
L4-H1, all the statements attend to S5 but not S7 (indicated in
red). Similarly, in Fig. 6(c), i.e., in L3-H3, we can see that all
the statements attend to S7 but not S5. NEURALPDA possibly
learns the sense of an execution trace on these attention heads,
because if S5 is executed, S7 cannot be, and vice versa. Refer
to our webpage [36] for all other attention map illustrations.

VIII. METHOD-LEVEL VULNERABILITY DETECTION

Deep learning (DL)-based approaches that utilize PDGs for
vulnerability detection (VD) can tolerate a low level of errors
in the program dependencies, wherein the imprecision acts as
noise and aids in regularizing the model. VulCNN [25] is one

Fig. 6: NEURALPDA Attention Heads for the Example Java
Program in Fig. 5: (a) L6-H4 (b) L4-H1 (c) L3-H3

such state-of-the-art, method-level DL-based vulnerability de-
tection tool that takes as input a program semantics-capturing
image extracted from the PDGs. In this experiment, we seek
to determine how the PDGs predicted by NEURALPDA (say,
PDG*) for complete methods affect the performance of down-
stream tasks. We will describe another vulnerability detection
experiment for code snippets in Section IX.

We leverage VulCNN by taking as input both PDG* and
the PDG derived from a program analysis tool (say, PDG#) for
these methods, aiming to see how closely PDG* mimics PDG#

and approximates the performance of the vulnerability detect-
ion model. Mathematically, we formulate our task as follows:

0 < VD{PDG*} ≤ V D{PDG#} (3)

where V D{.} indicates the performance of the automated
VD model. Here, if V D{PDG*} ≲ V D{PDG#}, we can
establish the efficacy of the PDGs predicted by NEURALPDA
for downstream SE tasks such as vulnerability detection.

A. Data Collection

We facilitate this study by using the VD dataset collected
by Li et al. [37], which comprises of complete Java methods
collected from eight large open-source Java projects. First,
we filtered by projects, dedicating avro, camel, hbase, hive,
lucene-solr, and pig for training purpose; flink and cloudstack
for validation and testing respectively. Finally, we randomly
selected an equal number of data samples from the vulnerable
and benign method subsets in each of the splits, to obtain
about 8K methods for training and about 1K each for testing
and validation.

B. Experiment Setup

For all Java methods in the VD dataset, we extracted pro-
gram dependencies (i.e., data and control-dependence edges)
via Joern program analysis tool [19]. Next, using NEU-
RALPDA trained on the Java dataset in Section VI-B (Table I),
we generated PDGs (i.e., PDG*) for all the complete methods
in the VD dataset. We then passed PDG# and PDG* to
VulCNN for vulnerability detection. VulCNN leverages cen-
trality analysis to transform the PDGs into program semantics-
capturing images. As a result, we generate two image datasets
corresponding to PDG# and PDG*, each of which are input

TABLE IX: Comparison of PDG# (generated by PA tool) and
PDG* (predicted by NEURALPDA) for method-level VD.

Methodology TPR TNR F-Score
PDG# + VulCNN 74.03 74.03 74.01
PDG* + VulCNN 73.27 73.27 73.26

to a convolutional neural network (CNN) for detecting the
presence of vulnerabilities in complete code.

C. Evaluation Metrics

We adopt the same metrics used by Wu et al. [25] to
evaluate VulCNN, i.e., true positive rate (TPR) (also referred
to as Recall), true negative rate (TNR), and F-score. Here, the
positive label corresponds to the presence of a vulnerability in
the method under study, while the negative label is given to
a benign method. The better the performance of VulCNN, the
closer PDG* mimics PDG#.

D. Experimental Results

Table IX shows VulCNN’s performance in both settings, i.e.,
by using PDG# and PDG*. We can observe that NEURALPDA
predicts PDG* with an overall F-score of 91.13% (not shown).
This further establishes the generalizability of NEURALPDA,
more so, because the Java dataset that NEURALPDA was
trained on, and the VD dataset comprising Java methods for
which PDG*s were derived come from two entirely distinct
code corpora. Moreover, VulCNN achieves an F-score of
73.26% using PDG*, which is a close approximate of the F-
score of VulCNN using PDG#, 74.01%.

The PDGs predicted by NEURALPDA approximates the
accuracy of those generated by program analysis for
vulnerability detection on complete code by 98.98%.

IX. FRAGMENT-LEVEL VULNERABILITY DETECTION

Verdi et al. [1] manually inspected and reported 99 com-
monly used C/C++ code snippets from StackOverflow (S/O)
answers as vulnerable. However, due to their incomplete
nature, code snippets cannot automatically be analyzed for
vulnerabilities. In this experiment, we design an ”in-the-wild”
evaluation by: (a) first, leveraging NEURALPDA trained on
complete C/C++ methods to predict PDGs for the incomplete
C/C++ code snippets from S/O; (b) next, training VulCNN [25]
to detect vulnerabilities in C/C++ code; (c) finally, making
use of the predicted PDGs and trained VulCNN to check for
vulnerabilities in the S/O code snippets.

A. Data Collection

In Section VI-A, we describe our expanded C/C++ dataset
comprising of ∼50K methods, 26.3% of which are vulnerable.
We split this dataset with a 80%-10%-10% ratio to train
VulCNN. Of the 99 vulnerable code fragments collected by
Verdi et al., VulCNN fails to process 33 of them. We filter
these out, and leverage NEURALPDA to predict PDGs for the
remaining 66 code snippets.

B. Experiment Setup

First, for all C/C++ methods in the vulnerability detection
dataset, we extract PDGs by leveraging the Joern program
analysis tool [19]. We then train VulCNN on this dataset,
achieving an F-score of 65.66% on the test set. Next, we
utilize NEURALPDA that was trained on the C/C++ dataset
in Section VI-E to predict the PDGs for the 66 code snippets
from StackOverflow. Finally, we generate program semantics-
capturing images corresponding to these predicted PDGs to
input to the trained VulCNN model to discover the number of
code snippets in which it can correctly identify vulnerabilities.

C. Experimental Results

We observed that VulCNN correctly identifies 14 out of the
66 code snippets as vulnerable. This is encouraging, more so
because the C/C++ data that was used to train VulCNN (F-
score=65.66%) does not cover all the vulnerabilities prevalent
in the manually inspected S/O code snippets. The 52 mis-
detected code snippets could be due to the inaccuracy of
VulCNN. Besides, as in Section VIII, since the C/C++ dataset
that was used to train NEURALPDA and the StackOverflow
C/C++ code snippets do not possess any similarities, we can
establish our tool’s generalizability.

PDGs predicted by NEURALPDA helps an automated VD
tool discover 14 real-world vulnerable code fragments.

X. DISCUSSION

A. Time Complexity

For the complete methods in the Java dataset (see Sec-
tion VI-A), on an average, Joern takes ∼7.654s to generate the
PDGs. In contrast, one can employ NEURALPDA to predict
highly accurate PDGs in ∼0.02s. To summarize, we observed a
time markup of 380× by using NEURALPDA instead of Joern,
which is especially useful for software engineering tasks that
can tolerate low levels of imprecision.

B. Threats to Validity

Currently, we tested NEURALPDA on Java and C/C++.
Performance could vary for other programming languages. We
trained NEURALPDA by leveraging program dependencies
extracted via a third-party program analysis (PA) tool. Thus, it
can be impacted by the inaccuracies of the PA tool. Moreover,
due to computational constraints, we limit the size of code
snippets to 8 statements in both Java and C/C++ during
training. For inference, the chunking strategy in Section IV-C
can be used for longer code. However, even with training
only on code with limited sizes, NEURALPDA can learn and
generalize the dependencies with high accuracy as shown.

XI. RELATED WORK

In this paper, we seek inspiration for our problem setting
from Chen and Manning [29], who first proposed a neural
network-based approach to dependency parsing. The major
benefits we envision to such a formulation include a significant

speedup in dependency discovery and the extendibility of
program dependence analysis to partial programs.

Specific to the SE domain, NEURALPDA is loosely related
to works that leverage probabilistic models to enhance the
program dependence graph (PDG). Probabilistic PDG [38] is
an augmentation of the structural dependencies represented
by a PDG with estimates of statistical dependencies between
node states derived from test cases. Feng et al. [39] pro-
pose Error-Flow Graph as a Bayesian Network, constructed
from the dynamic dependence graphs of the runs. Bayesian
Network-based Program Dependence Graph (BNPDG) [40]
is capable of inferring the dependencies across non-adjacent
nodes. MOAD (Modeling Observation-based Approximate
Dependency) [41] reformulates program dependency as the
likelihood that one program element is dependent on another,
instead of a boolean relationship. Lee [42] proposes a scalable
approximate program dependence analysis by estimating the
likelihood of dependence. It uses lexical analysis [43], partial
observations on executions, and the merging of static and
observation-based approaches. Those approaches leverage the
knowledge from the executions to enhance the PDG for
complete code. In contrast, we aim to use neural networks
for deriving dependencies for both partial and complete code.

The recent success in machine learning has lead to strong
interests in applying machine learning, especially deep learn-
ing, to programming language (PL) and software engineering
(SE) tasks, such as automated correction for syntax errors [44],
fuzz testing [45], program synthesis [46], code clones [47]–
[49], program summarization [50], [51], code similarity [52],
[53], probabilistic model for code [54], and path-based code
representation, e.g., Code2Vec [53] and Code2Seq [55].

XII. CONCLUSION

This paper introduces a neural network-based approach for
program dependence analysis of complete and partial code. We
model this as a statement-pair dependence decoding problem,
with the support of both intra-statement context learning
and inter-statement context learning. NEURALPDA achieves
high accuracy in generating CFG/PDGs for complete/partial
code with much time efficiency. The F-score values for par-
tial Java and C/C++ code range from 94.29%–97.17% and
92.46%–96.01%, respectively. We also show NEURALPDA’s
usefulness in vulnerability detection for partial code. The
accuracy of the vulnerability detection tool utilizing the PDGs
predicted by NEURALPDA is only 1.1% less than that utilizing
the PDGs generated by a program analysis tool. Other SE
applications that could tolerate some level of inaccuracies also
benefit from NEURALPDA. Our work leads to a novel direc-
tion for improving program analysis (PA) for partial programs
by combining neural networks with top-down PA techniques.

XIII. DATA AVAILABILITY

All code and data is available in our project website [36].

ACKNOWLEDGMENTS

This work was supported in part by the US National Science
Foundation (NSF) grants CNS-2120386.

REFERENCES

[1] M. Verdi, A. Sami, J. Akhondali, F. Khomh, G. Uddin, and
A. K. Motlagh, “An empirical study of C++ vulnerabilities
in crowd-sourced code examples,” IEEE Trans. Software Eng.,
vol. 48, no. 5, pp. 1497–1514, 2022. [Online]. Available:
https://doi.org/10.1109/TSE.2020.3023664

[2] Flawfinder. [Online]. Available: http://www.dwheeler.com/FlawFinder
[3] Rats: Rough audit tool for security. [Online]. Available:

https://code.google.com/archive/p/rough-auditing-tool-for-security/
[4] J. Viega, J.-T. Bloch, Y. Kohno, and G. McGraw, “Its4: A static

vulnerability scanner for c and c++ code,” in Proceedings 16th Annual
Computer Security Applications Conference (ACSAC’00). IEEE, 2000,
pp. 257–267.

[5] Checkmarx. [Online]. Available: https://www.checkmarx.com/
[6] Hp fortify. [Online]. Available: https://www.hpfod.com/
[7] Coverity. [Online]. Available: https://scan.coverity.com/
[8] CWE-120: Buffer Overflow. [Online]. Available:

https://cwe.mitre.org/data/definitions/120.html
[9] CWE-89: SQL Injection. [Online]. Available:

https://cwe.mitre.org/data/definitions/89.html
[10] CWE-79: Cross-site Scripting. [Online]. Available:

http://cwe.mitre.org/data/definitions/79.html
[11] CWE-290: Authentication Bypass by Spoofing. [Online]. Available:

https://cwe.mitre.org/data/definitions/290.html
[12] Y. Li, S. Wang, and T. N. Nguyen, “Vulnerability detection with

fine-grained interpretations,” in Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. New York, NY, USA:
Association for Computing Machinery, 2021, p. 292–303. [Online].
Available: https://doi.org/10.1145/3468264.3468597

[13] S. Chakraborty, R. Krishna, Y. Ding, and B. Ray, “Deep learning
based vulnerability detection: Are we there yet?” IEEE Transactions
on Software Engineering, vol. 48, no. 09, pp. 3280–3296, sep 2022.

[14] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective vulner-
ability identification by learning comprehensive program semantics via
graph neural networks,” in Advances in Neural Information Processing
Systems, 2019, pp. 10 197–10 207.

[15] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen, “SySeVR: A
framework for using deep learning to detect software vulnerabilities,”
arXiv preprint arXiv:1807.06756, 2018.

[16] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong,
“VulDeePecker: A deep learning-based system for vulnerability detec-
tion,” arXiv preprint arXiv:1801.01681, 2018.

[17] B. Dagenais and L. Hendren, “Enabling static analysis for partial java
programs,” SIGPLAN Not., vol. 43, no. 10, p. 313–328, oct 2008.
[Online]. Available: https://doi.org/10.1145/1449955.1449790

[18] H. Phan, H. A. Nguyen, N. M. Tran, L. H. Truong, A. T. Nguyen,
and T. N. Nguyen, “Statistical Learning of API Fully Qualified Names
in Code Snippets of Online Forums,” in Proceedings of the 40th
International Conference on Software Engineering, ser. ICSE ’18.
New York, NY, USA: Association for Computing Machinery, 2018, p.
632–642. [Online]. Available: https://doi.org/10.1145/3180155.3180230

[19] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and discover-
ing vulnerabilities with code property graphs,” in 2014 IEEE Symposium
on Security and Privacy, 2014, pp. 590–604.

[20] M. Izadi, R. Gismondi, and G. Gousios, “Codefill: Multi-token code
completion by jointly learning from structure and naming sequences,”
in Proceedings of the 44th International Conference on Software
Engineering, ser. ICSE ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 401–412. [Online]. Available:
https://doi.org/10.1145/3510003.3510172

[21] S. Kim, J. Zhao, Y. Tian, and S. Chandra, “Code prediction
by feeding trees to transformers,” in Proceedings of the
43rd International Conference on Software Engineering, ser.
ICSE ’21. IEEE Press, 2021, p. 150–162. [Online]. Available:
https://doi.org/10.1109/ICSE43902.2021.00026

[22] O. Chaparro, C. Bernal-Cárdenas, J. Lu, K. Moran, A. Marcus,
M. Di Penta, D. Poshyvanyk, and V. Ng, “Assessing the quality
of the steps to reproduce in bug reports,” in Proceedings
of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering, ser. ESEC/FSE 2019. New York, NY, USA:
Association for Computing Machinery, 2019, p. 86–96. [Online].
Available: https://doi.org/10.1145/3338906.3338947

[23] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “Bug
localization with combination of deep learning and information re-
trieval,” in 2017 IEEE/ACM 25th International Conference on Program
Comprehension (ICPC), 2017, pp. 218–229.

[24] A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “A large-scale
study on repetitiveness, containment, and composability of routines
in open-source projects,” in Proceedings of the 13th International
Conference on Mining Software Repositories, ser. MSR ’16. New
York, NY, USA: Association for Computing Machinery, 2016, p.
362–373. [Online]. Available: https://doi.org/10.1145/2901739.2901759

[25] Y. Wu, D. Zou, S. Dou, W. Yang, D. Xu, and H. Jin, “VulCNN: An
image-inspired scalable vulnerability detection system,” 2022.

[26] J. Fan, Y. Li, S. Wang, and T. Nguyen, “A C/C++ code vulnerability
dataset with code changes and cve summaries,” in The 2020 Interna-
tional Conference on Mining Software Repositories (MSR). IEEE, 2020.

[27] [Online]. Available: https://stackoverflow.com/a/10702464
[28] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program

dependence graph and its use in optimization,” ACM Trans. Program.
Lang. Syst., vol. 9, no. 3, p. 319–349, jul 1987. [Online]. Available:
https://doi.org/10.1145/24039.24041

[29] D. Chen and C. Manning, “A fast and accurate dependency parser using
neural networks,” in Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Doha, Qatar:
Association for Computational Linguistics, Oct. 2014, pp. 740–750.
[Online]. Available: https://aclanthology.org/D14-1082

[30] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all
you need,” CoRR, vol. abs/1706.03762, 2017. [Online]. Available:
http://arxiv.org/abs/1706.03762

[31] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al.,
“Language models are unsupervised multitask learners,” OpenAI blog,
vol. 1, no. 8, p. 9, 2019.

[32] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized BERT
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

[33] M. Allamanis and C. Sutton, “Mining Source Code Repositories at Mas-
sive Scale using Language Modeling,” in The 10th Working Conference
on Mining Software Repositories. IEEE, 2013, pp. 207–216.

[34] T. Mikolov, K. Chen, G. S. Corrado, and J. Dean, “Efficient estimation
of word representations in vector space,” 2013. [Online]. Available:
http://arxiv.org/abs/1301.3781

[35] K. Clark, U. Khandelwal, O. Levy, and C. D. Manning, “What
does BERT look at? an analysis of BERT’s attention,” in
Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP. Florence, Italy: Association
for Computational Linguistics, Aug. 2019, pp. 276–286. [Online].
Available: https://aclanthology.org/W19-4828

[36] [Online]. Available: https://github.com/deeppda-icse23/DeepPDA/
[37] Y. Li, S. Wang, T. N. Nguyen, and S. Van Nguyen,

“Improving bug detection via context-based code representation
learning and attention-based neural networks,” Proc. ACM Program.
Lang., vol. 3, no. OOPSLA, Oct. 2019. [Online]. Available:
https://doi.org/10.1145/3360588

[38] G. K. Baah, A. Podgurski, and M. J. Harrold, “The probabilistic
program dependence graph and its application to fault diagnosis,” in
Proceedings of the 2008 International Symposium on Software Testing
and Analysis, ser. ISSTA ’08. New York, NY, USA: Association
for Computing Machinery, 2008, p. 189–200. [Online]. Available:
https://doi.org/10.1145/1390630.1390654

[39] M. Feng and R. Gupta, “Learning universal probabilistic models
for fault localization,” in Proceedings of the 9th ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering, ser. PASTE ’10. New York, NY, USA: Association
for Computing Machinery, 2010, p. 81–88. [Online]. Available:
https://doi.org/10.1145/1806672.1806688

[40] X. Yu, J. Liu, Z. Yang, and X. Liu, “The Bayesian Network Based
Program Dependence Graph and Its Application to Fault Localization,”
J. Syst. Softw., vol. 134, no. C, p. 44–53, dec 2017. [Online]. Available:
https://doi.org/10.1016/j.jss.2017.08.025

[41] S. Lee, D. Binkley, R. Feldt, N. Gold, and S. Yoo, “MOAD: Modeling
observation-based approximate dependency,” in 2019 19th Interna-
tional Working Conference on Source Code Analysis and Manipulation
(SCAM), 2019, pp. 12–22.

[42] S. Lee, “Scalable and approximate program dependence analysis,”
in Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering: Companion Proceedings, ser. ICSE ’20. New
York, NY, USA: Association for Computing Machinery, 2020, p.
162–165. [Online]. Available: https://doi.org/10.1145/3377812.3381392

[43] S. Lee, D. Binkley, N. Gold, S. Islam, J. Krinke, and S. Yoo,
“Evaluating lexical approximation of program dependence,” J.
Syst. Softw., vol. 160, no. C, feb 2020. [Online]. Available:
https://doi.org/10.1016/j.jss.2019.110459

[44] S. Bhatia and R. Singh, “Automated correction for syntax
errors in programming assignments using recurrent neural
networks,” CoRR, vol. abs/1603.06129, 2016. [Online]. Available:
http://arxiv.org/abs/1603.06129

[45] J. Patra and M. Pradel, “Learning to fuzz: Application-independent fuzz
testing with probabilistic, generative models of input data,” 2016.

[46] M. Amodio, S. Chaudhuri, and T. W. Reps, “Neural attribute machines
for program generation,” CoRR, vol. abs/1705.09231, 2017. [Online].
Available: http://arxiv.org/abs/1705.09231

[47] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep
learning code fragments for code clone detection,” in Proceedings
of the 31st IEEE/ACM International Conference on Automated
Software Engineering, ser. ASE. New York, NY, USA: Association
for Computing Machinery, 2016, p. 87–98. [Online]. Available:
https://doi.org/10.1145/2970276.2970326

[48] R. Smith and S. Horwitz, “Detecting and measuring similarity in code
clones,” 2009.

[49] L. Li, H. Feng, W. Zhuang, N. Meng, and B. Ryder, “CCLearner: A Deep
Learning-Based Clone Detection Approach,” in 2017 IEEE International

Conference on Software Maintenance and Evolution (ICSME), Sep.
2017, pp. 249–260.

[50] M. Allamanis, H. Peng, and C. A. Sutton, “A convolutional
attention network for extreme summarization of source
code,” CoRR, vol. abs/1602.03001, 2016. [Online]. Available:
http://arxiv.org/abs/1602.03001

[51] L. Mou, G. Li, Z. Jin, L. Zhang, and T. Wang, “TBCNN: A
tree-based convolutional neural network for programming language
processing,” CoRR, vol. abs/1409.5718, 2014. [Online]. Available:
http://arxiv.org/abs/1409.5718

[52] G. Zhao and J. Huang, “Deepsim: Deep learning code functional
similarity,” in Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2018. New
York, NY, USA: ACM, 2018, pp. 141–151. [Online]. Available:
http://doi.acm.org/10.1145/3236024.3236068

[53] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning
distributed representations of code,” CoRR, vol. abs/1803.09473, 2018.
[Online]. Available: http://arxiv.org/abs/1803.09473

[54] P. Bielik, V. Raychev, and M. Vechev, “Phog: Probabilistic model
for code,” in Proceedings of The 33rd International Conference on
Machine Learning, ser. Proceedings of Machine Learning Research,
M. F. Balcan and K. Q. Weinberger, Eds., vol. 48. New York,
New York, USA: PMLR, 20–22 Jun 2016, pp. 2933–2942. [Online].
Available: http://proceedings.mlr.press/v48/bielik16.html

[55] U. Alon, S. Brody, O. Levy, and E. Yahav, “code2seq: Generating
sequences from structured representations of code,” arXiv preprint
arXiv:1808.01400, 2018.

