
Planning to Guide LLM for Code Coverage Prediction
Hridya Dhulipala

University of Texas at Dallas
Dallas, USA

hridya.dhulipala@utdallas.edu

Aashish Yadavally
University of Texas at Dallas

Dallas, USA
aashish.yadavally@utdallas.edu

Tien N. Nguyen
University of Texas at Dallas

Dallas, USA
tien.n.nguyen@utdallas.edu

ABSTRACT

Code coverage serves as a crucial metric to assess testing effective-
ness, measuring the degree to which a test suite exercises different
facets of the code, such as statements, branches, or paths. Despite
its significance, coverage profilers necessitate access to the entire
codebase, constraining their usefulness in situations where the code
is incomplete or execution is not feasible, and even cost-prohibitive.
In this paper, we present CodePilot, a plan-based prompting ap-
proach grounded in program semantics, which collaborates with a
Large Language Model (LLM) to enhance code coverage prediction.
To address the intricacies of predicting code coverage, CodePilot
employs planning by discerning various types of statements in an
execution flow. Planning empowers GPT to autonomously generate
plans based on guided examples, and then CodePilot prompts the
GPT model to predict code coverage (Action) based on the plan
it generated (Reasoning). Our experiments evaluating CodePilot
demonstrate high accuracy, achieving up to 55% in exact-match and
89% in statement-match. It performs relatively better than the base-
lines, achieving up to 33% and 19% relatively higher in those metrics.
We also showed that due to highly accurate plans (90%), GPT model
predicts better code coverage. Moreover, we show CodePilot’s
utility in correctly predicting the least covered statements.

CCS CONCEPTS

• Computing methodologies → Neural networks; • Software

and its engineering→ Software reliability;

KEYWORDS

AI4SE, Large Language Models, Planning, Code Coverage Analysis

ACM Reference Format:

Hridya Dhulipala, Aashish Yadavally, and Tien N. Nguyen. 2024. Planning
to Guide LLM for Code Coverage Prediction. In AI Foundation Models and

Software Engineering (FORGE ’24), April 14, 2024, Lisbon, Portugal. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3650105.3652292

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated considerable
success in various code-related tasks, showcasing their ability to
generate coherent and contextually relevant code snippets. These
models, such as GPT [12], have been particularly effective in tasks
like code completion, summarization, and translation. However,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
FORGE ’24, April 14, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0609-7/24/04
https://doi.org/10.1145/3650105.3652292

their success has limitations when it comes to understanding the
intricacies of program semantics for code execution [30]. Issues
such as program execution exploration, value changes, loop un-
rolling, inter-procedural calls, memory handling and pointers pose
challenges that current LLMs struggle to grasp adequately.

The limitations in LLMs’ prediction of program semantics on
code execution are analogous to the challenges faced in complex
tasks within robotics or natural-language processing in which the
LLMsmust reason and select a large range of decisions and actions. To
address these limitations, machine learning (ML) research explores
the integration of planning techniques to guide LLMs [13, 22, 25, 32,
34]. Planning serves as a strategic tool to help navigate and guide
the LLM through the complexities of intricate tasks.

In the realm of complex tasks involving program semantics for
code execution, we advocate for the planning strategies grounded
in program analysis (PA), that we call PA-based planning. This
planning aims to leverage insights from program analysis to guide
the LLM in navigating the intricate exploration space inherent in
complex prediction tasks for code. By incorporating PA-based plan-
ning, we anticipate that LLMs can better comprehend and address
the nuanced aspects of program behavior, thereby improving their
performance in tasks involving intricate code execution.

One of such complex tasks is in the area of software testing. A
widely adopted technique for gauging testing efficacy is code cover-
age, which evaluates the comprehensiveness of testing endeavors
and provides a level of assurance that the system will adhere to
predefined specifications. Various code coverage metrics exist, each
offering a unique perspective. Line coverage measures the percent-
age of executed lines in tests compared to the total lines in the code.
Statement coverage concentrates on the number of individual state-
ments covered. Another code coverage type is branch coverage,
commonly known as decision coverage. This metric assesses the
degree to which different decision points in a program’s source
code have been tested or covered by test cases.

Measuring code coverage for a specific code snippet requires ac-
cess to the entire program containing that snippet. This constraint
becomes apparent in scenarios where only partial code is available,
such as in a code snippet posted on an online forum, a commit log
or code diff, or when transmitting partial code to a server due to
security considerations. In other instances, executing tests may be
undesirable or excessively resource-intensive. For example, devel-
opers may need to prioritize and run only a subset of a test suite
due to constraints like limited time or resources. It becomes crucial
for them to understand which test cases cover specific parts of the
source code before actual execution. The decision regarding test
case prioritization could hinge on the code coverage information,
e.g., which areas of the code base are least or most covered by the
existing test suites before actual execution.

https://orcid.org/0009-0001-4474-2984
https://orcid.org/0000-0001-8785-6319
https://orcid.org/0009-0006-7962-6090
https://doi.org/10.1145/3650105.3652292
https://doi.org/10.1145/3650105.3652292

FORGE ’24, April 14, 2024, Lisbon, Portugal Hridya Dhulipala, Aashish Yadavally, and Tien N. Nguyen

Tufano et al. [30] propose a method that leverages zero-shot
and few-shot prompts within LLMs, particularly GPT [12], to com-
pute code coverage for any code snippet without actual execution.
However, this approach exhibits reduced accuracy and experiences
performance decline when dealing with the challenges of navigat-
ing a large and intricate space of multiple interdependent execution
steps within a program. CodeExecutor [16] is a Unixcoder-based
neural network model that is pre-trained on the execution of a
large number of programs to predict the execution traces. Despite
pre-training on execution traces, CodeExecutor still suffers low
accuracy in understanding complex execution spaces.

In this paper, we introduce CodePilot, a prompting approach
based on program semantics that collaborates with the LLM model
to predict code coverage. Specifically, to tackle the intricacies of pre-
dicting code execution for coverage, we leverage planning. Planning
is pivotal, enabling an LLM to autonomously generate plans based
on exemplars. CodePilot’s planning for code coverage is grounded
in program semantics, capturing the subtleties of the execution of
each statement. CodePilot integrates the synthesis of Reasoning
and Acting to predict the code coverage of a given code snippet. The
reasoning component encompasses the program-flow steps that
would have occurred had the code been executed. Each step in the
reasoning provides a concise explanation of whether a statement
would or wouldn’t have been executed. This reasoning process
guides the LLM, directing its attention to detailed execution steps
in its own plan first by discerning various types of statements in a
control flow. Then, the LLM is requested to predict code coverage
(Action) based on the plan generated by itself (Reasoning).

Our experiments demonstrate CodePilot’s high accuracy, achiev-
ing up to 55% in exact-match and 89% in statement-match. Code-
Pilot performs relatively better than the baselines, achieving up
to 33% and 19% relatively higher in those metrics. We also showed
that with CodePilot, the GPT model produces highly accurate
plans (90%), leading to better code coverage prediction. Moreover,
we showcase CodePilot’s utility in accurately predicting the least
covered statements. In brief, the contributions of this paper include:
1. [CodePilot: Planningwith LLM for Code Coverage]. Code-
Pilot is the first using planning with LLM to support execution-
aware tasks. It leverages GPT+Planning for code coverage.
2. [PA-based Planning with Reasoning and Actions] Our pro-
gram semantics-based planning enables an LLM to harness its ca-
pacity to generate its own plan for code coverage computation.
3. [Empirical Evaluation] We conducted several experiments
to show that CodePilot performs better than the state-of-the-art
code coverage prediction models. Data and code is available [1].

2 MOTIVATION

2.1 Motivating Example

Let us start with a small experiment to illustrate the problem
with the Large LanguageModels (LLMs) and motivate our approach.
Figure 1(a) displays our first experiment with a zeroshot prompt to
GPT-3.5 requesting it to compute the code coverage for the listed
Python code at lines 17–37. The output from GPT-3.5 is displayed
in Figure 3 in the column marked by “Zero” (zeroshot). As seen
in Figure 3, GPT-3.5 predicted the code coverage incorrectly. It
predicted all the statements to be executed, including both branches

of the if-else statements at line 18 and line 31. This is unacceptable
since only one branch will be covered for a user number (line 29).

In the next step of our experiment, we attempted to aid GPT-3.5
with an exemplar, which is referred to as a one-shot prompt. The
exemplar is shown in Figure 1(b), which differs from the test code in
Figure 1(a). The inclusion of an exemplar in the prompt ideally aims
to assist the LLM in comprehending the problem statement and the
test codemore precisely. However, the code coverage result from the
one-shot prompt was still largely incorrect (see the column marked
with “One” in Figure 3). In fact, GPT-3.5 successfully identified the
‘else’ statements as not-executed (line 5, Figure 3) but erroneously
predicted the statements within the ‘else’ block as executed (line 6,
Figure 3). This is a failure from a code execution perspective.

While LLMs have demonstrated impressive performance across
tasks in source code and language understanding, it is still chal-
lenging for them to capture and reason on the nuances of pro-
gram execution, especially with very large exploration spaces of
execution paths [30]. Aiming to deal with such complexity, we
leverage an advanced prompt engineering technique, called plan-

ning [13, 22, 25, 32, 34], which helps the model devise a reasoning
plan to guide itself through reasoning traces and actions.

Since planning has been achieving success in the robotics [25, 34]
and natural language processing fields (NLP) [32] to overcome the
prevalent issues of hallucination and error propagation in LLMs,
we aim to bring the planning concept into guiding GPT-3.5 in an
execution-aware task. Specifically, we leverage program semantics
to manually draft a reasoning-and-action plan in an exemplary code.
For this example, we created such a plan shown in Figure 2 for the
exemplary code in the one-shot prompt in Figure 1(b). This plan
serves as an illustrative and guiding reference for GPT-3.5, outlining
a step-by-step procedure for processing the test code, in which the
steps that would have been taken had the program or code snippet
been actually executed. Each step encompasses the execution of a
code snippet and accompanied by a concise rationale explaining
why a statement or set of statements will or will not be executed.
For example, the plan could focus on 1) the branching statements
(e.g., if, switch) in which the execution could go to either branch,
2) the iteration statements (e.g., for, while) in which the execution
could be repeated), and 3) the method calls in which the execution
could become inter-procedural. The manually drafted, exemplary
plan depicted in Figure 2(a) corresponds to a code snippet that
encompasses the guidance for those types of statements.

As illustrated in Step 5 of Figure 2(a), the plan explains the
reasoning steps to predict the execution of a for loop with the
running variable i from 1 to 𝑁 . The plan for guiding GPT-3.5 with
respect to the if-else statements can be seen in Step 6 and Step
9 of Figure 2(a). The plan succintly outlines the condition and
the statement executed accordingly to the condition mentioned
in the if-else statement. Moreover, the plan regarding a method
invocation is shown in Steps 10–11 of Figure 2(a). Upon invoking a
method, the plan guides the model to progress to the subsequent
step, involving the hypothetical execution of the called method.

In addition to the guidance for those statements, the plan accom-
modates supplementary statements found in a code snippet, such
as variable initialization and print statements.

In this experiment, we first provided the prompt consisting of the
exemplary plan in Figure 2(a) for the exemplar code in Figure 1(b).

Planning to Guide LLM for Code Coverage Prediction FORGE ’24, April 14, 2024, Lisbon, Portugal

1 For the given code snippet, Predict the code coverage. The code coverage indicates
whether a statement has been executed or not.

2 > if the line is executed
3 ! if the line is not executed
4
5 Example output:
6 > line1
7 ! line2
8 > line3
9 ...
10 > linen
11
12 Note: Executed Lines must be denoted with a SINGLE '>' and non-executed Lines must be

denoted with a SINGLE '!'
13
14 DISCLAIMER: DO NOT PROVIDE AN EXPLANATION. JUST PROVIDE THE FINAL PREDICTED CODE

COVERAGE FOR THE GIVEN CODE SNIPPET
15 Only give the final predicted code coverage of the following code.
16
17 def check_even_odd(number):
18 if number % 2 == 0:
19 return "even"
20 else:
21 return "odd"
22 def display_results(number, result):
23 print("Number: {}".format(number))
24 print("Result: {}".format(result))
25 print("--------------------")
26 def main():
27 num_iterations = 3
28 for i in range(num_iterations):
29 user_number = 4
30 result = check_even_odd(user_number)
31 if result == "even":
32 print("It's an even number!")
33 else:
34 print("It's an odd number!")
35 display_results(user_number, result)
36 if __name__ == "__main__":
37 main()

(a) Zero-shot prompt for GPT 3.5 to predict the code coverage

for a given test code from lines 17–37

1 « Instructions, as on Lines 1-12 in Figure 1(a) »
2 Below is an illustration of the process to predict the code coverage of the given

code snippet.
3
4 Exemplar code snippet:
5 from math import factorial
6 def comb(n, r):
7 return factorial(n)
8 def main():
9 N = 2

10 P = 0
11 A = [1, 3]
12 even, odd = 0, 0
13 for i in range(N):
14 if A[i] % 2 == 0:
15 even += 1
16 else:
17 odd += 1
18 a, b = 0, 0
19 b = 2 ** even
20 for i in range(odd + 1):
21 if i % 2 == P:
22 a += comb(odd, i)
23 print(a * b)
24 if __name__ == "__main__":
25 main()
26
27 So the code coverage for the example code snippet will be:
28 > from math import factorial
29 > def comb(n, r):
30 ...
31 > even += 1
32 ! else:
33 ! odd += 1
34 > a, b = 0, 0
35 ...
36 > main()
37
38 In a similar fashion, predict the code coverage for the below code snippet:
39 « Code, as on lines 17-37 in Figure 1(a) »

(b) A one-shot prompt containing an exemplar (different from

the test code) that contains the code coverage

Figure 1: Zero-shot prompt and one-shot prompt without Planning to predict the code coverage for a test code

PLAN for the exemplar code in Figure 1(b)
Step 1: Import Statement : factorial is a packahe being imported from math library.

Import statements are always executed. Statement "from math import factorial"
will ne executed.

Step 2: Check __name__ : Check if the script is being run as a main program. Since it
is, "if __name__ == "__main__": " will be executed.

Step 3: Main method call: Since the script is being run as the main program, call the
main method. "main()" will be executed

Step 4: Main Method Execution: Contents inside mthod will be executed. "def main(): "
will be executed. Since "N = 2", "P = 0", "A = [1, 3]" and "even, odd = 0, 0"
are all variable initialization statements, they will be executed.

Step 5: First For loop in Main Function: Enter the for loop and Iteratively assign
values to i from 1 to range(N). "for i in range(N):" will be executed.

Step 6: If - Else Branching in For Loop: For each iteration of i, the element at A[i]
is checked if its even or odd. Both elements in list A are odd, so the if
statement is not satisfied and the else statement is satisfied so contents of
else block is executed. Statements "if A[i] % 2 != 0:" and "odd += 1" are
executed. Statements "else: " and "even += 1" is not executed.

Step 7: Variable initialization and Math operations : Statements "a, b = 0, 0" and "b
= 2**even" are variable declarations so they both will be executed.

Step 8: Second For Loop in Main Function : Enter the for loop and Iteratively assign
values to i from 1 to range(odd + 1). "for i in range(odd + 1):" is executed.

Step 9: If-else block withing for loop in main method: The if statement checks
whether the remainder of variable i when divided by 2 is equal to value of P.
Since the value of i in the second iteration is 2, the remainder is 0 which
is equal to P, so the if condition is satisifed. Statement "if i % 2 == P:"
is executed

Step 10: Method call in if block of for loop: When the if statement is satisfied, the
variable a is incremented with the value return by method comb. Since it is a
function call, statement "a += comb(odd, i)" will be executed.

Step 11: Called Method execution: Inside comb(), The math operation of calculating
the factorial occurs. Since its a simple math operation and return statement,
statement "return factorial(n)" will be executed. The statement containing
the method declaration "def comb(n, r): " will also be executed.

Step 12: Print Statement: Print statements are always executed. Statement "print(a *
b)" will be executed.

(a) Manual exemplary plan for the exemplary code in Figure 1(b)

PLAN generated by GPT-3.5 for the running example in Figure 1(a)
Step 1: Check __name__ : Check if the script is being run as a main program. Since it

is, "if __name__ == "__main__": " will be executed.
Step 2: Main method call: Since the script is being run as the main program, call the

main method. "main()" will be executed
Step 3: Main Method Execution: Contents inside mthod will be executed. "def main(): "

will be executed.
Step 4: For loop in Main Function: The for loop will iterate from 0 to

num_iterations. Since num_iterations is 3, the for loop will execute 3 times.
Statement "for i in range(num_iterations):" will be executed 3 times.

Step 5: Variable Initialization in For Loop of main method: The variable user_number
is initialized to 4 in each iteration of the for loop. Statement "user_number
= 4" will be executed 3 times.

Step 6: Method call in main method: The method check_even_odd is called with the
value of user_number as the argument. Since it is a method call, "result =
check_even_odd(user_number)" will be executed 3 times.

Step 7: Method Execution: Inside check_even_odd(), the variable number is checked if
it is even or odd. The number 4 is even so the if condition is satisfied.
Statement "if number \% 2 == 0:" will be executed 3 times.

Step 8: If-Else branching in check_even_odd() method: Since the number 4 is even, the
if condition is satisfied and the value "even" will be returned. So statement
"return "even"" will be executed 3 times. Statement "else" and "return "odd""
will not be executed.

Step 9: If-Else branching in main() method: Since the result is "even", the if
condition is satisfied and the print statement is executed. Statement "if
result == "even":" will be executed 3 times. Statement "else" will not be
executed.

Step 10: print() statement: The print statement will always be executed. So
"'print("It's an even number!")' will be executed 3 times.

Step 11: Method call in main method: The method display_results is called with the
values of user_number and result as the arguments. Since it is a method call,
"display_results(user_number, result)" will be executed 3 times.

Step 12: Method Execution: Inside display_results(), the values of number and result
are formatted and printed. So both print statements will be executed 3 times.
Statement "print("--------------------")" will be executed 3 times.

(b) GPT-generated plan for test code snippet in Figure 1(a)

Figure 2: One-shot with Planning for the test code snippet

We requested GPT-3.5 to generate its own plan for the given code in
Figure 1(a). Subsequently, in another prompt, we requested GPT-3.5
to follow its plan to perform the computation of code coverage.

The result of the first prompt, which is the plan produced by
GPT-3.5 for our running example code in Figure 1(b), is shown in
Figure 2(b). Upon closer examination, the plan produced by GPT-3.5

FORGE ’24, April 14, 2024, Lisbon, Portugal Hridya Dhulipala, Aashish Yadavally, and Tien N. Nguyen

1 Zero One P Oracle TEST CODE
2 > > > > def check_even_odd(number):
3 > > > > if number % 2 == 0:
4 > > > > return "even"
5 > ! ! ! else:
6 > > ! ! return "odd"
7 > > > > def display_results(number, result):
8 > > > > print("Number: {}".format(number))
9 > > > > print("Result: {}".format(result))
10 > > > > print("--------------------")
11 > > > > def main():
12 > > > > num_iterations = 3
13 > > > > for i in range(num_iterations):
14 > > > > user_number = 4
15 > > > > result = check_even_odd(user_number)
16 > > > > if result == "even":
17 > > > > print("It's an even number!")
18 > ! ! ! else:
19 > > ! ! print("It's an odd number!")
20 > > > > display_results(user_number, result)
21 > > > > if __name__ == "__main__":
22 > > > > main()

Figure 3: Code coverage results for different strategies: ze-

roshot (Zero), one-shot (One), one-shot with Planning (P)

encompasses the precise steps that account for the rationale behind
the execution of if-else branching blocks (refer to Steps 8 and 9
in Figure 2(b)), the for loop (Step 4 in Figure 2(b)), and the method
calls (illustrated in Steps 6 and 11 in Figure 2(b)).

The code coverage result of the second prompt in our planning
is displayed in the column marked by P (planning) in Figure 3.
Comparing with the results without planning, we can see that
with planning, GTP-3.5 achieved better performance, with the 100%
correct coverage prediction for all statements. Additionally, through
its plan (Figure 2(b)), the LLM adeptly articulates the steps that
would have been followed had the code been executed.

2.2 Key Ideas

Drawing upon the above observations, we present CodePilot, a
planning approach that involves prompting GPT to assist in devis-
ing a plan and subsequently executing it to compute code coverage.

CodePilot is formulated based on the following key ideas.
2.2.1 Key Idea 1 [Leveraging Planning Ability of Large Language
Models for Code Coverage task]. The utilization of planning tech-
niques in Large Language Models (LLMs) has achieved signifi-
cant success in the domains of robotics, NLP, and machine learn-
ing [13, 22, 25, 32, 34]. When dealing with the intricacies of predict-
ing code execution for code coverage, planning becomes a valuable
vehicle for enabling an LLM to harness its capacity to autonomously

generate its own plans based on guided examples and plans. This
approach leverages the LLM’s inherent capability to analyze se-
quences of actions and decisions, empowering it to formulate com-
prehensive plans that capture the rationale and navigate through
the action sequences essential for execution-aware tasks.
2.2.2 Key Idea 2 [Enhancing Code Execution-Flow Understanding
with Program-Semantics-based Planning]. Statically predicting the
code execution and calculating code coverage poses a challenge in
the realm of program analysis when actual execution is infeasible.
Unlike planning in NLP, which depends on the LLM’s proficiency
in text comprehension, we propose a novel approach—planning for
code coverage rooted in program analysis, which encompasses the
nuances in code execution. In this context, we present a guided
exemplary plan that discerns various types of statements, treating
them differently to enhance code execution understanding.

Figure 4: Overview of CodePilot Workflow for One-Prompt
(top) and Two-Prompt (bottom) settings.

2.2.3 Key Idea 3 [PA-based Planning through Reasoning and Ac-
tions]. CodePilot combines the synthesis of Reasoning and Acting
to predict the code coverage of a given code. The reasoning com-
ponent of the approach encompasses the program flow steps that
would have been taken had the code been executed. Each step in the
reasoning provides a brief explanation of why a statement would or
wouldn’t have been executed. This reasoning serves as a guide for
the LLM, first directing its attention to the detailed execution steps
in its own plan. Subsequently, the LLM is tasked with code coverage
prediction (Action) based on the generated plan (Reasoning).

3 OVERVIEW OF CODEPILOT WORKFLOW

This paper presents CodePilot with two approaches to prompting:
a unified Plan+Predict design; and a two-phase Plan−→Predict design.
Figure 4 illustrates the workflow of both prompting approaches.
For a given code snippet 𝐶𝑇 comprising the test input, CodePilot
facilitates the systematic prediction of code coverage by formulating
a PA-based plan to navigate the code and attain an understanding
of its execution flow. In the rest of the paper, we refer to them as
one-prompt and two-prompt approaches, respectively.

3.1 One-Prompt CodePilot

In this approach, for a given code snippet 𝐶𝑇 comprising the test
inputs, CodePilot facilitates the systematic prediction of code
coverage by: [Step I. Plan Formulation] constructing a plan rooted
in program semantics to navigate the code and attain an under-
standing of the execution flow; [Step II. Code Coverage Prediction]
determining the code coverage based on such a plan.

For this purpose, we leverage an LLM M𝐼
𝐶𝐶𝑃

that takes as an
input prompt: (a) a set of instructions I𝐶𝐶𝑃 describing the task;
(b) an exemplar comprising code snippet C (different from C𝑇), a
manually-crafted, examplary plan P, its code coverage Cov; and (c)
the test code snippet C𝑇 . Here,M𝐼

𝐶𝐶𝑃
utilizes the exemplar to guide

the LLM to first reason about𝐶𝑇 and construct a program semantics-
guided code execution plan 𝑃𝑇 , following which, it predicts the code
coverage Cov𝑇 . This can be formulated as:

⟨PT ,Cov𝑇 ⟩ = M𝐼
𝐶𝐶𝑃 { I𝐶𝐶𝑃 , ⟨C,P,Cov⟩, C𝑇 } (1)

3.2 Two-Prompt CodePilot

Unlike in one-prompt CodePilot, in this approach, we divide both
Plan Formulation and Code Coverage Prediction in two prompts. The
goal of the initial Plan Formulation phase is to guide the LLM to

Planning to Guide LLM for Code Coverage Prediction FORGE ’24, April 14, 2024, Lisbon, Portugal

reason about the given code snippet and construct a plan by itself,
that is integral for navigating the code snippet and attaining an
understanding of the execution flow. For this purpose, we leverage
an LLMM𝑃𝐹 that takes as an input prompt: (a) a set of instructions
I𝑃𝐹 describing the task; (b) an exemplar comprising a code snippet
C (different from C𝑇) and its corresponding plan P; (c) the given
code snippet C𝑇 . Here,M𝑃𝐹 utilizes the exemplar to guide the LLM
to generate a similar plan P𝑇 for C𝑇 . This can be formulated as:

P𝑇 = M𝑃𝐹 { I𝑃𝐹 , ⟨C,P⟩, C𝑇 } (2)

In the next Code Coverage Prediction phase, the goal is to act on
the code snippet C𝑇 as per the LLM-generated plan P𝑇 to enhance
its execution-flow understanding, and predict the code coverage
accordingly. For this purpose, we leverage an LLMM𝐼 𝐼

𝐶𝐶𝑃
that takes

as an input prompt: (a) a set of instructions I𝐶𝐶𝑃 describing the
task; (b) an exemplar comprising code snippet C and its plan P
(same as in the Plan Formulation phase), as well as its code coverage
Cov; (c) the test code snippet C𝑇 ; and (d) the LLM-generated plan
P𝑇 . Here,M𝐼 𝐼

𝐶𝐶𝑃
utilizes the exemplar to guide the LLM to learn

to determine the code coverage for the code example based on
the program semantics-guided code execution plan. Subsequently,
based on theM𝑃𝐹 -generated plan P𝑇 for the test code snippet, it
predicts the code coverage Cov𝑇 . This can be formulated as:

Cov𝑇 = M𝐼 𝐼
𝐶𝐶𝑃 { I𝐶𝐶𝑃 , ⟨C,P,Cov⟩, C𝑇 ,P𝑇 } (3)

We will elaborate on both prompting approaches in Sections 4
and 5, respectively. We experiment with both One-Prompt and
Two-Prompt solutions and compare their results (Section 7).

4 ONE-PROMPT CODEPILOT

In this section, we present our design of the unified Plan+Predict.

4.1 Basic Structure

In the one-prompt setting (i.e., Plan+Predict), we design a single,
consolidated prompt comprising three primary segments: (1) the
instructions to the LLM to compute the code coverage for the given
code snippet, (2) the exemplar(s) comprising code snippet, corre-
sponding manually-crafted examplary plan, corresponding code
coverage, and (3) the test code snippet. The output from the LLM
includes: (1) the generated plan, and (2) the predicted code coverage
for the test code snippet.

4.1.1 Instructions. This segment contains specifications for the
LLM to first generate a plan for understanding the execution flow
in the given test code, using the manually-crafted plan for the code
snippet in the exemplar(s) as a guide. Then, it instructs the LLM
to follow the plan to compute the code coverage for the test code
snippet, drawing parallels from the manually-crafted plan and the
code coverage for the code snippet in the exemplar(s). Furthermore,
the included code coverage guides the LLM to format the output
code coverage prediction in the prescribed format.

4.1.2 Exemplar(s). To guide the LLM as described in Section 4.1.1,
we include example(s) for the few-shot setting comprising the code
snippet, manually-crafted plan, and corresponding code coverage.

4.1.3 Given Code Snippet. This is the code for which LLM has to
create a code execution plan and subsequently predict its coverage.

4.2 Manually-Crafted Plan in Exemplar(s)

The essence of designing the plan resides in the formulation of
a step-by-step reasoning for understanding execution-flow in an
exemplar code snippet. The structure of each step within the plan is
composed of three fundamental elements: the step number, the type
of statement(s), and the rationale behind their potential execution.

Firstly, the step numbers denote the sequence in which the code
would have been executed. In Figure 2(a), Step 4 (pertaining to the
exemplar code in Figure 1(b)) labeled as ‘Main Method Execution’
consistently follows Step 3, designated as ‘Main Method Call’.

Secondly, the label assigned to each step serves as the primary
distinguishing factor for that set of statement(s) in the code. For
example, the statements 18-19 in Figure 1(b) are categorized as ‘Vari-
able Initialization’ and are consequently grouped together in Step
7 of the exemplary plan in Figure 2(a). It is noteworthy that certain
labels, such as ‘Variable Initialization’, ‘Method Call’, ‘If-else State-
ment’, among others, may directly indicate whether the associated
statements will be executed. Details are given in Section 4.3.

Lastly, the final element of each step in the plan is the justification
for the possible execution or non-execution of the specific set of
statements. For instance, let us consider Step 9 in Figure 2(a), which
analyzes the if-else statement in the for loop within the main()

function (lines 20-22 of Figure 1(b)). Step 5 briefly explains that
due to all the elements in list A[] being odd, only the condition in
the if statement holds true, which leads to the statement(s) within
the if branch to be executed. It also clearly mentions that since
the condition of the if branch holds true through all iterations of
the for loop, the else branch and its associated statements would
have never been executed. This concise yet accurate reasoning is
essential to guide the LLM to follow the step to design its own plan.

4.3 Reasoning on Program Semantics

To compute code coverage, the LLM needs to reason correctly on
the execution steps of the statements in the code. In addition to the
statements whose executions follow a sequential order, there are
three types of statements that could alter such sequential execution:
branching statements, loop statements, and method calls.

In programming, the execution of branching statements (if or
switch statements) are pivotal for controlling the flow of a program
based on certain conditions. When encountering an if statement,
the program evaluates a specified condition and, if true, executes
the corresponding block of code; if false, it either moves to the next
elif condition or proceeds to the else block if provided. In contrast,
a switch statement is designed to evaluate an expression against
multiple possible constant values. It provides a concise way to
handle multiple cases, each with its own set of code. The exemplary
plan needs to explain the nuances in the branching statements. For
example, the plan in Figure 2(a) considers the if-else construct in
the code snippet (Figure 1(b)) by briefly outlining the condition and
the statement(s) executed based on the condition mentioned in the
condition. This is expressed in Steps 6 and 9 of Figure 2(a).

The execution of a for statement and a while statement are both it-
erative processes. The for statement is typically employed when the
number of iterations is known beforehand. It consists of three parts
within its parentheses: initialization, condition, and increment/decre-
ment. The loop executes as long as the specified condition remains

FORGE ’24, April 14, 2024, Lisbon, Portugal Hridya Dhulipala, Aashish Yadavally, and Tien N. Nguyen

1 ONE-PROMPT SETTING
2 For the given code snippet, Predict the code coverage. The code coverage indicates

whether a statement has been executed or not.
3 > if the line is executed
4 ! if the line is not executed
5
6 Example output:
7 > line1
8 ! line2
9 > line3
10 ...
11 > linen
12
13 You need to develop a plan for step by step execution of the code snippet.
14 Below is an illustration of the process you need to follow to predict the code

coverage of the given code snippet.
15
16 Example - Given Code Snippet:
17 number = 15
18 if number % 2 == 0:
19 print("{} is an even number.".format(number))
20 else:
21 print("{} is an odd number.".format(number))
22
23 PLAN :
24 Step 1: Variable Initialization: Initialize the number variable with a specific

value. In this case, it’s set to 15. Statements "number = 15" will be
executed. "if number % 2 == 0:" will be executed

25 Step 2: Operation : Use the % (modulo) operator to check if the number is divisible
by 2. If the result is 0, the number is even. If not, it’s odd.

26 Step 3: Branching if-else Block: Enter the if block if the number is even. Since 15%2
results in 1, statement "print("{} is an even number.".format(number))" will
not be executed but the else block will if the number is odd. Statements
"else:" and "print("{} is an odd number.".format(number))" will be executed

27 Step 4: Output: The required print statement will be executed based on the output of
the if-else block

28
29 So the code coverage for the given code snippet will be:
30 > from math import factorial
31 > number = 15
32 > if number % 2 == 0:
33 ! print("{} is an even number.".format(number))
34 > else:
35 > print("{} is an odd number.".format(number))
36
37 In a similar fashion, develop a plan of step by step execution of the below code

snippet and predict the code coverage -
38 « Test Code... »

Figure 5: Example on one-prompt setting with CodePilot

true. In contrast, a while statement is more versatile and is used
when the number of iterations is uncertain or depends on a cer-
tain condition. The while loop continues to execute as long as the
specified condition holds true, and the programmer is responsible
for updating the loop variable within the loop block. While both
constructs facilitate iteration, the for statement is more structured
and concise, while the while statement offers greater flexibility in
handling variable loop conditions. Such nuances of a loop statement
need to be incorporated into the exemplar plan. For example, let
us consider Step 5 of Figure 2(a). The plan for the exemplary code
snippet in Figure 1(b) explains the number of iterations for each of
the statements in the for loop. Since the for loop is not conditional,
line 21 in Figure 1(b) will be executed. Lastly, the plan also includes
the reason behind the execution of a statement containing a method
call. Upon calling a method, the plan progresses to the subsequent
step, involving the execution of the called method.

In addition to the statement-specific guiding, the exemplary plan
accommodates additional statements found in a code snippet, such
as variable initialization and print statements. This can be seen
in Steps 1, 4 and 12 of Figure 2(a), which have been created pri-
marily for accommodating the package import statements, variable
initialization within a method and print statements, respectively.

4.4 Illustrating Example

The example presented in Figure 5 outlines the process of pre-
dicting code coverage using one-prompt CodePilot for a given

code snippet. The objective is to first predict a plan for the test code,
and then determine the executed or non-executed status of each
line, denoted by ’>’ for executed lines and ’!’ for non-executed lines.
The detailed instruction is illustrated in lines 2–11.

The example code snippet (lines 18-22 of Figure 5) initializes a
variable number to 15, followed by a conditional statement checking
if the number is even or odd. The provided plan (lines 25-28) details
the execution steps, such as variable initialization, modulo opera-
tion, branching in the if-else block, and the corresponding output.
Following the outlined steps, the final predicted code coverage is
presented (lines 31–36), highlighting the lines that are expected to
be executed or skipped based on the given plan. The subsequent
request prompts a similar analysis for a different test code (line
40 onwards), encouraging a comprehensive exploration of code
coverage prediction within the generated plan.

5 TWO-PROMPT CODEPILOT

In this section, we present our design of the two-phase Plan−→Predict.

5.1 Plan Formulation

5.1.1 Basic Structure. This section presents the first phase, i.e., Plan
Formulation, in Plan −→Predict. In this phase, we design a prompt
comprising three primary segments: (1) instructions to the LLM to
devise a PA-based plan, (2) exemplar(s) comprising code snippet
and corresponding plans, (3) test code snippet. The output from the
LLM comprises of the generated plan for the test code snippet.

Instructions. The first segment consists of the problem statement
explained in natural language, which instructs the LLM to predic-
t/build its own plan to be pursued for predicting the code coverage
of the given test code (see example in Section 5.1.2).

Exemplar(s). The second segment of the prompt incorporates ex-
emplar(s) to enable the few-shot setting, each comprising a code
snippet (distinct from the given test code) and a manually-crafted
plan. Each step within that plan provides a succinct elucidation
of the reasons behind the (non)-execution of the associated state-
ment(s). The procedure for crafting the plan is same as in Section 4.2.
The LLM uses this as a guide to understand the execution flow.

Given Test Code Snippet. The last segment is the test code for which
LLM has to create the code execution plan.

5.1.2 Illustrating Example. An example prompt for the Plan For-

mulation phase is provided with a single exemplar in Figure 6(a).
Note that the code snippet and the corresponding manually-crafted
plan in the exemplar are the same as in Section 4.4.

Similar to as in one-prompt CodePilot, the prompt in this phase
guides the LLM to draw parallels from the execution rationale in
the exemplar plan by learning to reason about the exemplar code,
and subsequently, generate a similar plan for the test code. Such
a break down of the test code into comprehensible steps enables
the LLM to reason about the code execution and make predictions
regarding which statements will be executed or skipped. Thus, such
a systematic approach encapsulated within the Plan Formulation

phase instills a structured method for later predicting the code
coverage. By design, this approach provides a guide to understand
the code coverage prediction, improving the LLM’s interpretability.

Planning to Guide LLM for Code Coverage Prediction FORGE ’24, April 14, 2024, Lisbon, Portugal

1 PLAN FORMATION
2 For the given code snippet, give the plan to predict the code coverage. The code

coverage indicates whether a statement has been executed or not.
3
4 You need to develop a plan for step by step execution of the code snippet.
5 Below is an illustration of the process you need to follow to predict the code

coverage of the given code snippet.
6
7 « Exemplar code, as on Lines 16-22 in Figure 5 »
8
9 « Exemplar plan, as on Lines 24-28 in Figure 5 »

10
11 In a similar fashion, develop a plan of step by step execution of the below code

snippet -
12 « Test Code... »

(a) One-shot prompt used for Plan Formation

1 COVERAGE PREDICTION
2 For the given code snippet and plan, give the code coverage that follows the plan.

The code coverage indicates whether a statement has been executed or not.
3 > if the line is executed
4 ! if the line is not executed
5 Example output:
6 > line1
7 ! line2
8 > line3
9 ...

10 > lineN
11 You need to give the code with its coverage for the given plan.
12 Below is an illustration of the process you need to follow to predict the code

coverage of the given code snippet and its plan.
13 « Exemplar code, as on Lines 16-22 in Figure 5 »
14
15 DISCLAIMER: Lines that are not executed are to be denoted with a SINGLE '!' whereas

lines that are executed are to be denoted with a single '>'
16
17 « Exemplar plan, as on Lines 24-28 in Figure 5 »
18
19 « Exemplar code coverage, as on Lines 30-36 in Figure 5 »
20
21 In a similar fashion, give the code coverage of the below code snippet based on the

given plan -
22
23 « Test code... »
24 « Test plan (generated by the Plan Formulation phase)... »

(b) One-shot prompt used for Code Coverage Prediction

Figure 6: Prompts with a single exemplar (i.e., one-shot) for

Plan Formulation (top) andCode Coverage Prediction (bottom)

phases in two-prompt CodePilot.

5.2 Code Coverage Prediction

5.2.1 Basic Structure. This section presents the second phase, i.e.,
Code Coverage Prediction, in Plan −→Predict. In this phase, we design
a prompt comprising four primary segments: (1) instructions to the
LLM to compute the code coverage for the code snippet, (2) exem-
plar(s) comprising code snippet, corresponding manually-crafted
exemplary plan and code coverage, (3) test code snippet, (4) gener-
ated plan from Plan Formulation phase. The output from the LLM
comprises the predicted code coverage for the given test code.

Instructions. This segment in the second prompt requests the LLM
to adhere to the generated plan to predict the code coverage for the
given test code, using the exemplar(s) to guide this process.

Exemplar(s). In the two-prompt setting, the exemplar(s) are exactly
the same as in one-prompt CodePilot (see Section 4.1.2). The
inclusion of this serves the purpose of guiding the LLM towards
achieving a code coverage prediction in the prescribed format.

Given Test Code Snippet. This segment is same in both Plan Formu-

lation (Section 5.1.1) and Code Coverage Prediction phases.

Generated Plan. In the two-prompt setting, the plan generated from
the Plan Formulation phase is incorporated into the prompt in this

Table 1: Comparison among CodePilot’s Settings (RQ1)

Model Setting Evaluation Metrics (%)

Exact-match Statement-match

One-prompt CodePilot with one-shot 51.00 87.47
Two-prompt CodePilot with one-shot 44.37 87.00
One-prompt CodePilot with few shots 55.20 89.20

Two-prompt CodePilot with few-shots 47.27 88.53

phase to guide the code coverage prediction. Note that this differs
from the one-prompt CodePilot where one LLM is tasked with
generating both the plan and the code coverage sequentially.

5.2.2 Illustrating Example. An example prompt for the Code Cover-
age Prediction phase is provided with a single exemplar in Figure 6b.
Note that the exemplar’s structure is same as that in one-prompt
CodePilot, including the same code snippet and manually-crafted
plan in the exemplar as in the Plan Formulation phase (Section 5), as
well as the corresponding code coverage. Next, along with the test
code, we include the test plan generated in the Plan Formulation

phase. By design, this prompt facilitates the prediction of code cov-
erage for the test code from the generated plan, inherently learning
such associations between alike components in the exemplar(s).

6 EMPIRICAL EVALUATION

For evaluation, we seek to answer the following research questions:
RQ1. [Comparison on Code Coverage Prediction]. How well
does CodePilot perform compared with the existing ML models?
RQ2. [Performance of Planning]. How well does GPT perform
with CodePilot in generating its own plans for code coverage?
RQ3. [Performance on Different Statement Types]. How well
does CodePilot perform on different types of statements?
RQ4. [Performance on Least-covered Statement Prediction].

How accurate is CodePilot in predicting least-covered statements?
RQ5. [Exploration Space in Execution]. Does CodePilot help
in reducing the exploration space in execution paths?

Dataset. We used CodeNetMut dataset, provided in CodeExecu-
tor [16], containing the mutated versions of a collection of the
submissions to competitive programming problems. In total, it has
19,541 data examples, each of which has code and execution traces.

7 CODE COVERAGE PREDICTION (RQ1)

7.1 Comparison among CodePilot’s settings

7.1.1 Procedure. As explained in Section 3, we have two variants:
one-prompt and two-prompt CodePilot. One-shot means one ex-
amplary code and plan, while few-shot refers to multiple ones. All
four settings of CodePilot in Table 1 consist of two parts: planning
and code coverage prediction (organized in one or two prompts).

7.1.2 Metrics. To assess the performance of CodePilot, we used
two metrics: exact-match accuracy and statement-match accuracy.
The exact-match accuracy quantifies the number of programs for
which the predicted sequence of statement/branch coverages pre-
cisely matches the target coverage sequence, indicating perfect ac-
curacy for all statements/branches within the program. In contrast,

FORGE ’24, April 14, 2024, Lisbon, Portugal Hridya Dhulipala, Aashish Yadavally, and Tien N. Nguyen

the statement-match accuracy measures the percentage of correctly
predicted covered/not-covered statements. While statement-match

accuracy is aimed to evaluate accuracy at the individual statement
level, exact-match accuracy provides an assessment at the entire
code level. Two metrics complement to each other on evaluating
the quality of entire coverage and individual statements.

7.1.3 Results. As seen in Table 1, CodePilot achieves highest
accuracies with the few-shot and one-prompt setting. In more than

half of the code snippets, CodePilot predicts correctly the entire
code coverages. Considering the statements individually, it correctly
predicted the coverages of 9 out of 10 statements.

When prompted with a single prompt, the GPT-3.5 model ex-
hibits higher exact-match accuracy compared to the scenario where
it is prompted sequentially with two prompts. The observed relative
increase of 14.94% in exact-match accuracy, coupled with a relative
increase of 0.54% in statement-match accuracy when compared to
the two-prompt strategy in a one-shot setting, suggests the possi-
bility that predicting step-by-step reasoning and subsequent code
coverage within the same prompt may facilitate the retention of
information within the model between the two predictions (plan
and code coverage). This also applies for the few-shot setting where
the one-prompt strategy has a relatively higher exact-match accu-
racy of 16.77% and a relatively higher statement-match accuracy of
0.75%. In brief, with the one-prompt setting, CodePilot could save
the number of tokens sent to GPT as well as achieve higher code
coverage prediction accuracy.

In the comparison between the one-shot and few-shot single-
prompt strategies, the few-shot prompting shows a relatively higher
exact-match accuracy of 8.2% and a statement-match accuracy of
+2%. This observed increase in both accuracy metrics is potentially
attributable to the incorporation of additional exemplars in the
prompt, thereby enhancing the model’s understanding.

7.2 Comparison with state-of-the-art Models

7.2.1 Baselines. We compared CodePilot to Tufano et al. [30], that
directly used GPT model in both zero-shot and one-shot settings.
We also compared CodePilot to CodeExecutor [16], a Unixcoder-
based neural network model to predict execution traces. From the
traces, we compute the code coverages for the code snippets.

7.2.2 Procedure and Metrics. Following CodeExecutor’s [16] and
Tufano et al.’s [30], we executed them on our dataset. For Code-
Pilot, we followed the workflow in Figure 4 for one-shot setting.
For few-shot setting, the workflow is the same but with additional
examplary code and plans. We used the same metrics as in RQ1.

7.2.3 Results. As the one-prompt setting give higher accuracy, we
use it in comparison with the state-of-the-art models. As shown
in Table 2, CodePilot emerges as a highly effective approach for
code coverage prediction, outperforming both [16] and Tufano et

al. et al. [30] in all settings. As seen in Table 1, CodePilot exhibits
notable performance advantages in a one-shot setting, achieving an
23.21% relatively higher exact-match accuracy and an 16.16% rela-

tively higher statement-match accuracy compared to CodeExecutor.
This increase in performance can be attributed to the distinction in
their core objectives. CodeExecutor places an emphasis on predict-
ing the precise order of statement execution as well as the values

Table 2: Code Coverage Prediction Accuracy (RQ1)

Model Evaluation Metrics (%)

Exact-match Statement-match

CodeExecutor [16] 41.39 75.30

Tufano et al. zero-shot [30] 41.31 84.09

Tufano et al. one-shot [30] 42.99 84.60

CodePilot w. GPT-3.5 one-shot 51 87.47

CodePilot w. GPT-3.5 few-shots 55.20 89.20

of the variables at each execution step. Minor inaccurate value or
execution trace order prediction could result in more widespread in-
correct code coverage prediction. CodePilot focuses on predicting
code coverage regardless of the statement execution order.

Regarding the LLM-based solutions, CodePilot’s one-shot set-
ting demonstrates an approximate 23.45% relative increase in exact-
match accuracy and a 4.02% relative higher statement-match accu-
racy compared to Tufano et al. [30] with zero-shot. Compared with
Tufano et al. in a one-shot setting, CodePilot outperforms with
18.63% and 3.39% relatively higher accuracies in exact-match and
statement-match, respectively. The positive differences in accura-
cies are attributed to the methodological variation in prompting,
where CodePilot, via planning, guides the model to create a de-
tailed step-by-step execution plan before predicting code coverage,
resulting in reduced model hallucination and helping it navigate
better in the large exploration space of execution paths.

In the few-shot setting using CodePilot, a relative increase of
33.36% in exact-match accuracy and 18.45% in statement-match ac-
curacy is observed compared to CodeExecutor. Additionally, com-
pared to Tufano et al. in a zero-shot setting, CodePilot’s few-shot
(with planning) achieves a relative increase of 33.62% and 6.08%

in exact-match and statement-match, respectively. Furthermore,
CodePilot’s few-shot (with planning) surpasses Tufano et al.’s
one-shot setting (without planning) by 28.40% relatively in exact-
match accuracy and 5.43% relatively in statement-match accuracy.
With planning, the LLM computes correctly the coverage for more

individual statements (5.4–18.5% relatively higher), as well as the

coverage for more code snippets as a whole (28.6–33.6%). These im-
provements can be attributed to the combination of incorporating
more exemplars and guiding the model in creating a stepwise plan.

8 ACCURACY OF PREDICTED PLANS (RQ2)

Table 3: Accuracy of Predicted Plans (RQ2)

Model Evaluation Metrics (%)

Plan accuracy Step accurarcy

One-prompt CodePilot with few-shots 75 90

In this experiment, our objective is to evaluate the accuracy with
which the LLM formulates the plans via the help of CodePilot.

Procedure. We chose the few-shot, one-prompt setting for Code-
Pilot due its highest accuracy in RQ1. A set of 100 random data
examples was drawn from the CodeNetMut dataset, and the GPT-
generated plans were subject to manual evaluation for accuracy.

Planning to Guide LLM for Code Coverage Prediction FORGE ’24, April 14, 2024, Lisbon, Portugal

Metrics. Two metrics were used to assess the plans generated by
GPT for predicting code coverage for a code snippet - plan accuracy
and step accuracy. Plan accuracy (micro accuracy) is defined as the
accuracy of the entire plan, wherein each code snippet achieves
100% plan accuracy if the entirety of the plan is generated accu-
rately, including the precise order of the steps. Step accuracy (macro
accuracy) is defined as the ratio of accurately predicted steps within
a particular plan to the total number of steps generated in that plan.

Results. As described in Table 3, the plan accuracy for CodePilot’s
few-shot double prompting strategy stands at 75%, indicating that
for every 100 code snippets, GPT predicts 75 plans with 100% ac-
curacy. Furthermore, the step accuracy (refer to Table 3) is 90%,
which means that if a single plan contains 10 steps, GPT is able to
describe and reason 9 of them with 100% accuracy.

9 PREDICTION OF STATEMENT TYPES (RQ3)

Table 4: Accuracy on If-Elses, Loops, and Method Calls

Model Evaluation Metrics (%)

Branch-match Loop-match Method-match

Tufano et al. zero-shot [30] 57.91 33.85 79.05
Tufano et al. one-shot [30] 58.44 33.96 79.68

CodePilot GPT 3.5 one-shot 63.51 35.21 85.98
CodePilot GPT 3.5 few-shots 65.17 35.50 87.49

In our design of an examplary plan to guide GPT, we focus on
three types of statements (if-else, loop, and method call) as in Sec-
tion 4.3. In this experiment, we aim to evaluate howwell CodePilot
performs for those statements involving in those types.

Metrics. We utilize three following metrics: branch-match accuracy,
loop-match accuracy and method-match accuracy. Branch-match
accuracy is calculated as the ratio of accurately predicted if-else

branches’ coverages (i.e., the model predicts the correct branch at
a condition) to the total number of branches in the code. Loop-
match accuracy is defined as the ratio of accurately predicted loop
coverages to the total number of distinct loops in the code. A loop
is considered to be correctly predicted for code coverage if all the
statements within it are correctly predicted as covered/non-covered.
Method-match accuracy is the ratio of accurately predicted method
call coverages to the total number of method calls in the code. An
inter-procedural flow for a method call is considered to be correctly
predicted if the first statement in the called method is covered.
(Note that we excluded the Python built-in methods, e.g., ‘print()’.)

Results. CodePilotwith GPT 3.5 one-shot setting exhibits enhance-
ments in all metrics when compared with Tufano et al. [30] with
zero-shot, showing a relative increase of 9.67%, 4.01% and 8.76%
in branch-match and loop-match and method-match accuracies,
respectively (Table 4). Moreover, CodePilot with GPT 3.5 few-shot
setting manifested improvements in all metrics compared to Tufano
et al. [30] with zero-shot, with a relative increase of 12.53%„ 4.87%
and 10.67% in branch-match, loop-match and method match accura-
cies, respectively. CodePilot with GPT-3.5 one-shot and few-shot
settings also improve over Tufano et al. with one-shot.

As seen, with planning, all three metrics are improved. Regarding
branches, with 65.17% of branch-match, almost 2 out 3 branching

1 Ranking of statements based on execution
2 GT PR CODE
3 1 1 s = *string*
4 1 3 k = *integer*
5 1 2 l = *string*
6 1 2 ans = "" *string*
7 1 3 for i in range(len(s) - 1):
8 1 4 num = (26 - l.index(s[i])) % 26
9 2 7 if k >= num:
10 2 8 ans += "a"
11 2 9 k -= num
12 2 10 else:
13 3 11 ans += s[i]
14 1 6 ans += l[(l.index(s[-1]) + k) % 26]
15 1 5 print(ans)

Figure 7: Test Code for Section 10

decisions are predicted correctly with CodePilot. Without plan-
ning, 57% of them are correct. Regarding the loop understanding, it is
still challenging for all the approaches with only about 5% relative
improvement in loop-match accuracy. However, with CodePilot,
in 35.5% of the loops, all of their statements are predicted correctly
on their coverages. Regarding inter-procedural method calls, Code-
Pilot achieves 10.7%method-match accuracy relatively higher than
the baselines. That is, with planning, the GPT-3.5 model has better

understanding of the inter-procedural flows with method calls.

10 LEAST COVERAGE PREDICTION (RQ4)

In this experiment, we aim to show CodePilot’s usefulness in
predicting the least covered statements for a test suite without
execution. The capability to predict the least covered statements
within a test suite holds significant usefulness in test case prioriti-
zation. Test case prioritization aims to optimize the testing process
by identifying and executing critical test cases early, thus improv-
ing the efficiency of the testing cycle. Predicting the least covered
statements allows testers to focus on areas of the code that have
received minimal attention during testing by the current test suite.

We randomly selected one code snippet from our dataset (Fig-
ure 7). We utilized Google Atheris [10], a Python based coverage-
guided fuzzer, to automatically produce a test suite comprising
1,000 test cases. Each test case within the generated test suite im-
parted distinct values to the variables in the code snippet (lines 3–6),
ensuring the coverage of all conceivable branches during execution.
We collected the ground truth by manually executing each test case
on the code snippet and recording the code coverage.

We used CodePilot to predict the code coverage for all the test
cases for the code in Figure 7. The columns GT and PR show the
ranking results for the statements based on the ground-truth and
the predicted coverage, respectively. For example, the statement at
line 13 attained the lowest coverage in the ground truth (3𝑟𝑑 rank).

As seen in Figure 7, CodePilot predicted correctly the least-
covered statement at line 13. Moreover, according to the ground-
truth, the top-5 least-covered statements include lines 9–13, and
CodePilot also predicted correctly those with the ranks from 7–11.
This is reasonable because those statements are conditioned via the
if statement (line 9) inside the for loop (line 7).

11 PLAN AND EXECUTION SPACE (RQ5)

The planning from CodePilot is instrumental in efficiently curb-
ing the expansive execution space that the LLM would otherwise

FORGE ’24, April 14, 2024, Lisbon, Portugal Hridya Dhulipala, Aashish Yadavally, and Tien N. Nguyen

1 Code and Predicted Coverage
2 GT PR
3 > > h = 1
4 > > w = 100
5 > > n = 200
6 > > count1 = 0
7 > > count2 = 0
8 > > if h > w:
9 ! ! while w > 0:
10 ! ! count1 += h
11 ! ! if count1 >= n:
12 ! ! count2 += 1
13 ! ! break
14 ! ! else:
15 ! ! count2 += 1
16 ! ! w -= 1
17 > > else:
18 > > while h > 0:
19 > > count1 += w
20 > > if count1 >= n:
21 > > count2 += 1
22 > > break
23 > > else:
24 > > count2 += 1
25 > > h -= 1
26 > > print(count2)

(a) Test Code

1 Generated Plan
2 Step 1: Variable initialization : Assign values to

variables h, w, n, count1, count2. Statements "h
= 2", "w = 100", "n = 200", "count1 = 0",
"count2 = 0" will be executed.

3 Step 2: If-else branching : Check if variable h is
greater than variable w. If this condition is
satisfied, execute the statements inside the if
block. Else, execute the statments inside the
else block. Since variable h is less than
variable w, the if condition is not satisfied.
So statements inside if block are not executed;
statments inside else block are executed.

4 Step 3: While loop inside else block : Enter the while
loop and iteratively check if variable h is
greater than 0. Since the value of h is 2, the
condition is satisfied and execute the
statements inside the while loop.

5 Step 4: If-else branching inside while loop: Execute the
statements inside the if block only if the value
of count1 is greater than or equal to n. Since
the value of count1 is 0, the if condition is
not satisfied and execute the statements inside
else block. Statements inside the else block are
executed; statement "count2 += 1" is executed.

6 Step 5: Update the value of w: Decrement the value of
variable w by 1. Statement "w -= 1" is executed.

7 Step 6: Repeat steps 3-5 until the condition in the
while loop is not satisfied. The condition in
the while loop will be satisfied for a maximum
of 2 iterations since the value of h is 2.

8 Step 7: Print Statement: Print statements are executed.
Statement "print(count2)" will be executed.

(b) Plan generated by CodePilot

Figure 8: Planhelps reduce the exploration space in execution

have to explore. Without the guidance of a plan, the provided code
snippet presents numerous conditional branches and loops, each
representing a potential pathway through the code. For example,
let us consider the code in Figure 8. The total number of branches
to be explored completely via execution to compute code coverage
is 100 × 22 = 400 execution paths.

With CodePilot, the generated plan directs the LLM to discern
crucial decision points (as seen in Steps 2 and 4 in the plan of Fig-
ure 8(b)) and relevant code segments, reducing the vast array of
potential branches that would otherwise need exploration. Specifi-
cally, the LLM is strategically guided using the plan in Figure 8)(b)
to navigate through these complex structures with a targeted fo-
cus and has successfully reduced the exploration space to 2 exact
branches - the if-else block contained within lines 20–25. Impor-
tantly, it is crucial to note that with reduced exploration space, the
LLM is able to accurately predict the code coverage (Figure 8)(a).

12 THREATS TO VALIDITY AND LIMITATIONS

The dataset we used might not be representative. However, this
dataset has been used in the state-of-the-art CodeExecutor [16].
Our approach is tested only for Python and with GPT-3.5. The
results for different datasets, languages, and other LLMs might
vary. The experiments in RQ4 and RQ5 were conducted with single
code snippets. The generalization requires larger datasets. However,
our goal is to illustrate a CodePilot’s application and a case study
showing the benefit of planning in reducing a large execution space.

There are notable areas for improvement in CodePilot. Firstly,
it faces challenges in accurately predicting cases where input values
lead to runtime errors, stemming from its design that generates pre-
dictions for statement coverages without considering the validity
of inputs. Secondly, there is difficulty in identifying control-flow
statements, indicating potential issues with training data on run-
time exceptions. Thirdly, CodePilot encounters challenges with

recursive functions. Fourthly, its accuracy is reduced when han-
dling programs with external libraries, suggesting the need for
fine-tuning. Complex programs remain a difficulty for CodePilot.

13 RELATEDWORK

In the realm of neural networks, Tufano et al. [30] utilize LLMs,
particularly GPT [12] to predict statements requiring coverage
without actual program execution. However, their approach, as
discussed in Section 1, faces inherent limitations. CodeExecutor [16]
is a Unixcoder-based neural network model pre-trained on the
execution of a diverse set of programs to predict execution traces.

Code coverage has found application in various testing, fuzzing,
and fault localization techniques and has been explored through
machine learning [2, 3, 5, 6, 8, 9, 11, 14, 15, 17–19, 26–28, 31, 33].

The literature on computing code coverage is extensive and can
be categorized into static and dynamic instrumentation.

In static instrumentation, Pavlopoulou and Young [23] intro-
duced the concept of removing instrumentation after recording
coverage data. They instrument bytecode in Java class files to
track the execution of each basic block. For native code, Nagy
and Hicks [21] employ binary instrumentation, triggering software
interrupts upon first-time reach of basic blocks, and then rewriting
the binary on disk to de-instrument that specific block.

Dynamic Instrumentation for native code includes Tikir and
Hollingsworth [29], who develop a code coverage analyzer by ex-
tending DyninstAPI [4], a library for native code instrumentation.
Chilakamarri and Elbaum [7] introduce a "disposable" coverage
instrumentation for Java, involving instrumenting JVM bytecode
and de-instrumenting probes once they are no longer required by
overwriting them with NOPs (no-operation). Another Java-based
approach by Misurda et al. [20] implements dynamic probe in-
sertion and removal. Similar to Tikir and Hollingsworth [29], it
pre-instruments by placing seed probes, which subsequently in-
strument basic blocks upon reaching them. Their method involves
instrumenting the x86 code generated by the JIT compiler, relying
on support from Jikes. SlipCover [24] operates in the same domain
of dynamic instrumentation and program monitoring, improving
by de-instrumenting lines/branches that have already been covered.

14 CONCLUSION

We introduce CodePilot that combines program analysis and plan-
ning to enhance code coverage prediction. Through collaboration
with LLMs, CodePilot achieves high accuracy, with up to 55% in
exact-match and 89% in statement-match, outperforming baselines
by up to 33% and 19%, respectively. The effectiveness of CodePilot
is demonstrated not only in predicting code coverage but also in
accurately identifying the least covered statements. This work ad-
vocates for the use of planning in combination with program analysis

to guide the LLM in better navigating in the complex intricate tasks.

We demontrates CodePilot as a proof-of-concept PA-based planning

scheme guilding the LLMs in better code coverage prediction.

ACKNOWLEDGMENTS

This work was supported in part by the US National Science Foun-
dation (NSF) grant CNS-2120386 and the National Security Agency
(NSA) grant NCAE-C-002-2021.

Planning to Guide LLM for Code Coverage Prediction FORGE ’24, April 14, 2024, Lisbon, Portugal

REFERENCES

[1] 2024. Planning to Guide LLM for Code Coverage Prediction. https://github.com/
code-planning/code-coverage-planning

[2] Marcel Böhme, Valentin J. M. Manès, and Sang Kil Cha. 2020. Boosting fuzzer
efficiency: an information theoretic perspective. In Proceedings of the 28th ACM

Joint Meeting on European Software Engineering Conference and Symposium on

the Foundations of Software Engineering (Virtual Event, USA) (ESEC/FSE 2020).
Association for Computing Machinery, New York, NY, USA, 678–689. https:
//doi.org/10.1145/3368089.3409748

[3] Marcel Böhme, László Szekeres, and Jonathan Metzman. 2022. On the relia-
bility of coverage-based fuzzer benchmarking. In Proceedings of the 44th Inter-

national Conference on Software Engineering (Pittsburgh, Pennsylvania) (ICSE
’22). Association for Computing Machinery, New York, NY, USA, 1621–1633.
https://doi.org/10.1145/3510003.3510230

[4] Bryan Roger Buck and Jeffrey K. Hollingsworth. 2000. An API for Runtime Code
Patching. International Journal of High Performance Computing Applications 14, 4
(2000), 317–329. https://doi.org/10.1177/109434200001400404

[5] Marcel Böhme, Cristian Cadar, and Abhik Roychoudhury. 2021. Fuzzing: Chal-
lenges and Opportunities. IEEE Software 38, 3 (2021), 79–86. https://doi.org/10.
1109/MS.2020.3016773

[6] Boyuan Chen, Jian Song, Peng Xu, Xing Hu, and Zhen Ming Jack Jiang. 2018.
An Automated Approach to Estimating Code Coverage Measures via Execution
Logs. In 2018 33rd IEEE/ACM International Conference on Automated Software

Engineering (ASE). 305–316. https://doi.org/10.1145/3238147.3238214
[7] Kalyan-Ram Chilakamarri and Sebastian G. Elbaum. 2006. Leveraging Disposable

Instrumentation to Reduce Coverage Collection Overhead. Software Testing,

Verification and Reliability 16, 4 (2006), 267–288. https://doi.org/10.1002/stvr.347
[8] Andrea Fioraldi and Michael Maier. 2020. Combining Incremental Steps of

Fuzzing Research. In 14th USENIX Workshop on Offensive Technologies (WOOT

20). USENIX Association.
[9] Gregory Gay. 2017. Generating effective test suites by combining coverage criteria.

In Proceedings of the 11th International Workshop on Search-Based Software Testing

(SBST). ACM, 65–82.
[10] Google Atheris [n. d.]. Google Atheris. https://github.com/google/atheris.
[11] Rahul Gopinath, Carlos Jensen, and Alex Groce. 2014. Code coverage for suite

evaluation by developers. In Proceedings of the 36th International Conference on

Software Engineering (Hyderabad, India) (ICSE 2014). Association for Computing
Machinery, New York, NY, USA, 72–82. https://doi.org/10.1145/2568225.2568278

[12] GPT [n. d.]. OpenAI. https://openai.com/.
[13] Ziniu Hu, Ahmet Iscen, Chen Sun, Kai-Wei Chang, Yizhou Sun, David A Ross,

Cordelia Schmid, and Alireza Fathi. 2023. AVIS: Autonomous Visual Information
Seeking with Large Language Model Agent. arXiv:2306.08129 [cs.CV]

[14] Marko Ivanković, Goran Petrović, René Just, and Gordon Fraser. 2019. Code cov-
erage at Google. In Proceedings of the 2019 27th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of Software

Engineering (Tallinn, Estonia) (ESEC/FSE 2019). Association for Computing Ma-
chinery, New York, NY, USA, 955–963. https://doi.org/10.1145/3338906.3340459

[15] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating Fuzz Testing. In Proceedings of the 2018 ACM SIGSAC Conference on

Computer and Communications Security (Toronto, Canada) (CCS ’18). Association
for Computing Machinery, New York, NY, USA, 2123–2138. https://doi.org/10.
1145/3243734.3243804

[16] Chenxiao Liu, Shuai Lu, Weizhu Chen, Daxin Jiang, Alexey Svyatkovskiy,
Shengyu Fu, Neel Sundaresan, and Nan Duan. 2023. Code Execution with Pre-
trained Language Models. arXiv:2305.05383 [cs.PL]

[17] Danushka Liyanage, Marcel Böhme, Chakkrit Tantithamthavorn, and Stephan
Lipp. 2023. Reachable Coverage: Estimating Saturation in Fuzzing. In 2023

IEEE/ACM 45th International Conference on Software Engineering (ICSE). 371–
383. https://doi.org/10.1109/ICSE48619.2023.00042

[18] Yiling Lou, Qihao Zhu, Jinhao Dong, Xia Li, Zeyu Sun, Dan Hao, Lu Zhang,
and Lingming Zhang. 2021. Boosting Coverage-Based Fault Localization via
Graph-Based Representation Learning. In Proceedings of the 29th ACM Joint

Meeting on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering (Athens, Greece) (ESEC/FSE 2021). As-
sociation for Computing Machinery, New York, NY, USA, 664–676. https:
//doi.org/10.1145/3468264.3468580

[19] Breno Miranda and Antonia Bertolino. 2020. Testing Relative to Usage Scope:
Revisiting Software Coverage Criteria. ACM Transactions on Software Engineering

and Methodology (TOSEM) 29, 3 (2020), 1–30.
[20] J. Misurda, J.A. Clause, J.L. Reed, B.R. Childers, and M.L. Soffa. 2005. Demand-

driven Structural Testing with Dynamic Instrumentation. In Proceedings of the

27th International Conference on Software Engineering, 2005. 156–165. https:
//doi.org/10.1109/ICSE.2005.1553558

[21] Stefan Nagy and Matthew Hicks. 2019. Full-Speed Fuzzing: Reducing Fuzzing
Overhead through Coverage-Guided Tracing. In 2019 IEEE Symposium on Security

and Privacy, SP 2019. IEEE, San Francisco, CA, USA, 787–802. https://doi.org/10.
1109/SP.2019.00069

[22] Siqi Ouyang and Lei Li. 2023. AutoPlan: Automatic Planning of Interactive
Decision-Making Tasks With Large Language Models. In Findings of the Asso-

ciation for Computational Linguistics: EMNLP 2023, Houda Bouamor, Juan Pino,
and Kalika Bali (Eds.). Association for Computational Linguistics, Singapore,
3114–3128. https://doi.org/10.18653/v1/2023.findings-emnlp.205

[23] C. Pavlopoulou and M. Young. 1999. Residual test coverage monitoring. In
Proceedings of the 1999 International Conference on Software Engineering (IEEE

Cat. No.99CB37002). 277–284. https://doi.org/10.1145/302405.302637
[24] Juan Altmayer Pizzorno and Emery D. Berger. 2023. SlipCover: Near Zero-

Overhead Code Coverage for Python. In Proceedings of the 32nd ACM SIGSOFT

International Symposium on Software Testing and Analysis, ISSTA 2023, Seattle,

WA, USA, July 17-21, 2023, René Just and Gordon Fraser (Eds.). ACM, 1195–1206.
https://doi.org/10.1145/3597926.3598128

[25] Archiki Prasad, Alexander Koller, Mareike Hartmann, Peter Clark, Ashish Sabhar-
wal, Mohit Bansal, and Tushar Khot. 2023. ADaPT: As-Needed Decomposition
and Planning with Language Models. arXiv (2023).

[26] Kostya Serebryany. 2021. libFuzzer - a library for coverage-guided fuzz testing.
https://llvm.org/docs/LibFuzzer.html

[27] Robert Swiecki. 2021. Honggfuzz. https://github.com/google/honggfuzz
[28] Clang Team. 2023. Source-based Code Coverage. https://clang.llvm.org/docs/

SourceBasedCodeCoverage.html Clang 15 Documentation.
[29] Mustafa M. Tikir and Jeffrey K. Hollingsworth. 2005. Efficient Online Computa-

tion of Statement Coverage. Journal of Systems and Software 78, 2 (2005), 146–165.
https://doi.org/10.1016/j.jss.2004.12.021

[30] Michele Tufano, Shubham Chandel, Anisha Agarwal, Neel Sundaresan,
and Colin Clement. 2023. Predicting Code Coverage without Execution.
arXiv:2307.13383 [cs.SE]

[31] Yi Wei, Bertrand Meyer, and Manuel Oriol. 2012. Is Branch Coverage a Good
Measure of Testing Effectiveness?. In Empirical Software Engineering and Verifi-

cation. Springer Berlin Heidelberg, 194–212. https://doi.org/10.1007/978-3-642-
25231-0_5

[32] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan,
and Yuan Cao. 2022. ReAct: Synergizing Reasoning and Acting in Language
Models. arXiv preprint arXiv:2210.03629 (2022).

[33] Xiaogang Zhu, Shigang Liu, Xian Li, Sheng Wen, Jun Zhang, Seyit Ahmet
Çamtepe, and Yang Xiang. 2020. DeFuzz: Deep Learning Guided Directed Fuzzing.
arXiv preprint arXiv:2010.12149 (2020).

[34] Yuchen Zhuang, Xiang Chen, Tong Yu, Saayan Mitra, Victor Bursztyn, Ryan A.
Rossi, Somdeb Sarkhel, and Chao Zhang. 2023. ToolChain*: Efficient Action Space
Navigation in Large Language Models with A* Search. arXiv:2310.13227 [cs.CL]

https://github.com/code-planning/code-coverage-planning
https://github.com/code-planning/code-coverage-planning
https://doi.org/10.1145/3368089.3409748
https://doi.org/10.1145/3368089.3409748
https://doi.org/10.1145/3510003.3510230
https://doi.org/10.1177/109434200001400404
https://doi.org/10.1109/MS.2020.3016773
https://doi.org/10.1109/MS.2020.3016773
https://doi.org/10.1145/3238147.3238214
https://doi.org/10.1002/stvr.347
https://doi.org/10.1145/2568225.2568278
https://arxiv.org/abs/2306.08129
https://doi.org/10.1145/3338906.3340459
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/3243734.3243804
https://arxiv.org/abs/2305.05383
https://doi.org/10.1109/ICSE48619.2023.00042
https://doi.org/10.1145/3468264.3468580
https://doi.org/10.1145/3468264.3468580
https://doi.org/10.1109/ICSE.2005.1553558
https://doi.org/10.1109/ICSE.2005.1553558
https://doi.org/10.1109/SP.2019.00069
https://doi.org/10.1109/SP.2019.00069
https://doi.org/10.18653/v1/2023.findings-emnlp.205
https://doi.org/10.1145/302405.302637
https://doi.org/10.1145/3597926.3598128
https://llvm.org/docs/LibFuzzer.html
https://github.com/google/honggfuzz
https://clang.llvm.org/docs/SourceBasedCodeCoverage.html
https://clang.llvm.org/docs/SourceBasedCodeCoverage.html
https://doi.org/10.1016/j.jss.2004.12.021
https://arxiv.org/abs/2307.13383
https://doi.org/10.1007/978-3-642-25231-0_5
https://doi.org/10.1007/978-3-642-25231-0_5
https://arxiv.org/abs/2310.13227

	Abstract
	1 Introduction
	2 Motivation
	2.1 Motivating Example
	2.2 Key Ideas

	3 Overview of CodePilot Workflow
	3.1 One-Prompt CodePilot
	3.2 Two-Prompt CodePilot

	4 One-Prompt CodePilot
	4.1 Basic Structure
	4.2 Manually-Crafted Plan in Exemplar(s)
	4.3 Reasoning on Program Semantics
	4.4 Illustrating Example

	5 Two-Prompt CodePilot
	5.1 Plan Formulation
	5.2 Code Coverage Prediction

	6 Empirical Evaluation
	7 Code Coverage Prediction (RQ1)
	7.1 Comparison among CodePilot's settings
	7.2 Comparison with state-of-the-art Models

	8 Accuracy of Predicted Plans (RQ2)
	9 Prediction of Statement Types (RQ3)
	10 Least Coverage Prediction (RQ4)
	11 Plan and execution space (RQ5)
	12 Threats to Validity and Limitations
	13 Related Work
	14 Conclusion
	References

