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Program slicing, the process of extracting program statements that influence values at a designated location
(known as the slicing criterion), is helpful in both manual and automated debugging. However, such slicing
techniques prove ineffective in scenarios where executing specific inputs is prohibitively expensive, or even
impossible, as with partial code. In this paper, we introduce ND-Slicer, a predictive slicing methodology
that caters to specific executions based on a particular input, overcoming the need for actual execution. We
enable such a process by leveraging execution-aware pre-training to learn the dynamic program dependencies,
including both dynamic data and control dependencies between variables in the slicing criterion and the
remaining program statements. Such knowledge forms the cornerstone for constructing a predictive backward
slice. Our empirical evaluation revealed a high accuracy in predicting program slices, achieving an exact-match
accuracy of 81.3% and a ROUGE-LCS F1-score of 95.4% on Python programs. As an extrinsic evaluation,
we illustrate ND-Slicer’s usefulness in crash detection, with it locating faults with an accuracy of 63.9%.
Furthermore, we include an in-depth qualitative evaluation, assessing ND-Slicer’s understanding of branched
structures such as if-else blocks and loops, as well as the control flow in inter-procedural calls.
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1 INTRODUCTION

Program analysis is the process of examining a program to reason about its properties, structures,
or behaviors. A fundamental class of program analysis is dependence analysis, which focuses on
reasoning about the dependencies of one component of a program, to some degree, on the other
components. Dynamic dependence analysis, in particular, encompasses techniques to analyze such
relationships during the execution of a program for specific inputs. This is essential for various tasks
in software engineering, such as understanding and analyzing runtime behavior [33], detecting
runtime errors or exceptions [25], debugging [40], testing [5], and optimizing programs [9].
Traditional methods for dynamic dependence analysis typically require access to the entire

source code for a system, as well as the collection and storage of runtime data. These challenges are
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exacerbated in security-sensitive and resource-constrained environments. Besides, certain develop-
ment scenarios pose significant challenges. For instance, when dealing with programs reliant on
intricate third-party libraries, enabling dynamic instrumentation or executing them for specific
inputs becomes laborious and time-consuming. Next, consider facilitating the understanding of
run-time behavior of code snippets from online forums such as StackOverflow. These are often
incomplete and non-executable [43], thus hindering compiler-based approaches as well.

The motivation for our work lies in addressing these challenges and establishing an alternative
approach to dynamic dependence analysis. Inspired by the success of prior research in learning
static program dependencies [42], we propose a novel learning-based paradigm for predicting
dynamic dependencies, namely, predictive dependence analysis. This paradigm marks a step
forward in generating approximate dynamic dependencies at a large-scale by side-stepping the
need for actual program execution. By utilizing complete code and leveraging prior execution
knowledge, machine learning models can be trained for predictive dependence analysis.

In this paper, we seek to enhance the understanding of run-time behavior in programs. Thus, we
focus on predictive slicing, a use-case of predictive dependence analysis designed to predict the
dynamic slices of a program. Dynamic slices comprise subsets of program statements that impact
a designated point of interest (referred to as the slicing criterion) for particular inputs. Software
developers often employ such slicing techniques to concentrate their efforts on specific portions of
the codebase, enabling them to understand, debug, and improve software systems efficiently.
Within the framework of predictive slicing, we introduce ND-Slicer, a predictive backward

slicing approach that is applicable to both complete and partial programs. To enable predictive
slicing 1 within ND-Slicer, it is imperative to capture the nuances of code execution. First, during
the training phase, the availability of complete programs and inputs makes it possible to acquire the
corresponding execution traces. This facilitates the generation of a dynamic slice for a given slicing
criterion – serving as the training data. However, as is the case with incomplete code, the inference
phase does not guarantee the availability of an execution trace. To address this limitation, we adopt a
sequence-to-sequence approach, wherein, the encoder focuses on learning the dynamic dependencies

in a program specific to the given input. Such dynamic program dependencies encompass dynamic
data and control-dependence between variables at the slicing criterion and the remaining program
statements at a fine-grained granularity. Such execution aware-knowledge forms the foundational
connections required to construct a predictive slice.
Another significant challenge pertains to the specificity of the criterion within an execution.

Unlike static slicing, where the slicing criterion is solely defined at the location of a variable in the
program, dynamic slicing requires establishing the criterion at a precise occurrence of a statement
in the execution trace. This distinction marks a fundamental difference between static and dynamic
slicing techniques. For instance, consider a scenario in which a slicing criterion lies within the scope
of a while-loop. In this case, the statement may be executed multiple times, causing the variables
within it to be affected by different sets of program statements during each executing iteration of
the loop. To effectively capture this intricacy, we specifically encode the occurrence of the iteration
in ND-Slicer, helping the model establish a coherent connection between the instances of the
criterion and the statements within the loop executed prior to the criterion, as well as to those
statements executed before the beginning of the loop execution.
The next challenge revolves around constructing the predictive slice. Our task is to predict

the sequence of statement/line occurrences that align with the actual execution order. In other
words, the model’s output is a sub-sequence of the execution trace in the reverse order, starting
from the precise occurrence of the slicing criterion in the trace. Note that this sub-sequence may

1In the remainder of this paper, we refer to the dynamic backward slice predicted by ND-Slicer as the "predictive slice".
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Listing 1. Python Code Example

1 a = [5, 2, 9, 11]
2 maxa = max(a)
3 mini = [[] for _ in range(len(a))]
4 for i, v in enumerate(a):
5 r = maxa - 2 * v
6 if (v - r) % 2 == 1:
7 s = v - r + 1
8 else:
9 s = v - r + 2

10 mini[i] = [v, math.sqrt(s)]
11 mini.sort(key = lambda x: x[1])

Listing 2. Execution Trace and Slices

1 Execution trace :

1, 2, 3, 4, 5, 6, 9, 10, 4, 5, 6, 7,

10−(crash)

2 Static backward slice from s at line 10:

10, 9, 8, 7, 6, 5, 4, 3, 2, 1

3 Dynamic backward slice from s at line 10(2) :

10(2) , 7(1) , 6(2) , 5(2) , 4(2) , 10(1) , 9(1) ,

6(1) , 5(1) , 4(1) , 3(1) , 2(1) , 1(1)

Fig. 1. A motivating example

include statements/lines multiple times, all in accordance with the execution order. To address this
challenge, we configure the decoder in our sequence-to-sequence framework to learn the conditional
probability of generating an output sequence comprising discrete line numbers corresponding to
the statements in the input sequence. As a result of the training process, this component learns the
subtleties of execution order with respect to the executing iteration of the slicing criterion.
We conducted an extensive empirical evaluation of ND-Slicer on both executable and non-

executable Python programs. The dynamic backward slices predicted by ND-Slicer for complete,
executable Python programs exactly matches the actual dynamic slices in 81.3% of the cases, while
obtaining a ROUGE-LCS score of 95.4%.Meanwhile, it correctly predicts the dynamic backward slices
for non-executable, partial Python programs, i.e., those lacking referenced methods/classes in 54.6%
of the cases. We explored the usefulness of ND-Slicer in the task of crash detection, observing that
it predicts the crash faults with an accuracy of 63.9%. Finally, we conducted an in-depth analysis of
our model, revealing its understanding of different statement types, execution iterations, as well as
inter-procedural control and data flow. In summary, the key contributions of this paper are:
(1) ND-Slicer: a novel predictive slicing approach for both complete and partial programs that

predicts the dynamic backward slice for a criterion without the need for actual execution.
ND-Slicer is the first neural network-based approach to dynamic program slicing.

(2) We conduct a comprehensive evaluation on the performance of ND-Slicer, including the
downstream task of locating crash faults, given an (in)complete program and its inputs.

(3) We present an in-depth analysis of ND-Slicer, demonstrating its understanding of different
statement types, execution iterations, and inter-procedural data and control flows.

2 MOTIVATION

2.1 Example on Program Slicing

Consider the Python program in Fig. 1 inspired from an instance in CodeNetMut dataset [24].
This program encounters a crash at run-time (line 10), displaying the "ValueError: math domain error"
message. The crash originates from the math.sqrt(s) method when the value of s becomes -4. In
Listing 2, we illustrate the execution trace for this program. The bug occurs on line 6 in Listing 1,
where the developers failed to ensure that the expression v - r has a sufficiently large value such
that its assignment to the variable s on line 7, that further flows to line 10 remains non-negative.

To debug this defect, one could leverage program slicing. One approach is to analyze the program
by using the static backward slice of the variable s on line 10 – which includes the lines 10, 9, 7, 6, 5,
4, 3, 2, and 1. We can see that the static backward slice considers all statements that can potentially
affect the variable s across any program execution, rather than focusing on a specific execution.
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This is not always helpful. For instance, when evaluating which statements impact the value of s

on line 10, a static backward slicing technique must examine both branches of the if-statement on
line 6, even if only one branch is executed in a specific scenario. In more complex programs with
nested loops and conditional blocks, the number of such statements and corresponding paths in a
static backward slice can explode exponentially, thus providing little assistance with debugging.
Alternatively, one can employ dynamic slicing for this purpose. The dynamic slice includes

statements that affect the value of s on line 10 during the second iteration of the for-loop. Thereby,
we establish the slicing criterion for the variable s as "10(2)", the corresponding dynamic backward
slice, for which is shown on line 3 of Listing 2. Here, the number in parentheses indicates the
occurrence of the statement in the execution trace. Despite being longer, the dynamic slice is more
precise about the current execution, as it also considers the executing iterations of loops. This
precision can assist developers in tracing back to critical statements in the dynamic backward slice,
ultimately leading to locating the bug on line 6. One can potentially fix this bug by adding the
verification: v - r >= 0. However, in certain development scenarios (as described in Section 1),
executing the program might not be feasible, thus limiting such run-time behavior analysis.

2.2 Motivation and Key Ideas

To address these challenges, we develop ND-Slicer, a learning-based predictive slicing approach
that predicts the statements belonging to a dynamic backward slice concerning a criterion, without
executing the given program. In designing ND-Slicer, we incorporate the following key ideas:

First, during the training phase, we use complete code along with their dynamic backward slices
extracted from the respective execution traces to construct our training data. Each training instance
consists of three components: (a) the given program and its input, (b) the slicing criterion, and (c)
the corresponding dynamic backward slice. In the running example, this translates to the following:
(a) Listing 1, with the program input on line 1 (i.e., the list assignment to variable a); (b) line 10,
which contains the variable s, in its second occurrence within the trace; and (c) line 3 in Listing 2.

2.2.1 [Key Idea 1] Dynamic Dependence Learning (DDL). Previous works [15, 42] have highlighted
the effectiveness of sequence-based models in learning program dependencies. These approaches
benefit from their ability to work with incomplete code. Thus, we chose to adopt a sequence-to-
sequence framework for predictive slicing. Within this framework, the encoder aims to learn the
nuances of source code from the training instances (as described earlier), capturing both dynamic
data and control dependencies between the variable at the criterion and the statements that precede
it in the execution trace. Such dependencies are input-dependent and tied to a specific execution.
For example, let us consider the variable s for the second occurrence of line 10, i.e., 10(2) in the
running example. There are two static def-use dependencies: one between the definition of s on line
7 and its use on line 10, and another between the definition of s on line 9 and its use on line 10. The
goal of our DDL component, in this case, is to learn that the dynamic dependency for this specific
execution arises from the statement 7(1), rather than from the statement 9(1), to the variable s

at 10(2). In a similar vein, the DDL component must also learn the control dependence between
6(2) and 7(1) along with the connections based on the variables v and r. These dependencies help
connect the statements towards predicting the backward slice.

Second, a criterion must be defined at a precise point in the execution history. For example, to
debug the crash in the running example, one can start from the criterion corresponding to the
variable s at line 10 in the second iteration of the for-loop. For this purpose, ND-Slicer needs to
understand and distinguish between the execution of line 10 in different iterations of the loop.
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Fig. 2. A general overview of ND-Slicer approach for predictive dynamic slicing

2.2.2 [Key Idea 2] Encoding Execution Iterations. To enable ND-Slicer to understand the executing
iteration of the slicing criterion, we explicitly encode the specific occurrence (e.g., first or second
occurrence, etc.) of the criterion in the input to our encoder. Such knowledge helps the DDL
component in learning the dynamic data/control dependencies between the criterion’s occurrence
and the statements preceding it in the execution history. Moreover, such a strategy also enhances
the model’s understanding of execution flow, helping it distinguish between the current and all
prior occurrences of the criterion. In the case of the running example, combining Key Ideas 1 and 2
teaches the model to learn the distinct data/control dependencies incorporated in the second and
first occurrences of the slicing criterion in the execution history, i.e., the sub-sequences 10(2)→
7(1) → 6(2) and 10(1) → 9(1) → 6(1), respectively. We standardize such an encoding across the
program by assigning "1" as the execution iteration for all non-loop slicing criteria.

Third, the predictive backward slice must be in accordance with the execution order of the relevant
statements in the execution trace, while also taking into consideration their occurrence number
within that trace – as a statement can be executed multiple times.

2.2.3 [Key Idea 3] Attention-Based Decoders for Slice Generation. We leverage the Transformer [38]
decoder (see Section 5 for details on all variants) within the sequence-to-sequence framework to
model the generation of the sequence of statements at a specific occurrence and construct the
predictive backward slice. We incorporate line numbers into the input for the DDL component,
enabling it to understand statement-level dynamic data and control dependencies. Leveraging this
knowledge, the Transformer decoder learns the conditional probability of generating a sequence
containing these discrete line numbers, representing the predictive slice. In the running example, it
learns to correctly predict the output sequence 10(2) → 7(1) → 6(2) → 5(2)... (line 3 in Listing 2).

3 ND-SLICER: NEURAL NETWORK-BASED PREDICTIVE BACKWARD SLICING

3.1 Framework Overview

Given an (in)complete program, its inputs, and a specific statement with its occurrence in the
execution trace as the slicing criterion, ND-Slicer predicts the dynamic backward slice for the
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criterion. In Fig. 2, we illustrate the model architecture for ND-Slicer. Broadly, it adopts the
sequence-to-sequence framework for predictive slicing, with the following essential components:

3.1.1 Dynamic Dependence Learning. In recent times, specialized source code models [15, 42]
have highlighted the effectiveness of learning-based approaches in understanding data and control
dependencies. However, their learning objectives do not focus on run-time behavior of code,
limiting their suitability for predictive slicing. To address this challenge, we chose to leverage
CodeExecutor [24], a model pre-trained on code execution, as the encoder in our framework.
This code execution pre-training equips ND-Slicer with the capability to learn dynamic program

dependencies. Furthermore, treating source code as a sequence of tokens empowers such pre-trained
models (PTMs) to operate efficiently for both complete and partial code, thereby overcoming the
limitations of dynamic execution, which is typically applicable only to complete code.
Let us consider a program 𝑃 = ⟨𝑠1, 𝑠2, · · · , 𝑠𝑁 ⟩, where 𝑠𝑖 represents a statement in the program.

Note that the inputs to the program, 𝐼𝑃 , are included as assignment statements at the beginning of
the program. We represent each statement 𝑠𝑖 as a sequence of code tokens ⟨[𝑖], 𝑡 (𝑖 )1 , 𝑡

(𝑖 )
2 , · · · , 𝑡 (𝑖 )

𝑀𝑖
⟩,

where [𝑖] represents the special line identifier token included at the beginning of every line. For a
given slicing criterion ⟨𝑠𝑐 , 𝑜⟩, that denotes the task of predicting the slice for the 𝑜-th occurrence of
the statement 𝑠𝑐 in its execution history, the inputs to the encoder in ND-Slicer are represented as:

{[1], 𝑡 (1)1 , 𝑡
(1)
2 , · · · , 𝑡 (1)

𝑀1
, · · · , [N], 𝑡 (𝑁 )

1 , 𝑡
(𝑁 )
2 , · · · , 𝑡 (𝑁 )

𝑀𝑁
, [SEP], [𝑐], [SEP], 𝑜}

For each token 𝑡 in this input representation, the DDL module generates a contextually enriched
token representation 𝑒𝑡 ∈ R𝑑 (where 𝑑 is the model dimension) with the following goals: (1) 𝑒𝑡 is
syntax, semantics, and execution-aware; (2) it learns the execution-flow based on the model input
tokens 𝑡𝑥 ∈ 𝐼𝑃 ; (3) it learns the dynamic data and control dependencies between 𝑡 𝑗 ∈ 𝑃 and 𝑡 (𝑐 )
based on the occurrence of the slicing criterion denoted by [𝑐] and 𝑜 , respectively.

3.1.2 Backward Slice Prediction. The primary challenge in predicting backward slices lies in
ensuring that the sequence of statement/line occurrence aligns with the actual execution history,
where the output sequence captures all dynamic data and control dependencies on the slicing
criterion. Given the proven effectiveness of the attention mechanism in propagating information of
the input sequence to the decoder within the sequence-to-sequence framework, we chose to adopt
the Transformer decoder in ND-Slicer (see Section 5 for all variants).

The encoder in theDDLmodulemaps themodel input to a sequence of continuous representations
x = {𝑒 [1], 𝑒𝑡 (1)1

, · · · , 𝑒 [𝑆𝐸𝑃 ], 𝑒 [𝑐 ], 𝑒 [𝑆𝐸𝑃 ], 𝑒𝑜 }. Given x, the decoder generates an output sequence
y = {𝑦1, 𝑦2, · · · , 𝑦𝑘 } of symbols one element at a time. Here, each 𝑦𝑘 corresponds to the special
line identifier token [𝑖] in the input representation. This process is auto-regressive, where the
previously generated symbols are consumed as the additional input for generating the next.

3.2 Training Process and Inference

During the training phase, ND-Slicer aims to learn the conditional probability 𝑃 (y|x) of generating
the sequence of discrete line numbers𝑦𝑖 corresponding to the program statements in 𝑃 that represent
the dynamic backward slice for a specific slicing criterion. Mathematically, this is equivalent to:

𝑃 (y|x) = 𝑃 (𝑦1, 𝑦2, ..., 𝑦𝑘 |x) =
𝑘∏
𝑖=1

𝑝 (𝑦𝑖 |𝑦<𝑖 , x) (1)

For each instance in the training data, intuitively, we maximize the probability that the model
assigns to the correct token at each step of the generation process. Let’s assume 𝑝∗𝑗 is the one-hot
encoded representation of the correct token at position 𝑗 in the output sequence, while 𝑝 𝑗 is the
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probability distribution predicted by the model for the token at position 𝑗 over the vocabulary.
Making use of the standard cross-entropy loss for training the model, formally, the loss associated
with a training instance at each step corresponds to:

Lstep (𝜃 ) = −𝑝∗𝑙𝑜𝑔(𝑝) = −
|𝑉 |∑︁
𝑗=1

𝑝∗𝑗 𝑙𝑜𝑔(𝑝 𝑗 ) (2)

At each step, we maximize the probability the model assigns to the correct token. The total loss for
the entire training instance is computed as follows:

Linstance (𝜃 ) = − 1
𝑘

𝑘∑︁
𝑖=1

log(𝑝 (𝑦𝑖 |𝑦<𝑖 , 𝑥)) (3)

During inference, we start with the [SOS] token and follow the simple transduction process by
decoding from left-to-right, picking the "best" token, i.e., the token with the highest probability
at each step, given by 𝑦′ = argmax𝑦

∏𝑘
𝑖=1 𝑝 (𝑦𝑖 |𝑦<𝑖 ), x). We continue this process until the [EOS]

token is reached. This process can easily be extended with the beam search decoding strategy to
extract a set of approximate, plausible predictive slices for each program.

4 EMPIRICAL EVALUATION

We conducted several experiments, seeking to answer the following research questions:
(I) Intrinsic Evaluation

RQ1. Effectiveness on Executable Python Code: How accurate is ND-Slicer in predicting

dynamic slices for a given slicing criterion in complete, executable Python programs?

RQ2. Effectiveness on Non-Executable Python Code: How accurate is ND-Slicer in predicting

dynamic slices for a given slicing criterion in incomplete and non-executable Python programs?

(II) Extrinsic Evaluation
RQ3. Crash Detection: How useful is ND-Slicer in locating crash faults in Python program?

(III) In-Depth Study of Model Performance
RQ4. Statement Types: How well does ND-Slicer perform on different types of statements?

RQ5. Execution Iteration in Loops: How well does ND-Slicer perform when slicing statements

in the scope of a loop for different execution iterations?

RQ6. Probing Inter-Procedural Slicing: How well does ND-Slicer perform when predicting the

inter-procedural slices, and when the slices cross the boundaries of procedure calls?

5 PREDICTIVE SLICING OF EXECUTABLE PYTHON PROGRAMS (RQ1)

5.1 Data Collection

5.1.1 Input Programs. To evaluate the effectiveness of our approach on Python programs, we
utilized the CodeNetMut dataset [24]. This dataset comprises executable Python programs, which
are essentially mutation variations of the Project CodeNet dataset [32]. Notably, these programs
do not rely on specific external resources such as file contents, external modules, or third-party
packages. Furthermore, each program instance includes the input values at the beginning of the
program in the form of assignment statements, assigning the values to input variables.

5.1.2 Slicing Criteria. For each program in the dataset, execution trace is provided which consists
of: the order in which the computer executes statements; and how the states of the variables change
when jumping from one statement to another. The execution history can have statements repeating
multiple times. Thus, we select all statements with all of their occurrences as the slicing criteria.
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5.1.3 Ground-Truth Dynamic Backward Slices. Agrawal and Horgan [4] present several approaches
to computing dynamic slices, of which, we adopt their Algorithm 2. For a given program, first, we
build the static program dependence graph (PDG) by leveraging the python-graphs [2] tool. Initially,
none of the edges in the PDG are marked. Next, starting from the occurrence of the slicing criterion
in the statement execution history, we mark the edges of the PDG based on the dependencies that
arise during program execution. Finally, we traverse the graph only along the marked edges to
identify the set of all statements that make up the resulting dynamic slice.
In the CodeNetMut dataset, Liu et al. [24] make 19,541 Python programs and their execution

traces available. Among these, we skipped the ones for which python-graphs fails to build the PDGs.
Based on the data construction steps detailed above, we combined the execution traces for these
programs with their respective static PDGs to compute the ground-truth dynamic slices, and extract
a total of 168,289 ⟨𝑃, [c], 𝑜, 𝑆⟩ tuples for predictive slicing. Here, each denotes the input program,
the statement in the slicing criterion, the occurrence of the slicing criterion in the execution trace,
and the dynamic backward slice, respectively. Next, we split them at the problem-level to avoid
data leakage, in the 80%-10%-10% ratio, dedicating a total of 104,464 instances for training, 13,770
instances for validation, and 12,203 instances for testing. Overall, our dataset has programs with a
maximum of 95 statements; and the lengths of the dynamic slices range from 2 to 10.

5.2 Experiment Methodology

5.2.1 Baselines. First, we compared our approach with a naive baseline (𝐵0) to establish a reference
for the improvements of predictive slicing over static analysis. In 𝐵0, we computed execution traces
by deterministically selecting the following statement as the next executed statement, employing
random selection in the case of if-conditions, and iterating only once over loops. We then combined
these traces with the Dynamic Slicing Algorithm outlined in Section 5.1.3 to extract the dynamic
slices for corresponding slicing criteria.

Next, in place of the arbitrary traces (as in 𝐵0), we used pre-trained CodeExecutor [24] to predict
the execution traces for all programs in our evaluation dataset. To establish this baseline (𝐵1), we
then combined the predicted traces with the Dynamic Slicing Algorithm to compute the dynamic
slices. Note that 𝐵1 required no additional training. For the next baseline (𝐵2), we fine-tuned

CodeExecutor for the downstream task of predictive slicing, in the encoder-decoder mode. In this
case, the dynamic backward slices are directly used as targets to train the model for this task.

In ND-Slicer, due to realizing the predictive slicing task as a sequence-to-sequence framework,
it gives us the flexibility to plug in different encoders and decoders. We conducted experiments
with two encoders: GraphCodeBERT [15] and CodeExecutor [24]. The rationale behind choosing
GraphCodeBERT is its data flow-specific pre-training objective, which encodes the relation of
where the value of a variable comes – making it suitable for program slicing. In essence, the
sequence-to-sequence framework leveraging GraphCodeBERT as the encoder learns to pick the
specific execution path corresponding to the inputs from among all possible program paths. In the
case of CodeExecutor, the knowledge from code execution-specific pre-training makes it suitable
for learning the dynamic data and control dependencies for different program inputs.
The backbone of both GraphCodeBERT and CodeExecutor encoders is the standard RoBERTa-

base [26] architecture which has 12 Transformer-encoder layers, each possessing 12 attention heads.
We used the byte-pair encoding (BPE) scheme in the pre-trained RobertaTokenizer for splitting the
given source code into sub-tokens. In addition, we added up to 200 line identifiers (i.e., [i] tokens)
as special tokens to the tokenizer that are independent of the specific input.

In our sequence-to-sequence framework, we employed two decoders: the standard Transformer
decoder [38] and the Pointer-Transformer [31]. The Transformer decoder comprises a stack of
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Table 1. Model performance on executable Python programs (RQ1)

Approach Evaluation Metrics (in %)
R-LP R-LR R-LF EM

Naive

Arbitrary Execution Trace
+ Dyn. Slicing Algorithm (𝐵0)

33.8 36.3 34.3 29.7

Pre-Trained

CodeExecutor
+ Dyn. Slicing Algorithm (𝐵1)

52.9 53.6 53.1 49.2

Fine-Tuned

CodeExecutor (𝐵2) 94.5 89.9 90.9 58.8
GraphCodeBERT
+ Pointer-Transformer (𝐵3) 85.9 90.8 86.6 62.1
+ Transformer (𝐵4) 93.5 94.9 93.2 75.8
CodeExecutor
+ Pointer-Transformer (𝐵5) 83.0 92.9 85.5 62.4
+ Transformer (𝐵6) 95.4 96.4 95.4 81.3

6 layers, while the Pointer-Transformer is a hybrid of the Transformer decoder and the Pointer-
Generator Network [34]. The general idea for the Pointer-Transformer is that it copies from the
input sequence to generate the output sequence. Pointer-Transformer achieves the state-of-the-art
performance in solving combinatorial/ordering problems over a finite set of points (e.g., Traveling
Salesman Problem) – which aligns with the task of detecting the sequence of program statements
belonging to the dynamic slice. This makes it suitable for our task, as the dynamic backward
slice predicted by ND-Slicer is a sequence of line identifiers selected from the input sequence. To
facilitate the pointer mechanism, we expand the vocabulary with special position markers pointing
to input positions. Finally, it predicts a sequence of these position markers, which are subsequently
mapped back to the input to generate the predictive slice.
We used all combinations of the aforementioned encoders and decoders as baselines: Graph-

CodeBERT + Pointer-Transformer (𝐵3), GraphCodeBERT + Transformer (𝐵4), CodeExecutor +
Pointer-Transformer (𝐵5), and CodeExecutor + Transformer (𝐵6). We conducted all our experiments
on an NVIDIA RTX A6000 GPU, training all variants for 10 epochs. We initialized them with
learning rates of 1e-4 and 5e-4, and report the best-performing models.

5.2.2 Evaluation Metrics. We use the following metrics to assess our model performance: (a) Exact
Match Accuracy, a stricter version of accuracy which ensures that the predicted dynamic backward
slice by a model exactly matches the ground-truth dynamic slice; (b) ROUGE-L, which compares the
predicted and ground-truth backward slices based on the longest common sub-sequence (LCS). The
rationale behind adopting ROUGE-L scores is that it helps assess the order of the output sequence.
Mathematically, given the ground-truth backward slice 𝑆 and the predicted slice 𝑆 of lengths 𝐿𝑆
and 𝐿𝑆 , respectively: ROUGE-L Precision (R-LP) = 𝐿𝐶𝑆 (𝑆,𝑆 )

𝐿𝑆
, ROUGE-L Recall (R-LR) = 𝐿𝐶𝑆 (𝑆,𝑆 )

𝐿
𝑆

, and
ROUGE-L F1-Score (R-LF) = 2.R-LP .R-LR

R-LP+R-LR .

5.3 Empirical Results

In Table 1, we report the performance of ND-Slicer in the dynamic backward slicing task on
complete, executable Python programs. Our approach, combining CodeExecutor with Transformer
decoder within the sequence-to-sequence framework (𝐵6), produces the most competitive results,
predicting the dynamic backward slices with an Exact Match Accuracy of 81.3% and ROUGE-L

F1-score of 95.4%. Compared to the naive baseline (𝐵0), we observe an improvement in both metrics
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by 173.7% and 178.1%, indicating the non-trivial nature of this task. In addition, the gains range
from 7.3% to 65.4% and 2.3% to 79.7%, respectively, against all learning-based baselines.
When we employed the pre-trained CodeExecutor (𝐵1) to predict execution traces and sub-

sequently derive dynamic backward slices, we observed the least favorable results. A potential
explanation for this lies in the inherent complexity of execution trace prediction, where the model
in its pre-trained state, also attempts to predict program states containing ⟨variable, value⟩ pairs
for each statement, thus introducing a cascading error that affects its performance. Conversely, pre-
dicting the dynamic backward slice directly seems to be the better strategy for this task, especially
since all baselines 𝐵2–𝐵6 modeled in this manner outperform 𝐵1.

Next, we assessed the fine-tuned version CodeExecutor (𝐵2, row 2 in Table 1) for this task. This
baseline achieved an Exact Match Accuracy of 58.8% and a ROUGE-L F1-score of 90.9% in predicting
dynamic backward slices. While this represents a notable improvement over using the pre-trained
CodeExecutor directly (𝐵1), with gains of 19.6% and 71.2% for both metrics, it still falls short of the
best-performing baseline (𝐵6) by 38.3% and 5.0%, respectively. Further examination revealed that
the fine-tuned CodeExecutor continued to predict tokens corresponding to program states despite
being trained extensively on predictive slice data. Such tokens were subsequently discarded via
post-processing. This observation, however, suggests potential limitations in the applicability of
CodeExecutor directly in ⟨encoder, decoder⟩-style downstream tasks for source code.
GraphCodeBERT leverages code structure and data-flow knowledge to guide its pre-training

learning objectives, resulting in an understanding of static dependencies within code. This is evident
when combining the model with Pointer-Transformer (𝐵3) and Transformer (𝐵4) decoders, where
they outperform baseline 𝐵2 by 5.6% and 28.9% in Exact Match Accuracy, respectively. Notably,
the Pointer Transformer variant (𝐵3), achieves a lower ROUGE-L F1-score than 𝐵2, with the metric
declining by 5.0%. This observation can be attributed to programs with loops, particularly those
where the slicing criterion corresponds to a higher execution iteration. In these cases, Pointer
Transformer struggled to effectively leverage the data-flow knowledge to select the right slicing
path, given the inherent complexity. On the other hand, the Transformer variant (𝐵4) exhibited
better performance in handling such scenarios, as indicated by its improvement over 𝐵2 by 2.5% in
ROUGE-L F1-score. In direct comparison with 𝐵6, 𝐵3 and 𝐵4 exhibit lower performance in exactly
matching the ground-truth backward slices, underperforming by 31.0% and 7.3%, respectively.
CodeExecutor leverages code execution during pre-training. Thus, in baselines 𝐵5 and 𝐵6, we

employed CodeExecutor as the encoder, pairing it with Pointer Transformer and Transformer as
the decoders in ND-Slicer, respectively. 𝐵5 demonstrates performance similar to 𝐵3, underscoring
the constraints of Pointer Transformer in the context of predictive slicing. In contrast, 𝐵6 is the
top-performing baseline, improving over the next best model, GraphCodeBERT + Transformer by
7.3% in Exact Match Accuracy, and ROUGE-L F1-score in 2.4%, respectively. As a result, we select 𝐵6
as the primary model in ND-Slicer for the remainder of this paper. We also explore its performance
in various experiment settings, addressed via RQ2 – RQ6.

6 PREDICTIVE SLICING OF NON-EXECUTABLE PYTHON PROGRAMS (RQ2)

In the case of partial programs, i.e., when the code is non-executable due to missing variable
declarations, missing referencedmethods/classes, ormissing import statements for external libraries,
etc., it is not possible to compute the dynamic slices from their execution trace and corresponding
program dependence graphs (as described in Section 5.1). In contrast, ND-Slicer is not limited
by the completeness of the program. We set up this experiment to exhibit our tool’s ability in
predicting dynamic program slices for non-executable Python programs.
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Table 2. Model performance on non-executable Python programs (RQ2)

Approach Statement
Type

Evaluation Metrics (in %)
R-LP R-LR R-LF EM

Naive (𝐵0)
Branchless 44.7 48.9 45.8 39.1

Conditions, Loops 29.5 31.7 29.9 26.2
Overall 38.1 41.4 38.9 33.5

ND-Slicer (𝐵6)
Branchless 81.8 88.0 81.9 59.5

Conditions, Loops 81.7 85.2 81.3 55.0
Overall 81.8 86.8 81.6 57.5

6.1 Experiment Methodology

Extracting ground-truth dynamic backward slices for partial programs is not possible without
manual intervention. As a result, we picked Python programs from the test set in Section 5 and
omitted the import-statements for modules whose utilities are being used in the code – thus imitating
a non-executable program. In this process, we excluded any instances which: (a) do not have import-
statements; (b) length of resulting dynamic backward slices is less than 2. Overall, we obtained
1,849 instances, of which 1,044 are branch-free, and the rest contain if-else blocks or loops.

We evaluate the performance of the best-performing variant model of ND-Slicer in RQ1, i.e.,
CodeExecutor + Transformer, on this non-executable Python program dataset. To assess its perfor-
mance in this experiment, we adopt the same evaluation metrics as in Section 5.3.

6.2 Empirical Results

In Table 2, we report the performance of ND-Slicer on non-executable Python programs, further
categorizing them based on the presence or absence of branches. We can see that ND-Slicer
achieves an Exact Match Accuracy of 57.5% and a ROUGE-L F1-score of 81.6% in matching the
ground-truth dynamic backward slices, improving over the naive baseline by 71.6% and 109.8%,
respectively. Notably, this accuracy decreases by 4.6% in cases involving code with branches but
increases by 3.37% in branch-free code, both of which are significantly higher in the case of 𝐵0.
Upon further examination, we identified that mispredictions in 𝐵6 predominantly arise from

the statements referencing methods belonging to the external libraries. In cases where the model
did not trace back along such statements, irrespective of branching, ND-Slicer predicted the
dynamic backward slices correctly. This observation highlights that CodeExecutor does not have
an understanding of the libraries themselves, as it was not trained with the source code for these
libraries. This underscores potential gaps in the pre-training strategy employed by CodeExecutor for
acquiring execution knowledge, suggesting enhancements in future on pre-training with libraries.

7 PREDICTIVE PROGRAM SLICES FOR CRASH DETECTION (RQ3)

As illustrated in Section 2, dynamic backward slicing plays a crucial role in predicting program
crash faults by pinpointing the specific sequence of statements responsible for the crash. In practice,
manually isolating the code segment that triggers a crash is challenging as it requires a deep
understanding of the code at hand. In this experiment, we seek to evaluate the effectiveness of
ND-Slicer in producing the backward slice to locate crash faults within Python programs.

7.1 Experiment Methodology

We enabled this experiment by injecting synthetic ZeroDivisionError faults in the test Python
programs in Section 5.1. These often occur when a division or modulo operation is attempted with a
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1 s = "level"
2 n = len(s)
3 ans = "No"
4 cnt = 0
5 if s[::1] == s[::-1]:
6 injected_var = s / cnt
7 cnt += 1
8 if s[:int((n - 1) / 2) : 1] == s[int((n - 1) / 2) - 1 :: -1]:
9 cnt += 1
10 if s[int((n + 1) / 2) :: 1] == s[ : int((n - 1) / 2) : -1]:
11 cnt += 1
12 if cnt == 3:
13 ans = "Yes"
14 print(ans)

Fig. 3. A Python Code Example in CodeNetMut Dataset with an Injected Crash Fault

denominator or divisor of zero. To facilitate such a crash injection, first, we identified the instances
in which the value of any of the variables in the program becomes zero. Let the line number for
this statement be𝑚 and the variable for which the value becomes zero be 𝑥 . Next, we identified
the statement where the value of the variable changes from zero to a different one. Let the line
number for this statement be 𝑛 (𝑛 > 𝑚). We then injected a crash fault of the form: injected_var = y

/ x, where 𝑦 is one of the other variables in the program states at line 𝑛 − 1. We then applied the
Dynamic Slicing Algorithm described in Section 5.1.3 considering the location of the crash fault
(i.e., line 𝑛 − 1) as the slicing criterion to compute the ground-truth dynamic backward slices.

Let us consider the Python program in Fig. 3 to elucidate the procedure for crash injection. Here,
the value of cnt is initialized as 0 on line 4. On line 7, this value changes from 0 to 1. We pick line
6 as the location to inject the crash fault. Considering the first occurrence of line 8 as the slicing
criterion, i.e., 8(1), we construct its ground-truth dynamic backward slice: {8, 5, 4, 2, 1}. This slice
includes the additional statements not dependent on cnt, i.e., 2 and 1 due to the variable s on line 6.
Overall, we obtained 236 such crash-injected Python programs. Next, we leveraged the best-

performing model in Section 5, i.e., fine-tuned CodeExecutor+Transformer, to predict the dynamic
backward slices for the crash locations. Note that not all statements in the dynamic backward slice
could be crash-inducing, and only those that share dynamic data dependencies with the variable 𝑥
on line𝑚 are potential crash locations (e.g., cnt on line 4 in Fig. 3). Thus, to assess ND-Slicer in
crash detection, we identified the number of instances in which the predicted slice contains at least
one of the statements having dynamic data dependencies with the crash location on variable 𝑥 .

7.2 Empirical Results

In this experiment, we evaluated the performance of ND-Slicer in identifying crash locations
and predicting dynamic backward slices in real-world faulty programs. Our results show that
ND-Slicer is able to correctly identify crash locations in 63.9% of cases, and predict the dynamic
backward slice exactly the same in 47.5% of the cases. This is a promising result, as it demonstrates
the potential of ND-Slicer to be a useful tool for debugging real-world programs. We further
analyzed the cases where ND-Slicer was not able to correctly identify crash locations or dynamic
backward slices. We found that the most common source of error was choosing the wrong path
in an if-else statement, or while predicting the dynamic backward slice for a higher executing
iteration in a loop. While these errors are still limiting, we believe they can be addressed in future
work by developing strategies to improve ND-Slicer’s understanding of execution flow in a loop.
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Table 3. ND-Slicer’s performance on Python programs with different statement types (RQ4)

Approach Statement
Types

Evaluation Metrics (in %)
R-LP R-LR R-LF EM

Naive (𝐵0)
Branchless 42.7 45.6 43.3 38.1
Conditional 43.2 44.8 43.5 40.4

Loops 17.6 19.7 18.1 14.3

ND-Slicer (𝐵6)
Branchless 97.0 97.4 96.8 86.9
Conditional 96.1 95.1 95.0 78.7

Loops 93.1 95.2 93.4 72.5

8 IN-DEPTH STUDY OF MODEL PERFORMANCE (RQ4 – RQ6)

In this section, we conduct an in-depth qualitative analysis of ND-Slicer by examining different
aspects of model performance, and further validate our hypotheses and findings with case studies.

8.1 Statement Types (RQ4)

Analyzing various control structures provides fine-grained insights into program comprehension.
For instance, slicing programs without branches directly attests to ND-Slicer’s understanding
of dynamic data dependencies. When tracing through if-else blocks, we can assess whether ND-
Slicer understands the variables involved in conditions and how they influence branch selection
or operations within branches. Likewise, with a loop, we can determine ND-Slicer’s ability to
understand data/iteration dependencies within the loop, as well as its exit conditions.

8.1.1 Experiment Methodology. To facilitate this experiment, we picked Python programs in the
test set in Section 5.1, stratifying them based on whether the program is: (a) branch-free, i.e., has
no conditional statements or loops; (b) contains an if-else block; (c) contains a for/while loop.
In the case of conditional statements, we only considered instances with if-else blocks that are
independent of loops. Moreover, in both (b) and (c), we ensured that the slicing criterion is within
the scope of these control structures. Here, we assess the performance of the best-performing
CodeExecutor+Transformer (from Section 5.3), while also adopting the same evaluation metrics.

8.1.2 Empirical Results. In Table 3, we report the performance of ND-Slicer on Python programs
with different statement types. We can see that in the case of branch-free code, the predictive slices
from our tool considering different slicing criteria within the program, exactly matches the ground
truth in 86.9% of the instances, yielding a ROUGE-L F1-score of 96.8%. Compared to the overall
performance of ND-Slicer (Table 1), this is an improvement by 6.9%. Such a high performance for
these instances reiterates ND-Slicer’s capabilities in understanding dynamic data dependencies.
Next, let us examine Python programs with conditional statements. In this context, ND-Slicer

demonstrates a 78.7% Exact Match Accuracy in predicting the dynamic backward slice and achieves
a ROUGE-L F1-score of 96.1%. When compared toND-Slicer’s overall performance, this is a decrease
by 3.3%. This is reasonable because the code with conditional statements is more complex than
the one without them. Overall, a high performance for instances with conditional statements
underscores ND-Slicer’s proficiency in understanding dynamic control dependencies.
In the case of Python programs with loops, we observe that ND-Slicer exactly predicts the

dynamic backward slices 72.5% of the times, with a ROUGE-L F1-score of 96.8%. A more detailed
analysis revealed that in code with no conditional statements within the scope of the loops, the
accuracy improves to 76.4%. Conversely, in cases when programs have if-else blocks within the
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Table 4. ND-Slicer’s performance by execution iteration for loop examples: with if-else blocks, without

if-else blocks, all examples. Here, EM denotes Exact Match, and R-Lx denotes ROUGE-LCS scores.

Split (→) w/ if-else (𝐷
b
) w/o if-else (𝐷

b’
) Overall (𝐷

loop
)

Iteration (↓) R-LP R-LR R-LF EM R-LP R-LR R-LF EM R-LP R-LR R-LF EM

1 89.4 92.1 89.1 72.0 96.9 97.5 96.8 90.8 93.2 94.9 93.1 81.7
2 88.8 91.4 88.9 61.7 96.9 97.1 96.7 85.0 93.8 94.9 93.7 76.1
3 86.9 90.7 87.5 51.5 96.5 97.2 96.4 81.3 93.2 95.0 93.4 71.2
4 85.4 88.4 85.8 53.9 95.3 96.6 95.4 75.9 91.9 93.8 92.1 68.4
5 87.5 90.7 88.0 57.1 94.8 95.8 94.7 72.8 93.5 94.9 93.5 70.0

6 – 10 92.5 95.1 93.3 60.3 90.9 95.7 92.4 58.0 91.1 95.6 92.5 58.2

All – 63.6

scope of the loops, the accuracy drops to 63.3%. Such programs are complex. For instance, the
backward slice for a statement can flow from the if-block in one execution iteration, and the
else-block in the other (Section 8.4). Therefore, the drop in performance by 5.4% relative to the
overall performance of ND-Slicer can be attributed to such complex programs.
Overall, we can see that ND-Slicer captures intricate dynamic data, execution iteration, and

control dependencies, which corroborates our key ideas to produce better dynamic program slices.

8.2 Execution Iteration in Loops (RQ5)

The iterative and potentially complex nature of loops makes dynamic slicing of loops extremely
challenging. It requires an intricate understanding of the control-flow of the program. For instance,
loops can carry dependencies across execution iterations, tracking which is crucial for accurately
predicting the dynamic slice. ND-Slicer encodes the execution iteration of the loop as a part of its
input representation. Accordingly, we designed this experiment to assess ND-Slicer’s performance
for slicing program statements within the scope of a loop, across multiple execution iterations.

8.2.1 Experiment Methodology. To set up this experiment, we collected different instances in
our test set that have a for-loop. Let us call this 𝐷 loop. Next, we stratified 𝐷 loop based on whether
they contain branches in the form of if-else blocks or not. Let the resulting subsets be 𝐷b and
𝐷b’, respectively. We then grouped the instances in 𝐷b, 𝐷b’, and 𝐷 loop based on their executing
iterations (or occurrences) in the loop. Finally, we measured the performance of the best-performing
CodeExecutor+Transformer model in ND-Slicer on all such groups, recording the same evaluation
metrics as in Section 5.3. Note that this experiment setting is across all programs and criteria, that
is, we group by the occurrences, irrespective of the program and slicing criteria.
Next, we also stratified 𝐷 loop based on the slicing criteria [𝑐] for all programs 𝑃 , retrieving

data instances of the form ⟨𝑃, [𝑠], {𝑜1, 𝑜2, ..., 𝑜𝑁 }⟩, where 𝑜𝑖 refers to the execution iteration of
the criterion [𝑐]. Here, we record the percentage of instances in which the predictive slices from
ND-Slicer exactly matches the ground-truth dynamic backward slice for all occurrences 𝑜𝑖 . This
experiment setting, in contrast, is within individual program and slicing criteria. Overall, there are
4,126 loop examples in our dataset (i.e., |𝐷 loop |), of which 1,313 have if-else blocks within them.
There are a total of 1,090 instances in the within program and criteria experiment setting.

8.2.2 Empirical Results. In Table 4, we present the results for these experiment settings. In general,
we can see a consistent trend of decreasing Exact Match Accuracy as the execution iteration 𝑜𝑖
increases, highlighting ND-Slicer’s evolving challenge in maintaining accuracy as the iterations
progress: a decrease from 81.7% to 70.0% as 𝑜𝑖 goes from 1 → 5, and a further decline to 58.2% when
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𝑜𝑖 ∈ [6, 10]. Furthermore, we see a significant disparity in ND-Slicer’s performance when dealing
with loop examples with and without if-else blocks. This suggests that if-else blocks introduce
complexities that occasionally lead to incorrect branch decisions while predicting the dynamic
backward slice. This effect is pronounced for lower values of 𝑜𝑖 . Surprisingly, for a higher value
of 𝑜𝑖 , say when 𝑜𝑖 ∈ [6, 10], we can see that the accuracy of ND-Slicer on 𝐷b is slightly higher
than that of 𝐷b’ . This hints that the errors in 𝐷b’ may be arising from challenges in understanding
intricate loop-exit conditions, which tends to get more complex for higher execution iterations.

Interestingly, despite these challenges, the ROUGE-L scores for all data subsets 𝐷b, 𝐷b’ , and 𝐷 loop,
remain consistently high across all execution iterations. This observation indicates that the model

predicts the majority of the dynamic backward slice accurately, with only a small portion of the
slice being predicted incorrectly – which can be tied to the factors mentioned above. Furthermore,
we can see that ND-Slicer accurately predicts slices across all occurrences of a particular slicing
criterion in a program in 63.6% of the cases. Overall, these findings collectively shed light on
the nuanced interplay between execution iterations, if-else blocks, and ND-Slicer’s predictive
capabilities, offering valuable directions for future research and optimization.

8.3 Probing Inter-Procedural Slicing (RQ6)

In this experiment, we delve into the performance of ND-Slicer in inter-procedural program slicing.
Inter-procedural dynamic analysis, even by traditional techniques, poses a substantial challenge
as it requires the comprehension on the control flows spanning multiple methods through the
complex setting of dynamic instrumentations. In particular, in the scenarios involving incomplete
code, the developer will need to ascertain the availability of the referenced methods/classes in
both caller and callee functions to enable a seamless execution. Through this experiment, we aim
to provide insights on ND-Slicer’s proficiency in understanding intricate caller-callee relations,
within the context of inter-procedural dynamic slicing.

8.3.1 Experiment Methodology. To enable this experiment, we curated the Python programs in the
original CodeNetMut dataset featuring inter-procedure calls. Note that none of these instances were
included in our dataset for intrinsic evaluation (in Section 5.1), as the PDG building tool, python-
graphs, failed for these cases. As a result, ND-Slicer was exclusively trained in intra-procedural
slicing scenarios – making this investigation into inter-procedural slicing particularly intriguing.

In a program 𝑃 containing methods𝑀1 and𝑀2, let us assume𝑀1 calls𝑀2 on line 𝑥𝑀1 in𝑀1. Given
that the static PDG-building tool fails for 𝑃 overall, we build the static PDG for𝑀1 independently and
extract the lines 𝑦𝑀1

𝑖
in𝑀1 having dynamic data dependencies with 𝑥𝑀1 based on the corresponding

statement execution history. Finally, we use ND-Slicer to predict the dynamic backward slices
considering the set of statements {𝑥𝑀1 } ∪ {𝑦𝑀1

𝑖
} as the slicing criteria. Let 𝑆 be the predictive slice

so constructed. Overall, we retrieved 579 such instances with inter-procedural calls.
We define two metrics to quantify the model performance in this experiment: soft-linkage

accuracy (SLA), and hard-linkage accuracy (HLA). Soft-linkage accuracy is the ratio of the total
number of cases in which the predictive slice contains at least one line from the callee method𝑀2
to the total number of instances; and the hard-linkage accuracy is the ratio of the total number of
cases in which the predictive slice contains the line corresponding to the return-statement in the
callee method𝑀2 to the total number of instances. Mathematically, these can be defined as:

𝑆𝐿𝐴 =

∑
𝑃∈𝐷

{
1 |𝑆𝑃 ∩ {𝑧 |𝑧 ∈ 𝑀2}| ≠ 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

|𝐷 | (4)
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𝐻𝐿𝐴 =

∑
𝑃∈𝐷

{
1 |𝑆𝑃 ∩ {𝑟 |𝑟 ∈ 𝑀2, 𝑟 = 𝑀 return

2 }| ≠ 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

|𝐷 | (5)

where𝑀 return

2 indicates that 𝑟 is the line number corresponding to the return-statement in the callee
method𝑀2. Note that HLA is a stricter evaluation metric, while SLA is the relaxed version.

8.3.2 Empirical Results. In this experiment, we leveraged two best-performing models in Sec-
tion 5.3 within the ND-Slicer framework to predict the dynamic backward slices: GraphCode-
BERT+Transformer (𝐵4) and CodeExecutor+Transformer (𝐵6). We observed that 𝐵4 achieves an
HLA of 40.2% and an SLA of 72.5%. In contrast, 𝐵6 achieves an HLA of 44.0% and an SLA of 76.0%,
outperforming 𝐵4 by 9.4% and 4.6%, respectively. These results are promising, more so because
both GraphCodeBERT (off-the-shelf and during fine-tuning) and CodeExecutor (during fine-tuning)
were trained on individual methods. This is an indication that those models have some capability
of understanding the nuances in an inter-procedural execution.

While the lack of ground-truth backward slices poses a challenge in the direct assessment of the
inter-procedural predictive slices, an alternative strategy is to extend ND-Slicer for𝑀1 and𝑀2 in
𝑃 independently, considering 𝑙 and 𝑟 as the slicing criterion, respectively. Finally, the individual
slices thus obtained (say 𝑆𝑀1

𝑃
and 𝑆𝑀2

𝑃
), can be combined by inserting 𝑆𝑀2

𝑃
in 𝑆𝑀1

𝑃
following 𝑙 . Further

empirical research is needed to assess this strategy. In brief, ND-Slicer scales to an inter-procedural
setting, showing its capability in understanding the nuances in an inter-procedural execution.

8.4 ND-Slicer in Action: A Case-Based Assessment

Let us use a few examples to illustrate and assess ND-Slicer in action.

Listing 3. An example with ID 12592

1 def solve(a, b, k):
2 l = []
3 for i in range(min(a, b)):
4 if a % (i + 1) == 0 and b % (i + 1) == 0:
5 l.append(i + 1)
6 return l[-k]
7
8 def main():
9 A = 8; B = 12; K = 2

10 print(solve(A, B, K))
11
12 if __name__ == '__main__':
13 main()

Listing 4. Execution information

1 Slicing Criterion : 10(2)

2 Predictive Slice for 2nd occurrence of line 10:

10, 6, 5, 4, 3, 4, 3, 5, 4, 3, 5, 4, 3, 1

3 Execution Trace :

1, 8, 12, 13, 8, 9, 10, 1, 2, 3, 4, 5, 3, 4, 5, 3,

4, 3, 4, 5, 3, 4, 3, 4, 3, 4, 3, 4, 6, 10

Fig. 4. An illustration of inter-procedural, predictive slicing

8.4.1 Example 1. Fig. 4 illustrates an example from the CodeNetMut dataset (ID 12,592) for which
the execution trace depicted in line 3 of Listing 4, reveals that the control flows from main method
(line 8) to solve method (line 1). Interestingly, within the body of solve, we can see that the for loop
iterated multiple times, wherein, the if-condition on line 4 directed the flow along different paths
for each iteration. Using the second occurrence of statement 10 as the slicing criterion, we observed
that ND-Slicer was able to correctly produce the predictive backward slice.
In this example, we observe a range of ND-Slicer’s capabilities. Initially, it demonstrates a

proficiency in conducting inter-procedural slicing seamlessly spanning from main to solve in the
accurate temporal sequence. For instance, within the body of the method solve, the sub-slice begins at
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the return statement on line 6 and unwraps accurately. Secondly, it exhibits a comprehension of the
control flow intrinsic to the return statement, effectively grasping the dynamic control dependency,
thus ensuring precise inter-procedural backward slicing. Thirdly, ND-Slicer shows its aptitude in
capturing the dynamic intricacies inherent in the complex execution, particularly those involving
conditions within an iterative construct (lines 3–5). This underscores its capability to comprehend
the dynamic data and control dependencies pertaining to intra-procedural dynamic slicing. Moreover,
it demonstrates accurate slicing through a for loop in the correct temporal sequence and with the
highly correct number of iterations, substantiating our earlier findings in previous sections. Finally,
with the encoding of inputs through assignments (line 9), ND-Slicer gains the ability to discern
the dynamic inter-dependencies between the inputs and the statements in the slice.

1.00
0.99
0.06
0.00
0.00
0.05
0.96
0.09
0.00
0.04
0.10
0.17
0.00
0.02
0.00
0.10
0.25
0.03
0.21
0.00

Listing 5. An Example in CodeNetMut

1 n = 7
2 a = [1, 2, 3, 2, 1, 999999999, 1000000000]
3 up = False
4 down = False
5 ans = 1
6 for i in range(1, n):
7 if up:
8 if a[i] < a[i-1]:
9 ans += 1

10 up = False
11 elif down:
12 if a[i] > a[i-1]:
13 ans += 1
14 down = False
15 else:
16 if a[i] > a[i-1]:
17 up = True
18 elif a[i] < a[i-1]:
19 down = True
20 print(ans)

Listing 6. Execution and Slices

Slicing Criterion : 8(1)

✓ Predictive Slice : 8, 6, 16, 6, 1

Slicing Criterion : 8(2)

✓ Predictive Slice : 8, 6, 8, 6, 16, 6, 1

Slicing Criterion : 9(1)

✓ Predictive Slice : 9, 5

Slicing Criterion : 10(1)

✓ Predictive Slice : 10, 7, 17, 7, 3

Slicing Criterion : 17(1)

✓ Predictive Slice : 17, 7, 3

Slicing Criterion : 17(2)

✓ Predictive Slice : 17, 7, 10, 7, 17, 7, 3

Slicing Criterion : 18(1)

✓ Predictive Slice : 18, 16, 6, 8, 6, 8, 6, 16, 6, 1

Fig. 5. Backward predictive slicing for a program with complex logic (left), for different slicing criteria (right).

Here, the heatmap represents attention scores ND-Slicer associated with each statement while slicing 17(1).

8.4.2 Example 2. Fig. 5 illustrates an example from the CodeNetMut dataset with intricate nested
if-else structures within the for loop (Listing 5). We observed that ND-Slicer produces accurate
predictive backward slices for various slicing criteria, including at lines 8, 9, 10, 17, and 18 (refer to
Listing 6). In particular, let us discuss the slicing criteria at lines 8 and 17. We can see that during
execution, line 17 is encountered twice, as distinct occurrences within different iterations of the
for loop at line 6. Each of these iterations entails traversing through different branches within the
loop, spanning lines 7 to 19. In the first iteration, the flow proceeds from lines 7 to 17, while in the
subsequent iteration, it follows the path from line 7 to line 10. In the third as well as the last iteration,
the flow again traces from lines 7 to 17. First, it is noteworthy that ND-Slicer not only correctly
anticipated the number of iterations in the loop, but also the sequence of executed statements in
each iteration in the correct order. Second, it adeptly discerns the correct branches for all iterations
within a nested network of conditional statements. These observations underscore ND-Slicer’s
proficiency in capturing dynamic control dependencies within intricate logic structures. Third, it
demonstrates a clear comprehension of data dependencies between input assignment statements
and pertinent statements, yielding an exemplary performance in slicing through intricate execution
paths encompassing multiple nested branches and loop iterations.
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Upon a closer examination of the statement at line 8, we observed a similar demonstration
of ND-Slicer’s capabilities. We can see that line 8 is executed in two distinct iterations of the
for loop, and in the first iteration, it remained inactive with the control flowing directly to line
16. In brief, we can see that ND-Slicer consistently showcases abilities in accurately predicting:
1) the iteration count, 2) branches traversed in each iteration, 3) dynamic control dependencies
among input assignment statements and other statements, both individually and collectively, and
4) intra-procedural data dependencies among statements derived from the criterion. Thus, we can
corroborate the fundamental principles driving our design, as elucidated in Section 2.2, which result
in ND-Slicer’s superior performance in predicting backward slices.
In Fig. 5, we also present a heatmap representing the attention scores for the corresponding

statements in Listing 5 during the first step of the decoding chain, with the first occurrence of line
17 as the slicing criterion. We employed Attention Visualizer [1] to obtain the attention scores for
all input (sub)tokens making up a statement, and record their maximum value as representing the
statement in the heatmap. A higher attention score for a statement indicates a greater contribution
to the model’s prediction of the slice. The ground-truth dynamic backward slice, as well as the
predictive slice from ND-Slicer for 17(1) encompasses the statements 17, 7, and 3 in that specific
order. In the heatmap, we can see that an attention score of 1 is assigned to the input statement on
line 1. Furthermore, a high value is also assigned to line 7 conditioned on the variable up, which
when False, directs the flow to line 17. This illustrates ND-Slicer’s ability to learn the dynamic
relations between the input values and the statements in the backward slice.

9 DISCUSSION

9.1 Limitations

9.1.1 Programming Languages. In this study, we focused on the task of predictive slicing exclusively
for Python programs because CodeExecutor, the execution-aware PLM used in ND-Slicer was
only trained on Python. As a result, ND-Slicer is limited in its use and effectiveness for programs
written in other programming languages. However, one can easily extend ND-Slicer framework to
support a new programming language 𝐿 by (1) pre-training an LLM on 𝐿 for learning the inherent
dynamic dependencies, (2) constructing similar parallel corpora with the tuples of programs, slicing
criterion, and corresponding ground-truth dynamic backward slices. This underscores the potential
for expanding of our tool to cater to diverse programming environments.

9.1.2 Third-Party Libraries. Another limitation of our tool is that the CodeNetMut dataset used
for training our model does not include third-party libraries. This was so done because code
repositories, such as those on GitHub, often present challenges for large-scale execution, mainly
owing to their internal dependencies and need to set up run-time environments. However, the
superior performance of ND-Slicer in our experiments and its exhibition of understanding dynamic
data and control dependencies strongly indicates its potential for extension to specific projects. This
can be achieved by extending the pre-training of CodeExecutor for individual projects, which will
enable ND-Slicer to meet the unique demands of real-world code. Such an approach will facilitate
the use of ND-Slicer for debugging project-specific code. This can be explored in future work.

9.1.3 Complex Programs. When faced with complex programs, ND-Slicer’s performance can
potentially be impacted by the following: (1) programs possessing the API elements in third-party
libraries, (2) slicing-specific dependencies, (3) language-specific semantics, etc. While the LLM used
in our work (i.e., CodeExecutor) is execution-aware to enable intra-procedural analysis, we reckon
that large-scale LLMs (e.g., GPT-4) that possibly possess an understanding of the aforementioned
aspects will help scale to even more complex programs. We could explore this in future work.
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9.2 Threats to Validity

9.2.1 Ground-Truth Backward Slices. In this work, we leverage the statement execution history as
a resource for extracting ground-truth dynamic backward slices, making use of the Dynamic Slicing
Algorithm [4] presented in Section 5. While this approach has proven effective, it’s worth noting, as
pointed out by Agrawal and Harman [4], that it may occasionally result in larger dynamic slices due
to some variables having multiple reaching definitions across different occurrences of that statement
in the execution trace. An alternative approach involves leveraging dynamic instrumentation-
based tools to extract ground-truth dynamic slices, albeit with significant performance overhead.
Additionally, our approach to building the ground truth can be scaled and improved by combining
different dynamic dependence analysis techniques as described in Section 10 (each, used according
to situations it is best suited for), to enhance the training corpus with more precise and complete
labels. The exploration of such techniques remains a promising avenue for future research.

9.2.2 Crash Fault Identification. Most real-world crash detection datasets (for e.g., BugsInPy [39])
record the crash faults within the assert statements in the test suite, often spanning multiple
methods spread across different files. Due to ND-Slicer’s design to probe for dynamic data and
control dependencies in statements within individual files, it made it difficult to incorporate such
datasets into our crash detection experiment (in Section 7). As a result, we constructed a synthetic
crash detection dataset by injecting ZeroDivisionError faults into Python programs. An issue with
such synthetic data, however, is that we do not know the precise fault locations. Thus, to assess
model performance, we inspected whether the predictive slice from our tool contains at least one
of the plausible fault locations, retrieved from the static PDG. By adopting a hybrid approach that
combines traditional program analysis with our tool, wherein ND-Slicer is utilized for slicing
independent method-level code, and combining such predictive slices based on method call history,
such a framework can be facilitated for real-world crash detection as well.

9.3 Future Work

Looking ahead, there are several avenues for further exploration. Firstly, we could enhance the ND-
Slicer framework by incorporating a broader range of dynamic and slicing-specific dependencies,
such as dynamic forward slicing, conditioned slicing, amorphous slicing, and pre/post-conditioned
slicing, along with static program slicing. For instance, we could integrate a data flow-aware
Large Language Model (LLM) like GraphCodeBERT [15] to capture static program dependencies
and produce corresponding slices. Secondly, predictive slicing is language-independent and this
framework can be extended to different languages. This opens up the possibility of analyzing
software written in multiple programming languages simultaneously. Thirdly, we can extend our
neural-network-based dependence analysis to accommodate the specific dependencies inherent in
various programming paradigms with differing program semantics. This includes scenarios like
event-driven programs where program dependence may not be explicitly encoded in the source
code. Fourthly, when dealing with incomplete code, we aim to explore the balance between the
accuracy of approximating slices and the degree of incompleteness in the source code. This would be
useful for programming assistant tools for code under editing. Lastly, to make ND-Slicer applicable
to large codebases, we intend to investigate the trade-offs between scalability and accuracy of the
predictive slices. This holds promise for enhancing downstream tasks reliant on dynamic slicing.

10 RELATEDWORK

In the realm of program slicing, extensive research has been conducted, as evidenced by a compre-
hensive body of work [17, 35, 37]. However, none of the existing methodologies have been tailored
to handle incomplete code snippets.
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NeuralPDA [42], a deep learning paradigm, is capable of deriving the static program dependencies
in code snippets, whether complete or incomplete. It demonstrates the feasibility of a learning-based
approach to learn static program dependencies – which motivated us to explore such a paradigm
for learning more precise dynamic dependencies corresponding to a specific execution.

CodeExecutor [24], a Transformer model, employs code execution pre-training to predict execu-
tion traces and associated variable values. With these predicted traces, one can construct dynamic
backward/forward slices using established slice construction algorithms [4]. Our experimental
results demonstrate superior performance of ND-Slicer compared to this combined approach.
LExecutor [36], a learning-guided technique for executing code snippets, anticipates missing

values that might otherwise impede program execution. It rectifies this by injecting the requisite
values into the execution process. In a similar vein, TRACED [12] utilizes pre-trained code language
models, incorporating source code, executable inputs, and corresponding execution traces for
fine-tuning to predict execution outcomes. Both approaches possess program execution-specific
knowledge, and hold promise for establishing further predictive dependence analyses.
Surveys have been conducted on various facets of program slicing techniques [6, 8, 17–19,

27, 37, 41]. Silva [35] and Harman et al. [17] present extensive surveys with multi-dimensional
classifications of program-slicing methodologies.
There exist static slicing methodologies grounded in diverse static analyses, including incre-

mental slicing [30], call-mark slicing [29], proposition-based slicing [21], stop-list slicing [14],
and amorphous slicing [16]. Additionally, dynamic slicing methodologies [7, 22, 23, 28], encom-
passing language-independent slicing [7], generate a slice for a specific execution. There exist
other families of slicing: conditioned program slicing family [10, 11], constraint slicing [13], and
pre/post-conditioned slicing [20], which define an initial state through specified conditions.

11 CONCLUSION

In conclusion, this paper introduces ND-Slicer, an innovative predictive slicing methodology
designed to address the limitations of traditional slicing techniques in scenarios where executing
specific inputs is impractical or infeasible. By leveraging execution-aware pre-training, ND-Slicer
acquires a deep understanding of dynamic program dependencies, encompassing both dynamic
data and control dependencies between variables in the slicing criterion and the remaining program
statements. This knowledge forms the foundation for constructing a predictive backward slice.
Our empirical evaluation demonstrates the high accuracy of ND-Slicer, achieving an exact-match
accuracy of 81.3% and a ROUGE-LCS F1-score of 95.4% on Python programs. In addition, as demon-
strated in the extrinsic evaluation, ND-Slicer proves its utility in crash detection, exhibiting an
impressive fault detection accuracy of 63.9%. An in-depth qualitative assessment further underscores
ND-Slicer’s proficiency in comprehending complex program structures, including if-else blocks,
loops, and control flow in inter-procedural calls. These results affirm the efficacy and promise of
ND-Slicer as a valuable tool in the realm of program slicing and debugging. ND-Slicer could serve
as a foundation for a new direction on machine learning (ML)-based program dependence analysis.

12 DATA AVAILABILITY

Our datasets and models are all publicly available [3].
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