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ABSTRACT

Software Vulnerabilities (SVs) are security flaws that are exploitable
in cyber-attacks. Delay in the detection and assessment of SVsmight
cause serious consequences due to the unknown impacts on the
attacked systems. The state-of-the-art approaches have been pro-
posed to work directly on the committed code changes for early
detection. However, none of them could provide both commit-level
vulnerability detection and assessment at once. Moreover, the as-
sessment approaches still suffer low accuracy due to limited repre-
sentations for code changes and surrounding contexts.

We propose a Context-aware, Graph-based, Commit-level Vul-
nerability Detection and Assessment Model, VDA, that evaluates
a code change, detects any vulnerability and provides the CVSS
assessment grades. To build VDA, we have key novel components.
First, we design a novel context-aware, graph-based, representation
learning model to learn the contextualized embeddings for the code

changes that integrate program dependencies and the surrounding
contexts of code changes, facilitating the automated vulnerability
detection and assessment. Second, VDA considers the mutual im-
pact of learning to detect vulnerability and learning to assess each
vulnerability assessment type. To do so, it leveragesmulti-task learn-

ing among the vulnerability detection and vulnerability assessment
tasks, improving all the tasks at the same time. Our empirical eval-
uation shows that on a C vulnerability dataset, VDA achieves 25.5%
and 26.9% relatively higher than the baselines in vulnerability as-
sessment regarding F-score andMCC, respectively. In a Java dataset,
it achieves 31% and 33.3% relatively higher than the baselines in
F-score and MCC, respectively. VDA also relatively improves the
vulnerability detection over the baselines from 13.4–322% in F-score.

CCS CONCEPTS

• Computing methodologies→ Neural networks; • Security
and privacy→ Software security engineering.
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1 INTRODUCTION

Software Vulnerabilities (SVs) are security weaknesses and flaws
that one can exploit in cyber-attacks. Such vulnerable code can be
found and reported by scanning a version of a software project
with the help of vulnerability detection tools [31, 48, 50]. However,
it is crucial to identify SVs as soon as possible because late fixes and
consequent damage due to affected systems are severe. Toward that,
commit-level vulnerability detection (VD) approaches [12, 38, 49]
have been proposed to catch SVs as soon as new code changes
are committed to the code repositories during software develop-
ment. They are useful in warning developers early and isolating
vulnerability-inducing, fine-grained code change. An alternative
solution as using a VD tool running on the snapshot after a commit
would not be able to isolate vulnerability-inducing changes.

While addressing software vulnerabilities is crucial, providing
developers with the assessment on the impacts of the detected
vulnerability in the system under development is of equal interest.
Such knowledge will help better prioritize code review tasks, while
showing which areas need patching first. The assessment could be
on the severity of the attack and the levels of damage regarding
confidentiality, integrity, availability, etc. However, the commit-
level VD approaches [12, 38, 49] do not support such automated
assessment. Recognizing this, the state-of-the-art approaches [33]
proposed commit-level software vulnerability assessment (VA) tools
to assess a committed code change. They leveraged the Common
Vulnerability Scoring System (CVSS) [3] ratings (i.e., numerical
scores which can be transformed into qualitative representations
such as low, medium, high, and critical) manually provided by
security analysts to build a learning-based approach to predict
assessment ratings for a code change possessing vulnerabilities.
However, the existing VA tools still have limitations.

First, they work only on a committed code change that has al-
ready been identified as vulnerable by a VD tool. This strategy that
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runs VD and then VA (i.e., VD → VA) is prone to cascading errors.
For instance, in commits that have wrongly been identified as vul-
nerable by a VD tool, the VA tool would give incorrect assessments,
which should not be given at all. Moreover, the VA tool fails to pre-
dict assessment patterns in commits that are vulnerable, but missed
by the VD tool. As a result, the VD→ VA strategy is limited, and
would not take advantage of themutual benefits of the learning of de-

tection on the learning of assessment, and vice versa. Our philosophy
is driven by this inter-dependence, wherein the former could help
isolate the part of the code change that is vulnerability-inducing,
which, in turn, could help assess it better. Specifically, if a model
learns that one of the assessment ratings is high (e.g., high severity
or complete unavailability), the vulnerability detection outcome
must be positive. If the detection outcome is negative, the assess-
ment ratings for all the aspects must be at the lowest (e.g., none).
Thus, it is more beneficial for a model to jointly learn to detect
and assess vulnerabilities at the same time, leading to performance
enhancement in both detection and assessment.

Second, the state-of-the-art VA approaches [33] are inept in their
representation of code changes, which are not sufficiently context-
aware. They learn an 𝑛-gram representation for code changes that
captures limited local context, and is incapable of learning from
VD/VA-relevant program statements that are further apart from
the changed statements. As a result, the statements in the 𝑛-gram
representation might not all contain important features for VD/VA.
Such a sequential representation learning also enforces an order in
source code, which might not be the order of execution (e.g., in the
cases of loop, branch condition, or recursion), which contributes to
detecting vulnerabilities involving execution and exception flows.
Moreover, given that a vulnerability attack exploits the control and
data flows, a VD/VA tool needs to consider program dependencies.
This facet is ignored in the existing VA tools. Finally, the context
of un-changed code is indistinguishable and not represented sep-
arately from the changes. As a result, it can be confused by two
training instances that have the same combination of change and
context overall, but with different changes and associated contexts.

In this work, we present VDA, a Context-aware, Graph-based,
Commit-level Vulnerability Detection and Assessment model that
evaluates a changed code to detect the presence of a vulnerability,
while also providing corresponding CVSS assessment scores for
the detected vulnerability. We build VDA via the novel integration
of three key ideas. First, we integrate vulnerability detection and

assessment (VDA) processes such that our tool can directly be built
into a repository to evaluate committed code changes and provide
just-in-time assistance. Due to the inter-dependence of these pro-
cesses, we adopt a multi-task learning approach to propagate the
learning between VD and VA, leading to better performance of both
tasks. Moreover, the assessments for different aspects could also
affect one another [33], e.g., between the availability and integrity
of a system. Thus, our multi-task learning scheme includes the VD
task and the assessment tasks for different security aspects.

Second, we address the limitation of code change representations
described earlier via a novel context-aware, graph-based, representa-
tion learning model that integrates the program dependencies, and
the surrounding contexts of code changes. We leverage both ver-
sions of the program dependence graphs (PDGs), i.e., before and
after a commit via the multi-version 𝛿-PDG [37]. To build such

embeddings for code changes, VDA explicitly represents the contexts

surrounding the changed statements via the sub-graphs in 𝛿-PDG.
It considers the impact of the context represented by a context vec-
tor on the building of the embeddings for the code changes. It uses
the contextualized embeddings to predict if the changes have any
vulnerability, and if yes, to provide assessment grades. Third, it
utilizes the Label, Graph Convolution Network [7] to encode the
program dependencies among the entities in the changed code and
the ones in the surrounding un-changed code. This helps overcome
the issues with 𝑛-grams and capture the statements that might be
far apart, but still relevant to the vulnerability.

We have conducted experiments to evaluate VDA on real-world
vulnerabilities. Our results on a C vulnerability dataset show that
VDA achieves 25.5% and 26.9% relatively higher than the state-of-
the-art VA tool DeepCVA [33] in F-score and MCC, respectively.
The vulnerability detection result from VDA is improved over the
state-of-the-art ML/DL-based VD approaches from 11.3-–146% in
precision, 10.4-–553% in recall, and 13.4—322% in F-score. The re-
sults on a Java dataset with 1,229 vulnerabilities show that VDA
also achieves 31.0% and 33.3% relatively higher than DeepCVA [33]
in F-score and MCC, respectively.

To gain better insights, we conducted experiments to show that
the better performance of VDA roots from our designed compo-
nents. Our results show that our novel code change embeddings help
VDA learn better class-separation, i.e., better in classifying the com-
mits into the classes for vulnerability detection and assessment.
Moreover, we used explainable AI to show that VDA indeed lever-
ages the correct features in the dependencies among statements for
its assessments. The key contributions of our work include

1) VDA: commit-level vulnerability detection and assess-

ment model (VDA) that performs VD and VA in tandem, leverag-
ing multi-task learning to improve both detection and assessment.

2) Our novel context-aware, graph-based embeddings for

code changes integrate program dependencies and contexts. This
embedding model is applicable for other down-stream tasks.

3) Empirical evaluation. We evaluated VDA against the state-
of-the-art approach. Our model/code are available at [5].

2 MOTIVATION

2.1 Motivating Example

Let us present an example from an HTML parser, named Jsoup,
and our observations. Figure 1 displays the information on the
vulnerability CVE-2021-37714 that was reported on Jsoup, and pub-
lished on 08/18/21. The change that was deemed to contribute to
the vulnerability were committed at version 1.12.1 to the method
process(Token,HtmlTreeBuilder) of the HtmlTreeBuilderState class (lines
10–12 of Figure 2). That change directly uses the value returned
from resetInsertionMode() as the condition to insert startTag (line 13).
With this change, certain input HTML code with a specific start
tag could make the program go to line 16 with a recursive call to
the method process(...). That call resulted in an NullPointerExcep-
tion at line 3. In other cases, the parser can get stuck, i.e., “loop
indefinitely until canceled” as described in the official description of
CVE-2021-37714. Figure 1 also shows the Common Vulnerability
Scoring System grades (CVSS) given by security experts for various
vulnerability assessment types (VATs) for that CVE. Due to the
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Vulnerability Details: CVE-2021-37714

1. Description: jsoup is a Java library for working with HTML. Those using jsoup

versions prior to 1.14.2 to parse untrusted HTML or XML may be vulnerable to DOS

attacks. If the parser is run on user supplied input, an attacker may supply content that

causes the parser to get stuck (loop indefinitely until cancelled), to complete more slowly

than usual, or to throw an unexpected exception. This effect may support a denial of

service attack. The issue is patched in version 1.14.2. There are a few available

workarounds. Users may rate limit input parsing, limit the size of inputs based on system

resources, and/or implement thread watchdogs to cap and timeout parse runtimes.

Publish Date : 2021-08-18 Last Update Date : 2022-02-07

2. Vulnerability Type(s): Denial Of Service
3. CVSS Score: ...
4. Detailed CVSS Grades:

Vulner. Assess. Type Value Description
Confidentiality Impact None No impact to the confidentiality
Integrity Impact None No impact to the integrity
Availability Impact Complete There is reduced performance or

interruptions in availability
Access Complexity Low Specialized access conditions or

extenuating circumstances do not exist
Little knowledge is required to exploit

Authentication Not Req Authentication is not required
to exploit the vulnerability

Gained Access None No gained access with the vulnerability
Access Vector Local The vulnerability is in the local parser

Figure 1: Vulnerability Details for Jsoup: CVE-2021-37714

1 // .../jsoup/parser/HtmlTreeBuilderState.java
2 boolean process(Token t, HtmlTreeBuilder tb) { ...
3 if (t.isCharacter()&& inSorted(

tb.currentElement().normalName(),InTableFoster)){
4 ...
5 return tb.process(t);
6 }
7 ...
8 } else {
9 tb.popStackToClose(name);

10 - tb.resetInsertionMode();
11 - if (tb.state() == InTable) {
12 + if (!tb.resetInsertionMode()) {
13 tb.insert(startTag);
14 return true;
15 }
16 return tb.process(t, InHead);
17 ...
18 }

Figure 2: Code Change at Version 1.12.1 for CVE-2021-37714

above effects, the availability impact for this vulnerability is rated
as Complete (i.e., for some inputs, there will be reduced performance
and interruptions in available services).

The above vulnerability is potentially damaging. However, in
the existing workflow, it was detected and reported late, and finally
assessed by the security experts in the CVSS system [3]. In the
meantime, the similar vulnerabilities with the same assessments
were also reported in other applications from Netapp, Oracle, and
Quarkus, i.e., more widespread damages were done.

In contrast, by taking advantage of the records of vulnerabilities
and their corresponding assessments in CVSS via a learning-based
approach, this could have been addressed as soon as the code change
is committed. Such a commit-level VDA not only allows an early

detection and assessment, but also isolates the vulnerability-inducing

code change, which cannot be achieved if a VD tool is run on the
project’s snapshot after changes. For example, the vulnerability-
inducing code change in Jsoup at lines 10–12 needs to be pinpointed
among several other benign changes in the same commit.

In this work, toward enabling such a learning process, we make
the following observations.

2.1.1 Observation 1 [Mutual Impact of Vulnerability Detection and
Assessment]. In Figure 2, if a model learns that the availability as-
sessment of this vulnerability is Complete (i.e., system could be com-
pletely unavailable), it could learn that this change is a vulnerability-
introducing one (i.e., the detection outcome is positive). On the
other hand, if a model learns that this is a vulnerability-introducing
change, it could learn more about the semantics of the code change,
and consequently how the code change gives hints to the assess-
ment. In contrast, if a model decides that this does not possess any
vulnerability, it can learn that all the VAT outcomes must be None.
Unfortunately, none of existing VD and VA approaches take advan-
tage of this mutual impact. The ML-based vulnerability detection
approaches [12, 38, 49] focus only on VD, without any VA support.
In contrast, the existing ML-based VA approaches [33] works only
on the vulnerability-introducing change with the work flow that a
VD tool is used first to detect such a commit.

2.1.2 Observation 2 [Program Dependencies]. To detect and assess
a vulnerability, a model needs to consider the program dependencies

among the statements. For example, to assess Availability, one needs
to check the potential infinite loop or null-pointer exception, and
examine the control and data dependencies between the changed
line 12 and the line 16. That is where the method process is recur-
sively called, which leads to the null-pointer exception at line 3
(currentElement() returns null). Unfortunately, the state-of-the-art
vulnerability assessment models, e.g., DeepCVA [33] learn only
𝑛-gram representations (𝑛=1,3,5), and do not consider long-range
dependencies. However, program statements that can help with
automated assessment (e.g., line 12 → line 16 → line 3) can be
far apart. DeepCVA is incapable of capturing such a flow.

2.1.3 Observation 3 [Context]. By examining only the tokens involv-
ing in the changes (e.g., the tokens tb, resetInsertionMode, state, and
InTable in the deleted lines 10–11, and the inserted line 12), a model
can not decide on the vulnerability or its impacts on the system’s
availability or not. Generally, the same/similar changes occurring in

different surrounding contexts might cause different effects. For exam-
ple, adding a null check: if p != null is a common change in many
places. However, it could prevent a null-pointer exception in some
context, while does not in the others. Unfortunately, DeepCVA [33]
does not capture well the contexts of the changes. First, the 𝑛-gram
representation learning is limited as explained. Second, DeepCVA
does not model the inter-relationships between the context, i.e., the
un-changed code elements and the changed ones (both pre-change,
and post-change). This is essential in capturing code changes better
– resulting in improved detection and assessment.

2.2 Key Ideas

We developVDA, a Context-aware, Graph-based, Commit-level Vul-
nerability Detection and Assessment Model that detects any vulner-
ability in a committed change and provides the CVSS assessment
grades for it if any. VDA is designed with the following ideas:

2.2.1 Key Idea 1 [Vulnerability Detection and Assessments with
Joint Learning]. From the Observations, a commit-level VDA tool
is desired. We leverage multi-task learning to propagate the mu-
tual benefits of learning of vulnerability detection to that of as-
sessment, and vice versa. Moreover, the learning of one type of
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Figure 3: VDA: Context-aware, Graph-based, Commit-level

Vulnerability Detection and Assessment

vulnerability assessment can affect the learning of another (e.g.,
between Availability and Access Complexity). Thus, our multi-task
learning scheme is designed with one task for VD, and one task for
each of the assessment types. In training, we optimize the joint loss
function for all the tasks. When the VD’s outcome is positive, VDA
provides assessments. Otherwise, non-impact scores are given.

2.2.2 Key Idea 2 [Contextualized Embeddings for Code Changes with
Graph-based Representation Learning]. To overcome the limitation
of code change representation, we introduce a graph-basedmodel to
build the contextualized embeddings for code changes that integrate
both program dependencies and surrounding contexts.

Unlike existing code change embedding approaches [9, 23] where
code changes are represented as sequences, we explicitly represent
code changes and the context of a change via a graph representation,
called multi-version PDG [37]. The graph consists of the program
entities of both versions before and after the changes, and their de-
pendencies. The context is defined as the surrounding, un-changed
nodes of the changed node. We use Label, Graph Convolution Net-
work (Label-GCN) [7] to build the contextualized embeddings for
code changes, considering the contexts as the weights in computa-
tion. We use past vulnerabilities and experts’ ratings to train VDA
to build such embeddings, and use them for classification.

2.2.3 Key Idea 3 [Program Dependencies in Code Change Represen-
tation via Graph-based Neural Network]. We leverage Label-GCN [7]
to incorporate the program dependencies among the changed code
elements and the surrounding un-changed code elements into VDA.
The graph enables a partial order among program entities in a
PDG rather than enforcing a total order as in 𝑛-gram learning. This
enables VDA overcome the aforementioned issues, and capture
dependencies on distant yet vulnerability-relevant statements.

3 APPROACH OVERVIEW

VDA has three key components working in three steps (Figure 3).

Step 1. Representing Code Changes and Contexts with Multi-

version PDG. Program Dependence Graph (PDG) [16] is a directed
graph with a set𝑁 of nodes and a set 𝐸 of edges, in which a node𝑛 ∈

𝑁 represents a program statement or a conditional expression; an
edge 𝑒 ∈ 𝐸 represents the data or control flow among the statements.
We adopt the multi-version PDG (𝛿-PDG𝑥,𝑦) [37] to represent the

changes between two versions 𝑥 and 𝑦, before and after the commit.
A multi-version PDG 𝛿-PDG𝑥,𝑦 [37] is a directed graph generated
from the disjoint union of all nodes and edges in the PDGs at
versions 𝑥 and𝑦. 𝛿-PDG𝑥,𝑦 (Figure 4, Section 4) allows us to capture
the program dependencies including data/control flows that are
crucial in vulnerability detection and assessment (Key idea 2).

Step 2. Contextualized Embeddings for Code Changes with

Graph-based Representation Learning. We develop our repre-
sentation learning model to learn the contextualized embeddings
for the code changes in a commit that integrate both program depen-
dencies and the contexts. To build the contextualized embeddings,
we leverage the Label, Graph-based Convolution Network [7] to
learn the vector 𝑣 for each node 𝑛 in the graph whose nodes can
have labels. We use labels to denote the nodes at either the versions
𝑥 (before changes) or 𝑦 (after changes), or at both versions.

For a changed node 𝑛𝑐 , we collect all the un-changed nodes in
the context of 𝑛𝑐 , which is defined as the set of all the un-changed
nodes that are 𝑘-hop neighbors of 𝑛𝑐 . In Figure 4, for the changed
statement at line 4, if 𝑘 = 1, the context of that change includes the
statements at lines 2, 5, and 7 (i.e., 1-hop neighbors from line 4).

From the context nodes, we compute the vector for the context
for a changed node 𝑛𝑐 and use it as a weight to represent the impact
of context to build the contextualized embedding for 𝑛𝑐 . From those
embeddings, we compute the vector for the entire commit and feed
it to a SoftMax layer acting as a classifier to perform vulnerability
classification or assessment classification for each assessment type.
The softmax function is often used as the last activation function
of a neural network to normalize the output of a network to a
probability distribution over the predicted output classes.

Step 3. Multi-Task Learning for Classification. For each assess-
ment type, we have a SoftMax layer working as an assessment classi-
fication model on the embedding of the entire commit. We also have
another SoftMax layer as the classifier for vulnerability detection.
To propagate the impact of the classification for one assessment
type on one another, we leverage multi-task learning among all the
classification models. We use the uncertainty weighted multi-task
loss [13] for each classification task as the final multi-task learning
loss function and use the maximum of the average F-score from all
the classification tasks as the training target.

Training and Predicting Processes. The training and predict-
ing processes share the above steps, except that in training, the
classification labels for the vulnerable commit and vulnerability as-
sessment types (VATs) are known. For a benign commit, the output
labels are negative and non-impact. When predicting, VDA takes
a code change, predicts vulnerability and provides the assessment
classifications for seven VATs. Next, we will explain VDA in details.

4 BUILDING MULTI-VERSION PDG (𝛿-PDG𝑥,𝑦)

The first step in VDA is to build the multi-version PDG. Figure 4(*)
shows the vulnerable method rsvg_io_get_file_path. The change at
line 3 into line 4 was deemed as a vulnerability-introducing change
by a detection tool, inwhich g_file_test(filename, G_FILE_TEST_EXISTS)
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Figure 4: Multi-Version Program Dependence Graph

was removed from the condition at line 3. Figure 4(1) and Figure 4(2)
display the PDGs of the method rsvg_io_get_file_path before and
after the change. All the nodes of the PDG before the change are
marked with 𝑥 , and those of the PDG after the change are marked
with 𝑦. Figure 4(3) shows the multi-version PDG (𝛿-PDG𝑥,𝑦 ) built
from the two versions 𝑥 and 𝑦 of that method before and after the
change. In 𝛿-PDG𝑥,𝑦 , the nodes labeled with either 𝑥 or 𝑦 appear
only in the PDG of the version 𝑥 or 𝑦, respectively. The nodes
labeled with (𝑥,𝑦) appear in the PDGs at both versions.

We adopt the multi-version graph building algorithm in Flex-
eme [37]. Specifically, we generate the PDGs for both versions 𝑥 and
𝑦. We run Git diff tool on the source code to determine the changed
and unchanged nodes for the statements. The added nodes are kept
in 𝛿-PDG𝑥,𝑦 with the labels 𝑦 as they appear in the newer version 𝑦.
We also retain the deleted nodes and use the label 𝑥 for them. The
unchanged nodes between the versions are matched by using string
similarity among the respective statements to filter the candidates
and line-span proximity to rank them. When considering the edge
changes, we back-propagate the delete nodes to the edges flowing
into them. We also add all unmatched edges in the newer version 𝑦
to the PDG𝑥,𝑦 as the edges relevant to the added nodes.

After building 𝛿-PDG𝑥,𝑦 , for each changed node in the graph,
VDA collects all the unchanged nodes within the 𝑘-hops and the
inducing edges among them to build a sub-graph as the context
for the changed node. 𝛿-PDG𝑥,𝑦 and the context for each changed
node are used as the input of the Label-GCN. Building 𝛿-PDG𝑥,𝑦
and contexts is needed in both training and predicting.

5 GRAPH-BASED, CONTEXTUALIZED

EMBEDDINGS FOR CODE CHANGES

Let us first explain how we extract the feature vectors for the
nodes in 𝛿-PDG𝑥,𝑦 and build the code change contextualized em-

beddings that integrate both program dependencies and contexts via
Label-GCN. From those embeddings for code changes, we build the
embedding for the entire commit, which will be later used in the
classification tasks for vulnerability detection and assessment.

5.1 Feature Vectors 𝑣
𝑓
𝑛 for 𝛿-PDG𝑥,𝑦 Nodes

After the previous step, we obtain 𝛿-PDG𝑥,𝑦 and the context sub-
graphs for the changed nodes in 𝛿-PDG𝑥,𝑦 . We leverage Label-
GCN [7] to model 𝛿-PDG𝑥,𝑦 as follows. We first build the node
feature vector for each node 𝑛 in 𝛿-PDG𝑥,𝑦 . To do so, we use the
sequence of the code tokens 𝑡𝑛 of the statement 𝑠 corresponding
to 𝑛. We use a word embedding model to learn the vector 𝑣𝑡 for
each token when we consider the code token sequence for 𝑠 as a
sentence. The node content vector for 𝑛 is computed as the average
vector 𝑣𝑎𝑣𝑔 of all the vectors 𝑣𝑡 of all the tokens in the statement
𝑠 . To integrate the labels 𝑥 , 𝑦, and (𝑥,𝑦) into the node feature, we
use a one-hot vector with the length of three for those labels. By
concatenating the node content vector with the one-hot vector for
the labels, we have the node feature vector 𝑣 𝑓𝑛 for the node 𝑛.

5.2 Contextualized Embedding 𝑣𝑛 for Node 𝑛

Next, we replace each node 𝑛 in 𝛿-PDG𝑥,𝑦 with the node feature
vector 𝑣 𝑓𝑛 . Similar to the traditional GCN [25], Label-GCN [7] takes
the graph with the node feature vectors as the input and generates
the embeddings for each node in the graph. In addition, for the
current node, in the first layer, Label-GCN considers the version labels

(𝑥 ,𝑦, (𝑥,𝑦)) of the neighboring nodes as part of the feature vectors,

which helps distinguish the old/new nodes. Label-GCN generates the
vectors (embeddings) for the nodes in each layer as follows:

𝐻 (𝑙 ) =

{
𝜎 [(𝐴𝑋 − 𝑑𝑖𝑎𝑔(𝐴)∑𝐾𝑗=1 𝑒 𝑗𝑒𝑇𝑗 )𝑊 0] 𝑙 = 1
𝜎 (𝐴𝐻 (𝑙−1)𝑊 (𝑙−1) ) 𝑙 ≥ 1

(1)

𝐴 = �̃�− 1
2 �̃��̃�− 1

2 (2)

�̃� = 𝐴 + 𝐼 (3)
Where 𝐻 is the output for hidden layers; 𝐴 is the adjacency matrix
and 𝐼 is the identity matrix; �̃� is the diagonal node degree matrix;
𝑊 is the weight matrix; 𝑋 is the input and 𝑋 ∈ 𝑅𝑛𝑢𝑚×(𝑑+𝐾 ) ; 𝑛𝑢𝑚
is the number of nodes; 𝑑 is the dimension of node features; 𝐾 is
the number of types of node labels in the input (𝐾=3 for 𝑥 , 𝑦, and
(𝑥,𝑦)); and −𝑑𝑖𝑎𝑔(𝐴)∑𝐾𝑗=1 𝑒 𝑗𝑒𝑇𝑗 is used to eliminate the self-loops
for the components of the feature vectors for the labels.

The vectors 𝐻 (𝑙) at the output layer are used as the vectors 𝑣𝑖s
for the nodes in the 𝛿-PDG𝑥,𝑦 graph after Label-GCN in Figure 5.

5.3 Context Integration

For each changed node 𝑛𝑐 in 𝛿-PDG𝑥,𝑦 , we build the sub-graph
containing all the un-changed nodes in the 𝑘-hop neighbors of 𝑛𝑐
and use that sub-graph as the context for 𝑛𝑐 . We merge the vectors
𝑣𝑖s in the context into a matrix. We then use a fully connected layer
on the matrix to build the context vector 𝑣𝑐𝑡𝑥 for the context.

To integrate the context into the embeddings, we compute the
final vector 𝑣 ′𝑛𝑐 for the changed node 𝑛𝑐 by performing the cross-
product between 𝑣𝑐𝑡𝑥 and the vector 𝑣𝑛𝑐 for 𝑛𝑐 computed by the
Label-GCN model as described in Section 5.2: 𝑣 ′𝑛𝑐 = 𝑣𝑐𝑡𝑥 × 𝑣𝑛𝑐 .

5.4 Classification for Each Task

To compute the vector for the entire commit, we collect all the
vectors 𝑣 ′𝑛𝑐 s of the changed nodes𝑛𝑐 in 𝛿-PDG𝑥,𝑦 into a matrix.We
apply a fully connected layer to learn the vector 𝑣𝑀𝑖

for a changed
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Figure 5: Context-aware, Graph-based Representation Learning for Contextualized Embeddings for Code Changes

method𝑀𝑖 . The vectors for all changed methods are passed through
another fully connected layer to get the vector 𝑣𝑐𝑜𝑚 for the commit.
This vector is fed into each SoftMax classifier for each task.

5.5 Illustrating Example

Figure 5 illustrates the vector building for the code changes in
Figure 4. From 𝛿-PDG𝑥,𝑦 , we compute the node feature vectors 𝑣 𝑓𝑛
(Section 5.1) for all statement nodes 𝑆2,...,𝑆7 in that graph. Label-
GCN takes that graph with node feature vectors to generate the
embeddings 𝑣2,..., 𝑣7 for the nodes (Section 5.2).

Let us consider the changed nodes, 𝑛3 and 𝑛4. The context for
𝑛3 with one-hop distance includes 𝑛2, 𝑛5, and 𝑛7. Similarly, the
context for 𝑛4 includes the same nodes. After merging those vectors
into a matrix, which is passed through a fully-connected layer, we
obtain the context vectors 𝑣𝑐𝑡𝑥 for 𝑛3. Similarly, we obtain 𝑣𝑐𝑡𝑥 for
𝑛4. Then, the final contextualized vector for the changed node 𝑛3
taking the context into account is computed as the cross-product:
𝑣 ′3 = 𝑣𝑐𝑡𝑥 × 𝑣3. Similarly, 𝑣 ′4 = 𝑣𝑐𝑡𝑥 × 𝑣4. We then put the vectors 𝑣 ′3
and 𝑣 ′4 together in a matrix and use a fully-connected layer (FCL)
to produce the method vector 𝑣𝑀1. All changed method vectors are
passed through another FCL to get 𝑣𝑐𝑜𝑚 for the commit. Finally,
we pass 𝑣𝑐𝑜𝑚 to a SoftMax layer to perform vulnerability detection
or the classification for an assessment type (e.g., None, Partial).

6 MULTI-TASK LEARNING FOR PREDICTION

AND ASSESSMENT CLASSIFICATION

In the previous sections, we have explained how VDA performs
each classification task for detection or assessment. In this section,
we will explain our multi-task learning mechanism to perform the
classification for vulnerability prediction and the classifications for
seven VATs with the following prediction classes for each VAT:

(1) Confidentiality: None; Partial; Complete
(2) Integrity: None; Partial; Complete
(3) Availability: None; Partial; Complete
(4) Access Vector: Local; Network
(5) Access Complexity: Low; Medium; High
(6) Authentication: None; Single
(7) Severity: Low; Medium; High
As explained in Section 5.4, the vector 𝑣𝑐𝑜𝑚 representing the

entire commit is passed through a SoftMax layer for the classifi-
cation for vulnerability detection or for a specific VAT. In VDA,
the multi-task learning mechanism uses the uncertainty weighted

multi-task loss [13] to learn all classification tasks at the same time.
Specifically, for each classification task, VDA uses a cross-entropy
loss function to do the classification as follows:

𝐿 = −𝑙𝑜𝑔(𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑦, 𝑓 (𝑥))) (4)

Where 𝑓 (𝑥) is the output of a classification task 𝑓 ; y is the ground
truth. To get the joint loss function for all the tasks with uncertainty
weighting, following Kendall et al.’s [13], we have

𝐿𝑖 (𝑊 ) = −𝑙𝑜𝑔(𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑦𝑖 , 𝑓𝑊 (𝑥𝑖 ))) (5)

𝐿(𝑊,𝜎1, 𝜎2, ..., 𝜎8) =
8∑︁
𝑖=1

1
2𝜎2
𝑖

𝐿𝑖 (𝑊 ) + 𝑙𝑜𝑔𝜎2𝑖 (6)

Where𝑊 is the weight adding to the input, 𝜎𝑖 is the 𝑖𝑡ℎ noise scalar,
and𝑊 and 𝜎𝑖 are both trainable in the model.

With Formula (6), VDA uses the multi-task learning to train
all classification models together with the features for each task.
For training, we set as the objective the highest average F-score
(Section 7.2) for all tasks. For prediction, the trained model produces
the classification results for vulnerability detection and for all VATs.

7 EMPIRICAL EVALUATION

To evaluate VDA, we seek to answer the following questions:
RQ1. Comparison with State-of-the Art ML-based Vulnera-

bility Detection Approaches on C dataset. How well does VDA
perform compared with the existing DL-based VD approaches?
RQ2. Comparison inVulnerabilityAssessment on aCDataset.

Howwell doesVDA perform compared to the state-of-the-art model
in vulnerability assessment on a C dataset?
RQ3. Contextualized Embeddings forCodeChanges.DoVDA’s
embeddings help it improve over the baseline in classifications?
RQ4. Explainable AI to Study Relevant Features on Program

Dependencies. Does VDA use program dependencies in vulnera-
bility detection and assessment?

In RQ3 and RQ4, we aim to evaluate the extent of contributions
of two VDA’s key design choices, i.e., contextualized embeddings

for code changes and program dependencies to its performance.
RQ5. Ablation Study on Multi-Task Learning and Context.

How do multi-task learning and context affect VDA’s performance
in vulnerability detection and assessment?
RQ6. Comparison in Vulnerability Assessment on a Java

Dataset. How does VDA perform compared to the state-of-the-art
model in vulnerability assessment on a Java dataset?
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Table 1: Statistics of BigVul and CVAD Datasets

Datasets BigVul (C) CVAD (Java)
# of Projects 303 246
# of Vulnerabilities 3336 542
# of Vulnerability Introducing Commits 7851 1229

7.1 Datasets

We used two vulnerability datasets in C and Java: BigVul 2.0 [15]
and CVAD [33] (Table 1). Both were manually checked and used in
prior research [15, 29, 33]. Our experiments were conducted on a
server with 16 core CPU and a single Nvidia A100 GPU.

7.2 Experimental Methodology

7.2.1 Comparison on Vulnerability Detection on BigVul (RQ1).
Baselines. We include VCCFinder [38] (a commit-level ML-based
VD), and other ML VD tools: VulDeePecker [50], Devign [48],
SySeVR [31], Russell et al. [41], Reveal [11], and IVDetect [29].
Except VCCFinder, we ran the others on the code after commit.

Procedure.Weused all vulnerablemethods and randomly selected
the same number of non-vulnerable methods from the fixed version
projects, to build a dataset with the vul:non-vul ratio of 1:1. We also
evaluated the tools with the real-world ratio of 9:1. We randomly
split the data 80%, 10%, 10% on the project basis without changing
the vul:non-vul ratio for training, tuning, and testing.

Parameter Tuning. For VDA, we used autoML [4] for tuning the
following hyper-parameters to have the best performance: (1) Epoch
size (100, 200, 300); (2) Batch size (64, 128, 256); (3) Learning rate
(0.001, 0.003, 0.005, 0.010); (4) word embeddings length (150, 200,
250, 300). We tuned DeepCVA’s parameters from its documentation.

Evaluation Metrics. We use the following metrics to measure the
effectiveness of a model: 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃+𝐹𝑁 , 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃+𝐹𝑃 , and

𝐹 -𝑠𝑐𝑜𝑟𝑒 = 2∗𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 . where TP = True Positives; FP = False

Positives; FN = False Negatives; TN = True Negatives.

7.2.2 Comparison on Vulnerability Assessment on BigVul (RQ2).
Baseline.We compare VDA with DeepCVA [33].
Procedure. We used BigVul dataset with the same longitudinal

setting in [14, 33] for training, validation, and testing to mimic the
real-world scenario in which the older vulnerabilities are used for
training to assess the newer. Specifically, we sorted all the commits
in a chronological order based on their absolute time. We divided
the commits into 10 equal folds from oldest to newest. For a fold
𝑘 (𝑘 ≤ 8), we used all the folds 1 to 𝑘 for training, the (𝑘+1)𝑡ℎ and
(𝑘+2)𝑡ℎ folds for validation and testing. Models are tuned as in RQ1.

Evaluation Metrics.We use the same metrics in DeepCVA [33]: F-
score and Matthews Correlation Coefficient (MCC). F-score ranges
from 0 to 1 (the best), to evaluate classification tasks and to handle
the class imbalance prevalent in some of the VATs. MCC ranges
from -1 to 1 (the best). Since we evaluate the classification models
with multiple classes, we used the macro F-score [44] and the multi-
class version of MCC [18]. The overall MCC is computed as the
average of the MCCs for all classification tasks as in DeepCVA [33].

7.2.3 Code Change Embedding Analysis (RQ3). We aim to evaluate
the impact of our novel graph-based, contextualized code change
embedding model on VDA’s ability in class separation.

Table 2: Vulnerability Detection on C Dataset (RQ1)

Approach Precision Recall F-score

VCCFinder [38] 0.28 0.13 0.18
VulDeePecker [50] 0.55 0.77 0.64

SySeVR [31] 0.54 0.74 0.63
Russell et al. [41] 0.54 0.72 0.62

Devign [48] 0.56 0.73 0.63
Reveal [11] 0.62 0.69 0.65
IVDetect [29] 0.54 0.77 0.65

VDA 0.69 0.85 0.76

7.2.4 Program Dependencies (RQ4). We employ Explainable AI
(XAI) to demonstrate the utilization of program dependencies by
our VDA model in vulnerability detection and assessment. An XAI
model enables us to analyze the essential features within the in-
put code that influence the model’s predictive outcomes. If XAI
highlights program dependencies within the input code, we can sub-
sequently investigate whether VDA appropriately employs these
program dependency-related features for accurate predictions.

7.2.5 Ablation Study on Multi-Task Learning and Context (RQ5).
We evaluate the impacts of the following factors in VDA: (1) multi-
task learning, and (2) change context. We conducted an analysis by
removing each factor from VDA and made a comparison.

7.2.6 Comparison on Assessment on CVAD Java dataset (RQ6).
Baseline and Procedure.We compared VDAwith the baseline Deep-
CVA [33]. We used the same procedure, tuning, and longitudinal
setting as in RQ1, but on the Java dataset.

8 EXPERIMENTAL RESULTS

8.1 Comparison on Vulnerability Detection on

BigVul C Dataset (RQ1)

As seen in Table 2, to detect vulnerability,VDA improves over all the
baselines in all the metrics. Specifically, VDA relatively improves
over the baseline models from 11.3%– 146% in Precision, from
10.4%–553% in Recall, and from 13.4%–322% in F-score.

VDA performs much better than commit-level VCCFinder [38],
possibly because VCCFinder only uses traditional SVM. We can
also see that VDA performs better than the snapshot baselines (i.e.,
Reveal [11] and IVDetect [29]), in the cases where the code changes
are relevant to the vulnerability. Consider an example in which a
statement (e.g., null check) was removed leading to vulnerable code
(e.g., Null-Pointer Exception). Due to its ability to examine changes,
as opposed to the baselines which only look at the modified version,
VDA can detect the vulnerability-inducing changes better.

In Section 8.4, we used Explainable AI to display the changed

statements in the code that contributes to the detected vulnerabil-
ity (Figure 10). This is another advantage from commit-level VD
(pointing to the fine-grained vulnerability-inducing change) that the
VD tools working on the new version only do not have.

We also use a real-world vulnerability setting with a 9:1 non-
vulnerability to vulnerability ratio. We randomly selected 10% of
the vulnerable instances in the test set ten times, and finally took
the average of the F-scores. We report that the F-scores for VDA and
the top baseline IVDetect are 45.3% and 25.4%, respectively. VDA
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Table 3: Vulnerability Assessment on C Dataset (RQ2)

CVSS Metric Evaluation Metric Model
DeepCVA [33] VDA

Confidentiality macro F-score 0.50 0.65
MCC 0.23 0.31

Integrity macro F-score 0.42 0.55
MCC 0.24 0.33

Availability macro F-score 0.47 0.63
MCC 0.28 0.34

Access Vector macro F-score 0.58 0.69
MCC 0.22 0.31

Access Complexity macro F-score 0.49 0.66
MCC 0.26 0.35

Authentication macro F-score 0.67 0.72
MCC 0.36 0.39

Severity macro F-score 0.44 0.58
MCC 0.23 0.28

Average macro F-score 0.51 0.64 (⇑25.5%)
MCC 0.20 0.33 (⇑26.9%)

exhibits a consistent trend with IVDetect while outperforming it
by 78.1%. F-score is lower than in Table 2 due to unbalanced data.

8.2 Comparison on Vulnerability Assessment

on BigVul C Dataset (RQ2)

In Table 3, VDA relatively improves over DeepCVA [33] by 25.5% in

macro F-score and 26.9% inmulti-classMCC on the overall multi-class
classification. For individual VATs, VDA improves upon DeepCVA
by 7.5–34.7% in macro F-score and 8.3–40.9% in multi-class MCC.
We can see that VDA consistently outperforms DeepCVA on all
VAT types, thus corroborating with the design choices in Key Ideas
1–3 (see Section 2.2). Moreover, we can see that the largest relative
improvement in macro F-score and multi-class MCC happens for
Access Complexity and Access Vector, respectively. Such gains in
performance can possibly be attributed to the nature of Access VAT,
the access information for which, is more often than not, extensively
checked in the changed code context, which is well represented in
VDA but not in DeepCVA.

8.3 Class Separability with Code Change

Embeddings (RQ3)

In this study, we aim to show that our embeddings for code changes

helps VDA have better class-separation, i.e., better classification mea-

sures for detection and assessment than that of the baseline.
For each class𝐶 regarding a vulnerability assessment type (VAT),

we selected 366 commits that are labeled with the class 𝐶 in the
oracle. This was chosen based on the population of the data, such
that the sample size corresponded to a 95% confidence level, with
a confidence interval of 5% for each VAT. For example, for Con-
fidentiality, we randomly selected an equal number of commits
(i.e., 366), that are marked as None, Partial, and Complete. For each
type, we took those 366 × 3 = 1,098 commits and used VDA’s code

change representation learning model and DeepCVA’s 𝑛-gram-based

embedding model to produce the embeddings for those commits. We
projected the embeddings from these approaches into the vector
space using t-SNE [2] technique, based on which we can visualize

high-dimensional data by giving each data point its projected lo-
cation in a two-dimensional vector space. Next, in the silhouette
plots [1], we succinctly present the data points for these embed-
dings, which represent how well they have been classified.

Figure 6 shows the comparison between the silhouette plots for
the embeddings produced byVDA andDeepCVA regarding 3 classes
of Confidentiality. Figures 6a. and c. display the t-SNE visualizations
for the embeddings, while figures 6b. and d. display the silhouette
plots for the data in these visualizations. The silhouette coefficient
value (𝑋 -axis in Figures 6b., d., e.) is a measure of how similar an
object is to its own class compared to other classes, which ranges
from [-1, 1]. Here, a higher value indicates that an object is well
matched to its own class and poorly matched to neighboring classes.
If most objects have high values, the class configuration is proper.
That corresponds to better-formed classes, facilitating a model to
group the commits into the correct classes (i.e., None, Partial, and
Complete). If many points have low or negative values, the class
configuration is ill-formed, i.e. does not help with classification.

Let us consider the commits in the Complete class in Figures 6a.
and b. Each line in Complete class in Figure 6b. corresponds to a
point in Complete class in the vector space in Figure 6a. Length
of a line is equal to the silhouette coefficient for a point. These
lines are sorted from largest to smallest, and drawn from top to
bottom, creating a knife shape. As seen, the knife shapes from
DeepCVA have longer and thicker tails than those fromVDA, which
actually have no tail for the classes Partial andNone. Thus, DeepCVA
produces embeddings that overlap more with their neighboring
classes. In Figure 6e., we place two silhouette plots in an overlay
image. The plot from VDA is thicker than that from DeepCVA: VDA
produces more points with positive values than DeepCVA. In brief,
Figures 6a–e show that the embeddings for code changes from VDA

facilitates better classification for vulnerability assessment than the

embeddings produced by DeepCVA.
Figure 7 and Figure 8 show the comparison among the silhouette

plots for the embeddings from VDA and DeepCVA on Integrity

and Availability (remaining VAT types are not shown here due to
space limit). We can see that the comparisons for all VATs have
the same trend, i.e., the knife shapes from VDA have no or shorter
tails, and are thicker than those of DeepCVA. In brief, the silhou-
ette plots indicate that VDA produces embeddings that have more
cohesion with the ones in the same class and more separation with
the ones in the different classes. Thus, our embeddings with more

class-separability help VDA perform better classification.
We also performed the same plotting for the classification task

for vulnerability detection. Considering the overlap between two
plots in Figure 9, the knife shapes from VDA for both classes (vul-
nerability and benign) are wider and have less negative values than
those from the best baseline IVDetect. Specifically, the average sil-
houette score in VDA is 0.027, while that of IVDetect is 0.0072. Thus,
VDA has better class-separability, leading to better performance.

8.4 Key Features in Program Dependencies for

Classification with Explainable AI (RQ4)

We aim to evaluate whether VDA uses the vulnerable statements
and their dependencies in its vulnerability prediction and assess-
ment. This also allows us to evaluate its ability to pinpoint the
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Figure 6: Silhouette Plots for the Embeddings of Commits produced by VDA and DeepCVA on CONFIDENTIALITY (RQ3)

Figure 7: Silhouette Plots for the Embeddings of Commits produced by VDA and DeepCVA on INTEGRITY (RQ3)

Figure 8: Silhouette Plots for the Embeddings of Commits produced by VDA and DeepCVA on AVAILABLITY (RQ3)

Figure 9: Silhouette Plots for the Embeddings of Commits

produced by VDA and IVDetect for Vulnerability Detection:

VDA has better Class Separability (RQ3)

changed statements relevant to the detected vulnerability. Specifi-
cally, for each vulnerability assessment type (VAT), we randomly

selected 366 samples of the commits in our dataset that VDA pre-
dicts the correct classes of the vulnerability detection and VATs (e.g.,
None, Partial, Complete). That sample size gives us the confidence
level of 95% and the confidence interval of 5% for each VAT.

We use an explainable Artificial Intelligence (XAI) model, called
GNNExplainer [47], which takes a GNN-based classification model
M and a specific input 𝐼 ofM, and produces an explanation on why
M arrives at its prediction𝑂 for the input 𝐼 . We fed VDA and each
commit 𝐶 of those sample commits as the input for GNNExplainer.
The explanation produced by GNNExplainer is in the form of a
sub-graph Δ in 𝛿-PDG that was built from the input commit 𝐶 .
The sub-graph Δ is referred to as the explanation sub-graph for 𝐶
regarding the classification of𝐶 for the current assessment type. The
explanation sub-graph Δ is defined as the minimal sub-graph in the
input graph 𝛿-PDG that minimizes the prediction scores between
using the entire graph 𝛿-PDG and using Δ as the input for VDA. Δ
is minimal in the sense that if any node and edge is removed from
it, the decision of VDA is affected, i.e., VDA will produce a different
class for the input commit 𝐶 . That is, the explanation sub-graph Δ
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Table 4: Vunerable Statements/Dependencies as Key Features

Confidence Integrity Avail AccessVec AccCompl Auth Severity Avg

63 84 81 72 93 93 81 81.4
%Commits VDA correctly uses vulnerable statements/dependencies in

Vulnerability Detection and Assessment

1 private: Status DoCompute(OpKernelContext* ctx) { ...

2 + DatasetBase* finalized_dataset;

3 + TF_RETURN_IF_ERROR(FinalizeDataset(ctx, dataset, &finalized_dataset));

4 std::unique_ptr<IteratorBase> iterator;
5 - TF_RETURN_IF_ERROR(dataset->MakeIterator(&iter_ctx,/*parent=*/nullptr,.));

6 + TF_RETURN_IF_ERROR(finalized_dataset->MakeIterator(&iter_ctx,/*parent.);

7 std::vector<Tensor> components;
8 - components.reserve(dataset->output_dtypes().size());

9 + components.reserve(finalized_dataset->output_dtypes().size()); ...

10 }

Figure 10: Contributions of Different Statements in Correct

Vulnerability Prediction and Classification of VATs by VDA

contains the statements and dependencies that are most decisive for

VDA to determine the class 𝑂 for the commit 𝐶 .
To evaluate whether VDA via Label-GCN can capture the cru-

cial statements and dependencies in deciding the class for an in-
put commit, we compared the explanation sub-graph Δ with the
vulnerability-inducing statements and dependencies in the ground
truth of those commits. If Δ contains one of such statements (nodes)
and dependencies (edges), we consider that VDA uses the correct
vulnerable statements and dependencies as the features for its cor-
rect classification (detection and assessment).

Table 4 shows the percentages of the cases in which VDA cor-
rectly uses the vulnerable statements and their dependencies in
correctly predicting the VATs. For example, among the 366 commits
that VDA successfully classified into (None, Single) for Authenti-
cation, GNNExplainer determines that in 93% of them, VDA uses
at least one actual vulnerable statement or dependency as key
features in its prediction. As seen, the degree of VDA’s reliance
on vulnerable statements/dependencies for its assessment across
different types is different. While in 84%, VDA relies on vulnera-
ble statements/dependencies to assess the impact of Integrity; in
81% samples, it relies on them for assessing that of Severity. For
vulnerability detection, in 84% of samples, VDA uses the right state-
ments/dependencies in its correct prediction (not shown). On an
average, in 81.4% samples, VDA correctly relies on the vulnerable
statements/dependencies. In brief, this result shows that program
dependencies among vulnerable statements are key features to VDA in

its correct vulnerability detection and assessment, which corroborates
with our design choice with program dependencies.
Example. Figure 10 shows an example of the vulnerability-introduc-
ing change for CVE-2021-37650. The change introduced the variable
finalized_dataset at line 2, representing a dataset that was populated
at line 3 and used at lines 6 and 9. However, the input was not
validated, and the code at line 9 assumed only string inputs and
interpreted numbers as valid strings. When computing the CRC of
the record, this resulted in heap buffer overflow. VDA correctly pre-
dicted this vulnerability and its assessment Severity=Medium. GN-
NExplainer pointed out that VDA used the changed statements and
their dependencies at lines 2, 3, 6, 9 and another line (not shown), to

Table 5: Impact of Multi-Task Learning and Context (RQ5)

Detection VDA w/o Multi-Task VDA w/o Context VDA
F-score 0.68 0.70 0.76

Table 6: Impact of Multi-Task Learning and Context (RQ5)

Assessment VDA w/o Multi-Task VDA w/o Context VDA
F-score 0.54 0.57 0.64

Table 7: Impact of Num. of Hops 𝑘 for Context Size (RQ5)

macro F-Score MCC
VDA (𝑘 = 1) 0.62 0.32
VDA (𝑘 = 2) 0.63 0.33
VDA (𝑘 = 3) 0.64 0.33
VDA (𝑘 = 4) 0.62 0.31
VDA (𝑘 = 5) 0.61 0.30

perform classification. This is correct because despite line 9 being a
fixed line (in a later version), lines 2, 3, 6 are parts of the control/data
flows leading to line 9. Thus, VDA correctly used the vulnerability-
relevant statements and dependencies in correct prediction.

8.5 Ablation Study (RQ5)

As seen in Tables 5 and 6, without multi-task learning, the perfor-
mance decreases 10.5% in F-score in detection and 15.6% in macro
F-score in assessment. Without context, it decreases 7.9% in F-score
in detection and 10.9% in macro F-score in assessment. This result
confirms our hypotheses:

(1) Multi-task learning helps improve both vulnerability detec-
tion and assessment: adding multi-task learning, both VD and VA
improve (0.68 to 0.76, 0.54 to 0.64). Note: without multi-task learn-
ing, VDA also improves over the baselines (Tables 2– 3) in both VD
and VA due to VDA’s code change embeddings (Section 8.3).

(2) both multi-task learning and context have positive contribu-
tions, in which multi-task learning contributes more.

Multi-task learning model performs better than cascading VD to
VA, which has the cascading error due to false positives in VD.

Table 7 shows the impact of the context size 𝑘 (the number of
hops from a changed node). As seen, when 𝑘 increases from 1–3, the
macro F-score increases to its highest value of 0.64. However, when
𝑘 continues to increase 𝑘 ≥ 3, both macro F-score and multi-class
MCC decrease. The rationale is that as the context size is too small,
the limited number of surrounding nodes cannot capture well the
relevant statements for assessment. As the context size gets larger,
the increasing number of the irrelevant statements will bring in
biases. Thus, we selected 𝑘=3 in other studies on the C dataset.

8.6 Comparative Study on Java Dataset (RQ6)

We aim to show that our approach also works for vulnerabilities in
a different programming language. Table 8 shows that it relatively
improves DeepCVA [33] by 31.0% in macro F-score and 33.3% in

multi-class MCC on the overall multi-class classification in Java
dataset. For specific VATs, VDA improves DeepCVA by 3.0–25.6% in

macro-F-score and 30.8% in multi-class MCC. Moreover, the largest
relative improvement in macro F-score happens for Availability and
the largest one in multi-class MCC happens for Access Vector. The
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Table 8: Vulnerability Assessment on Java Dataset (RQ6)

CVSS Metric Evaluation Metric Model
DeepCVA [33] VDA

Confidentiality macro F-score 0.44 0.55
MCC 0.27 0.32

Integrity macro F-score 0.43 0.52
MCC 0.25 0.27

Availability macro F-score 0.43 0.54
MCC 0.27 0.27

Access Vector macro F-score 0.55 0.59
MCC 0.13 0.17

Access Complexity macro F-score 0.46 0.53
MCC 0.24 0.26

Authentication macro F-score 0.66 0.68
MCC 0.35 0.38

Severity macro F-score 0.42 0.51
MCC 0.21 0.22

Average macro F-score 0.45 0.59 (⇑31.0%)
MCC 0.24 0.32 (⇑33.3%)

Vulnerability Detection VCCFinder CAT
F-score 0.24 0.76

absolute macro F-score value (0.68) for Authentication is highest
among all the VATs. The F-score for detection from VDA is also
higher than that of the commit-level VCCFinder, which uses SVM.
Other baselines in Table 2 do not work on Java. In brief, this result
is consistent with the trend as VDA being run on the C dataset.

8.7 Threats to Validity and Limitations

The threats come from the following aspects: (1) Programming lan-

guages (PLs). Our approach has been tested on Java and C commits.
However, the techniques used in VDA are not tied to Java or C. In
principle, our approach can applied to other PLs. (2) Generalization
of the results.Our comparisons with DeepCVAwere only carried out
on the publicly available C and Java datasets. Further comparisons
with the baselines on other datasets should be done.

Our approach also has room for further improvements. First,
VDA does not work well for the code changes that are common
but have impacts on the far-apart, un-changed parts of the project.
Second, VDA fails in the assessment for complex changes that
program dependencies cannot capture, e.g., event-driven programs.
Finally, the detection component could be improved further with a
more dedicated model on vulnerability detection.

9 RELATEDWORK

ML-based Vulnerability Prediction. Machine Learning has been
applied in commit-level vulnerability detection [12, 38, 49]. VC-
CFinder [38] trains a SVM classifier to flag suspicious commits.
We used only code change features for our experiment. Zhou and
Sarma [49]’s works on commit messages and bug reports. It uses
an ensemble model to combine multiple classifiers. VDA supports
both vulnerability detection and assessment.

Deep learning (DL) has been applied to detect vulnerabilities [11,
22, 28–30, 35, 36, 42, 43, 45, 46, 48]. Harer et al. [21] leverages RNN
model. Lin et al. [32] learns function repreentations via AST for
VD. Russell et al. [41] combine the neural features of functions

with random forest as a classifier. Harer et al. [20] compare the
effectiveness in VD of using source code and the compiled code.
VulDeePecker [50] uses a RNN trained on program slices from
API calls for VD. SySeVR [31] expands VulDeePecker by including
the program slices from syntactic units. Devign [48] uses Gated
Graph Recurrent Layers on program graphs. Reveal [10] uses CPG
with GGNN. IVDetect [29] focuses on interpretation and directly
uses PDG with GCN. LineVul [17] use BigVul dataset to train a
transformer-based model which has over 150K training instances.
To avoid under-training of LineVul and an unfair comparison (given
that it has over 110M parameters), we chose to not compare with it.
Automated Vulnerability Assessment. Distinct software vul-
nerabilities can have different levels of threats and severity, and
require assessment [24, 27, 34]. The automated approaches have
been recently proposed [6, 8, 33]. Bozorgi et al. [8] propose a SVM-
based approach to predict whether a vulnerability will be exploited
or not. Lamkanfi et al. [26] predict the severity of a reported bug
using text mining algorithms on bug reports. Han et al. [19] propose
a multi-class text classification DL-based model that is based on
the description to predict the severity level of a vulnerability.

Georgios et al. [44] adopt a multi-target classification coupled
with text analysis on vulnerability descriptions to predict their char-
acteristics and scores. Le et al. [27] propose a ML-based approach
to learn the word features in vulnerability description, and handle
the extended concepts in the description. Other studies [39, 40]
leverage code patterns in fixing commits of third-party libraries to
assess vulnerabilities. In comparison, VDA supports commit-level
vulnerability detection and assessment using code changes.
Code Change Embeddings. Our work is also related to code
change embedding models [9, 23]. Those approaches mainly treat
code as sequences and do not consider structures and/or program
dependencies. The key departure points of VDA include the use of
graph representation to model the changes and dependencies, as
well as the surrounding context to build the embeddings.

10 CONCLUSION

This paper proposes VDA, a Context-aware, Graph-based, Commit-
level Vulnerability Detection and Assessment Model that evaluates
a commit, detects any vulnerability and provides the CVSS assess-
ment grades. The key advances inVDA over the existing approaches
include 1) multi-task learning between vulnerability detection and
assessments of different aspects, 2) code change embedding model
that integrates program dependencies and contexts, and 3) graph-
based representations of dependencies and contexts. Our evaluation
shows that on a C dataset, VDA achieves 25.5% and 26.9% relatively
higher than the baselines in vulnerability assessment in F-score and
MCC. In a Java dataset, VDA achieves 31% and 33.3% relatively
higher in F-score and MCC. VDA also relatively improves the vul-
nerability detection over the baselines from 13.4–322% in F-score.

11 DATA AVAILABILITY

Our data and code are available at [5].
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