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ABSTRACT

To avoid the exposure of original source code, the variable names de-
ployed in the wild are often replaced by short, meaningless names,
thus making the code difficult to understand and be analyzed. We
introduce DeMinify, a Deep-Learning (DL)-based approach that
formulates such recovery problem as the prediction of missing fea-
tures in a Graph Convolutional Network–Missing Features. The
graph represents both the relations among the variables and the
relations among their types, in which the names or types of some
nodes are missing. Moreover, DeMinify leverages dual-task learn-
ing to propagate the mutual impact between the learning of the
variable names and that of their types. We conducted experiments
to evaluate DeMinify in both name recovery and type prediction
on a Python dataset with 180k methods and a JavaScript (JS) dataset
with 322k files. For variable name prediction, in 76.7% and 81.6% of
the cases in Python and JS code respectively, DeMinify can predict
correctly the variables’ names with a single suggested name. DeM-
inify relatively improves 15.3%–40.7% and 7.7%–49.7% in top-1 ac-
curacy over the state-of-the-art variable name recovery approaches
for Python and JS code, respectively. It also relatively improves
14.5%–51.9% in top-1 accuracy over the existing type prediction
approaches. Our experimental results showed that learning of data
types helps improve variable name recovery and vice versa.
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1 INTRODUCTION

Code minification is the process in which source code is minified
such that the variable names are replaced with short, opaque, and
meaningless names. It is useful in software development as it could
improve rendering time due to payload size. E.g., inWeb technology,
AWS Cloudformation templates may have lambda function source
code in Python embedded in them, but only if the function is less
than 4KB. In other cases, it is a code protection scheme that slows
down those who have bad intentions since program is a valuable
asset to companies. Variable name minification hides the business
logics from the readers while maintaining the essence of the code.

For better code readability and understandability [2], especially
when the original source code is unavailable, there is a natural need
to automatically recover the minified code with meaningful variable
names. With the recovered names and types, the source code will
be accessible for code review, analysis, enhancement, reuse, etc.

Several automated approaches have been proposed to automat-
ically recover the names of the variables in the minified source
code. The approaches can be broadly classified into three directions:
information retrieval, statistical learning, and machine learning. JS-
Neat [35] follows an information retrieval (IR) approach to recover
names by searching for them in a large corpus of open-source JS
code. JSNeat integrates three types of contexts to match a variable
in given minified code against the corpus including 1) the proper-
ties and roles of the variable, 2) its relations with other variables
under recovery, and 3) the task of the function to which the variable
contributes. Despite its successes, due to the inherent limitation of
the information retrieval direction, JSNeat cannot generate a new
variable name that was not encountered in the corpus.

JSNice [32], following a statistical direction, is an automatic vari-
able name recovery approach that represents the program proper-
ties and relations among program entities in JavaScript (JS) code as
dependence graphs. JSNice [32] uses a probabilistic model with the
dependency network including variables and surrounding program
entities. It formulates the problem of variable name recovery as
the structured prediction via conditional random fields (CRFs) [32].
Unfortunately, it still has low accuracy. In contrast, JSNaughty [38]
formulates that problem as a statistical machine translation (SMT)
fromminified code to the recovered code. However, its phrase-based
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translation approach cannot capture well the relations among the
variables to be recovered, leading to low effectiveness.

In this work, we present DeMinify, a deep learning (DL)-based
variable name recovery and type inference approach. We address
both tasks as parts of the dual-task learning between a variable
name predictionmodel and a type predictionmodel.Correct learning
of one model can benefit for the learning of the other and vice versa
due to the naturalness of names in source code [15]. Except for
a few un-important variables (e.g., running variables in a loop
or temporary variables), the majority of the variables carry some
contextual meaning toward achieving the task intended in the
current function. The names chosen for such a variable in the original
code should be natural (unsurprising) with respect to its type. For
example, for easy comprehension, a variable of the type Offsetmight
have a name relevant to the notion of offset or its abbreviations,
e.g., startOffset, endOffset, etc. Similarly, if a model learns the name
of a variable, its type should be in accordance with the name. For
example, if a model recovers the name of a variable as count or
index, its type might likely be of int or Integer.

Exploring this duality can provide useful constraints to predict
both the variable names and their types. To build the variable name
prediction model and the type prediction model, we leverage Graph
Convolution Network - Missing Features (GCNmf) [34] to model
different kinds of relations/dependencies among the variables and
among the types. We formulate the name recovery problem as the
predicting the missing features in GCNmf. With the philosophy that
“Tell Me Your Friends, I’ll Tell You Who You Are”, DeMinify decides
a variable’s name by learning at once the names of the variables
connecting to one another. Our DL-based model is expected to have
better predictive power than CRF in JSNice and SMT in JSNaughty,
especially in predicting the missing features when considering
both relations among variables and types. To propagate the mutual
impact of type learning and name learning, we apply a dual-task
learning mechanism between the two models.

We have conducted experiments to evaluate DeMinify in both
name recovery and type prediction on a Python dataset with +180k
methods and a JavaScript (JS) dataset with 322k files. For variable
name prediction, in 76.7% and 81.6% of the cases in Python and JS
code respectively. DeMinify can predict correctly the variables’
names with a single suggested name. In 82% and 83.3% of the cases
in Python and JS code, the correct names of local variables are in
the top-5 candidate suggested lists. For Python code, DeMinify
relatively improves 40.7%, 28.7%, and 15.3% top-1 accuracy over
the state-of-the-art variable name recovery approaches JSNice [32],
JSNaughty [38], and JSNeat [35], respectively. For JS code, the rela-
tive improvements over those baselines are 49.7%, 36.9%, and 7.7%,
respectively. For variable type prediction in Python, in 79% of the
cases, DeMinify can predict correctly the types with a single pre-
dicted type. Top-5 accuracy for type prediction is 88%. It relatively
improves 14.5%–51.9% in top-1 accuracy and 22.2%–46.6% in top-
5 accuracy over the state-of-the-art type prediction approaches
HiTyper [25], Type4Py [21], Typilus [4], and TypeWriter [28].

In brief, the contributions of this paper includes:
1. DeMinify: a Deep Learning (DL)-based approach to recover

variable names with type inference for minified code in dual-task
learning. DeMinify’s type inference can be used for regular code.

2. An extensive evaluation and analysis on DeMinify’s accuracy.

1 def exportSelection(self, root, doc):
2 if not root:
3 return null
4 selection = doc.getSelection()
5 if selection.rangeCount > 0:
6 range_ = selection.getRangeAt(0)
7 preSelectionRange = range_.cloneRange()
8 preSelectionRange.selectNodeContents(root)
9 preSelectionRange.setEnd(range_.startContainer, range_.startOffset)
10 start = len(str(preSelectionRange))
11 selectionState = {
12 "start": start,
13 "end": start + len(str(range_))
14 }
15 if self.doesRangeStartWithImages(range_, doc):
16 selectionState.startsWithImage = true
17 trailingImageCount = self.getTrailingImageCount(root,

selectionState, range_.endContainer, range_.endOffset)
18 if trailingImageCount:
19 selectionState.trailingImageCount = trailingImageCount
20 if start != 0:
21 emptyBlocksIndex = self.getIndexRelativeToAdjacentEmptyBlocks(doc,

root, range_.startContainer, range_.startOffset)
22 if emptyBlocksIndex != -1:
23 selectionState.emptyBlocksIndex = emptyBlocksIndex
24 ...

Figure 1: An Original Code from a Project in GitHub

1 def exportSelection(self, w, b):
2 if not w:
3 return null
4 q = b.getSelection()
5 if q.rangeCount > 0:
6 r = q.getRangeAt(0)
7 d = r.cloneRange()
8 d.selectNodeContents(w)
9 d.setEnd(r.startContainer, r.startOffset)
10 m = len(str(d))
11 p = {
12 "start": m,
13 "end": m + len(str(r))
14 };
15 if self.doesRangeStartWithImages(r, b):
16 p.startsWithImage = true
17 a = self.getTrailingImageCount(w, p, r.endContainer, r.endOffset)
18 if a:
19 p.trailingImageCount = a
20 if m !== 0:
21 y = self.getIndexRelativeToAdjacentEmptyBlocks(b, w,

r.startContainer, r.startOffset)
22 if y != -1:
23 p.emptyBlocksIndex = y
24 ...

Figure 2: The Minified Code for the Code in Figure 1

3. A novel formulation of variable name recovery and type in-
ference in minified code as a missing-feature, graph-based neural
network in a dual-task learning framework to benefit both tasks.

2 MOTIVATING EXAMPLE

Let us start with a real-world example to motivate our approach.
Figures 1 and 2 show the original and minified versions of the
function exportSelection in Python. The function is aimed to ex-
port/retrieve the selection from a document. In the minified code,
all local variables were randomly renamed by a minification tool
with short and meaningless names, e.g.,root becomes w, doc becomes
b, etc. This makes the code difficult to comprehend.

We aim to recover the names of the variables in the minified code.
Such process is not trivial and affected by multiple factors. Let us
explain the following observations then to motivate our solution:

759



DeMinify: Neural Variable Name Recovery and Type Inference ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Observation 1. The mutual impact between variable name learning
and variable type learning. If a model learns correctly the type of a
variable, it would help learn better the name of the variable and vice
versa. Let us consider the name emptyBlocksIndex for the variable y

at line 22 in Figure 2: if y != -1:. From that comparison, a model
could learn that y is of the type int. Knowing that it is an integer, a
model could combine that with the knowledge learned from line 21
(y = self.getIndexRelativeToAdjacentEmptyBlocks(...)), and predict the
name for y could be “Index” or similar. On the other hand, correct
learning of a variable name can also benefit for learning of its type.
At line 17 of Figures 1–2, if the name trailingImageCount is recovered
for the variable a, its type is likely to be int if the model could make
sense of the sub-token count in that name trailingImageCount.

Key Idea 1. [Dual-task Learning between Name Prediction

and Type Prediction] While aiming to recover variable names
in minified code, we leverage the duality between the learning to
predict the variable names and the learning to predict the variable
types. In the original code, the name of a variable should be natural
(unsurprising) with respect to the type of that variable. We build a
name prediction model and a type prediction one, and we apply a
dual-task learning mechanism connecting the two models.
Observation 2. The name and type of a variable are affected by the
names and types of the surrounding variables in a function. Intuitively,
because multiple variables are used together to achieve the task
in the function, their names are often consistent with one another.
For example, at line 6, the choice of the name range_ in the recovery
process could be derived by the choice of the variable selection

and the call to getRangeAt as it is made on that variable as in the
statement range_ = selection.getRangeAt(0). The choice of the name
preSelectionRange could be affected by the choice of the variable
range_ due to the statement preSelectionRange = range_.cloneRange().
Moreover, the type system in a programming language always
requires the concordance between the types of variables.

Key Idea 2. [“Tell Me Your Friends, I’ll Tell YouWho YouAre”]
A variable name or type are influenced by the names or the properties
of the other variables having the relations with that variable in the
surrounding context. We treat the problem of variable name gener-
ation as predicting the missing features in a graph neural network
by leveraging Graph Convolutional Network - Missing Features
(GCNmf) [34]. We also use Edge-Enhanced Graph Convolutional
Network (EE-GCN) [9] to model different kinds of relations among
the variables and types in the function/method.

Observation 3. The actual variable name must also be in accordance
with the names of the accessed fields and called methods. For example,
in the original code in Figure 1, the variable name range_makes sense
in range_.startOffset and range_.endOffset because a range could have
a starting offset and an ending offset. The rationale is that in the
original code, for easy comprehension, developers tend to follow
naming conventions and use meaningful names with respect to the
surrounding variable names in the code. That is, the predicted name
of a variable and the names of its properties (fields and methods)
are in accordance. As an example, preSelectionRange and setEnd are
in accordance with each other in preSelectionRange.setEnd (“Setting
the end of the selected range”). In fact, Pradel et al. [29] explore
the concordance between the method’s name and the names of its
arguments to detect name-based bugs in a program.

Figure 3: Neural Variable Name Recovery and Type Inference

Observation 4. The fields and methods of a variable are kept intact
after minification. If the names of the fields and methods were mini-
fied, the corresponding field accesses and method calls would not
be valid anymore. For example, cloneRange() in range_.cloneRange() at
line 7 and startContainer in range_.startContainer at line 9 in Figure 1
are unchanged in Figure 2. Thus, a model can rely on the names of
those properties of a variable to predict the variable’s name.

Key Idea 3. [Properties of a Variable] The name of a variable is
in accordance with its own properties including the names of its fields
in field accesses and the names of its methods in the method calls on
that variable. Moreover, the names of fields and methods are kept
intact after minification, thus, a model can rely on those names
to predict the variables’ names. For example, a model can learn
from the variables that have the field accesses to startContainer, end-
Container, startOffset, and endOffset, and have the method calls to
cloneRange(). It can use that knowledge to predict the name range_.

In brief, to recover the name and type of a variable, a model
could examine the properties of the variable, its relations with other
variables and their properties, and the relations among their types.

3 APPROACH OVERVIEW

We propose DeMinify that accepts minified code and at the same
time, recovers the variable names and derives the types for vari-
ables/expressions. It also can take regular code and derive the types.
Figure 3 illustrates the overall process. The input is the minified
code with all the original variables’ names and types during train-
ing and without them during the prediction. The process contains
the following key steps. First, the minified code is parsed and two
feature graphs are extracted: 1) the Type Dependency Graph [25]
representing the relations among the types of the variables in a func-
tion/method according to type inference rules, and 2) the Relation
Graph [35] represent the relations among the variables including
the ones via field accesses and method calls (Section 4). The two
graphs can always be extracted for minified code in both training
or prediction. They will be merged into a representation graph.

We have two models dedicated to the two tasks: Variable Name
Generation (VNG) and Variable Type Generation (VTG). DeMinify
first extracts the features in a representation graph, and converts
them into the input vectors for the VNG and VTG models.

The VNG model processes them as follows. For the nodes that
represent the variables with the minified names, we mask the node
features and regard them as the missing features, and feed the
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Figure 4: Relation Graph for the Code in Figure 2

graph into a Graph Convolutional Network–Missing Features (GC-
Nmf) [34]. The actual variables’ names in the input minified code
are used as the labels during training. For name prediction, the
same process is used except that the variables’ names are predicted
by the trained VNGmodel. To generate names, we also use program
rules to ensure scoping, and valid and consistent names.

The VTG model leverages Edge-Enhanced Graph Convolutional
Network (EE-GCN) [9]with the support of an embeddingmodel [26]
as well as a Gate Recurrent Unit (GRU). The actual variables’ types
in the input minified code are used as the labels during training.
For prediction, the same process is used except that the types are
predicted using the trained model. To generate the types, we use
type inference rules to eliminate the impossible candidates.

To propagate the impact between VTG and VNG, we apply a
dual-task learning scheme between them. We use the uncertainty
weighted multi-task loss as the loss function and use the maximum
of the top-1 accuracy scores from two tasks as the training target.

For non-minified code, to infer the types, the representation
graph is extracted as explained, and then fed to DeMinify whose
VTG will produce the types for variables/expressions. The full
variable names will help VNG improve VTG’s type inference task.

4 IMPORTANT CONCEPTS

In this section, we present the important concepts used in DeMinify.
To identify the name of a variable, first, DeMinify examines its
own attributes and behaviors via field accesses and method calls,
then the relations of the variables to learn the concordance among
the variables’ names. At the same time, it examines the relations
among the types of the variables.

Definition 1. [Attributes and Behaviors] The fields andmeth-
ods of the object represented by a variable are referred to as the at-
tributes and behaviors, respectively. The names for those fields and
methods of a variable are intact after code minification.

In Figure 2, at lines 7–9, we explore the field accesses and method
calls of the variable r in the method calls and field accesses made
to r, e.g., r.cloneRange(), r.startOffset, and r.startContainer.

We denote an instance of field access and method call as a
triple (𝑣, 𝑝, 𝑡), where 𝑣 is the variable, 𝑝 is the name of the field
or method, and 𝑡 is either fieldAccess or methodCall. The examples
are (𝑟, 𝑐𝑙𝑜𝑛𝑒𝑅𝑎𝑛𝑔𝑒,𝑚𝑒𝑡ℎ𝑜𝑑𝐶𝑎𝑙𝑙) and (𝑟, 𝑠𝑡𝑎𝑟𝑡𝑂 𝑓 𝑓 𝑠𝑒𝑡, 𝑓 𝑖𝑒𝑙𝑑𝐴𝑐𝑐𝑒𝑠𝑠).

𝜃 ∈ 𝑇𝑦𝑝𝑒 (Θ) ::= 𝛾 | 𝛼 [𝜃, ..., 𝜃 ] | 𝑢 | None | type
𝛾 ∈ 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦𝑇 𝑦𝑝𝑒 (Γ) ::= int | float | str | bool | bytes

𝛼 ∈ 𝐺𝑒𝑛𝑒𝑟𝑖𝑐 𝑇 𝑦𝑝𝑒 (𝐴) ::= List | Tuple | Dict | Set |
Callable | Generator | Union

𝑏 ∈ 𝐵𝑢𝑖𝑙𝑡𝑖𝑛𝑇 𝑦𝑝𝑒 (𝐵) ::= 𝛾 | 𝛼 [𝜃 ]
𝑢 ∈ 𝑈𝑠𝑒𝑟 𝐷𝑒𝑓 𝑖𝑛𝑒𝑑 𝑇 𝑦𝑝𝑒 (𝑈 ) ::= 𝑎𝑙𝑙 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑎𝑛𝑑 𝑛𝑎𝑚𝑒𝑑 𝑡𝑢𝑝𝑙𝑒𝑠

𝑜 ∈ 𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑖𝑛𝑔𝑈𝑠𝑒𝑟 𝐷𝑒𝑓 𝑇 𝑦𝑝𝑒 (𝑂 ) ::= 𝑎𝑙𝑙 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑤𝑖𝑡ℎ 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟

𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑖𝑛 𝑐𝑜𝑑𝑒

Figure 5: Types in Python

Definition 2. [Argument Relation]A variable 𝑣 is said to have
an argument relation with a method𝑚 if it is used as an argument of
a call to that method as in 𝑜.𝑚(..., 𝑣, ...).

Definition 3. [Assignment Relation] A variable 𝑣 is said to
have an assignment relation with a method𝑚 or a field 𝑓 if it is used
as a left-hand side in an assignment from a method call or a field
access as in 𝑣 = 𝑜.𝑚(...), or 𝑣 = 𝑜.𝑓 .

The idea is that the name of the minified variable 𝑣 in the orig-
inal code is often in accordance with the names of the method
or the field in such an assignment or an argument. For example,
selectNodeContents and root are in accordance with each other in
preSelectionRange.selectNodeContents(root); or range_ and getRangeAt

are in accordance with each other in range_ = selection.getRangeAt(0).
Wewill use the triple notations (𝑣,𝑚, 𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡), (𝑣,𝑚, 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡),
and (𝑣, 𝑓 , 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡) to denote those three cases, where 𝑣 is a vari-
able,𝑚 is a method name, and 𝑓 is a field name.

Definition 4. [Relation Graph] [35] A relation graph (RG) is
a directed graph in which each node of the RG represents a variable.
The connected nodes represent the methods/fields in method calls or
field accesses, respectively, and are labeled with their names. Edges
represent relations among nodes and are labeled with relation types.

Figure 4 shows the relation graph for the variables in the code
in Figure 2. For example, there are an 𝑎𝑠𝑠𝑖𝑔𝑛 edge from the variable
r to the node getRangeAt, and a𝑚𝑒𝑡ℎ𝑜𝑑𝑐𝑎𝑙𝑙 edge from q to getRangeAt

because we have r = q.getRangeAt(0) at line 6.
Regarding type inference, Figure 5 shows the type system in

Python [25]. To represent the dependencies among the types, we
adopt Type Dependency Graph (TDG) [25], which aims to capture
the type inference rules for variables/expressions.

Definition 5. [Type Dependency Graph] [25] A Type Depen-
dency Graph is a graph 𝐺 = (𝑁, 𝐸) in which 𝑁 is the set of nodes
representing all the variables and expresions, and 𝐸 is the set of edges
from 𝑛𝑖 → 𝑛 𝑗 indicating that the type of 𝑛 𝑗 can be derived from the
type of 𝑛𝑖 by the type inference rules in the type system.

In Figure 2, let us consider line 4: q = b.getSelection(). The TDG
will contain a node for the expression b.getSelection() connecting
to a node for the variable q because its type can be derived from the
return type of the method call getSelection. We also have a node for
the variable b connecting to a node of the method getSelection since
the type of getSelection can be derived from that of variable b.

b.getSelection → q

b → getSelection

761



DeMinify: Neural Variable Name Recovery and Type Inference ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Figure 6: Type Dependency Graph for the Code in Figure 2

Connecting all the dependencies among the types of variables
and expressions, we have the type dependency graph for a func-
tion/method. Note that both RG and TDG can be built for either the
original or minified code. Themerging of RG and TDG is straightfor-
ward. The nodes of the same variables, method calls, field accesses
in two graphs are unified. The other nodes in two graphs are kept.
All edges are combined including the type-dependency edges.

Figure 6 displays the TDG for the running example. The type of
the variable𝑚 at line 10 (Figure 2) can be derived by the function
call len. The subscript is used to denote the same variable at different
locations. At line 11 (Figure 2), the type of the variable p is derived
from the type of the left-hand-side of line 11 (Dict). Thus, we have
an edge from Dict_write to p. Similarly, the type of the variable r at
line 6 can be derived from the call to getRangeAt. The types at line
13 and line 9 can be derived from the type at line 6.

5 VARIABLE NAME GENERATION MODEL

This section presents the Variable Name Generation Model (VNG).
During training, the input is the minified code with all the original
variables’ names and types, and during predicting, the input does
not have names and types. First, we build TDG and RG for the
given code. The two graphs are combined into a representation
graph 𝐺 . For each node in 𝐺 , we tokenize the names in the corre-
sponding code sequence of the node. We consider each of them as
a sentence and use an embedding model (e.g., GloVe [26]) to build
the representation vector for each node in 𝐺 .

Next, for training, we process the graph𝐺 with the node vectors
as follows. For the node 𝑛 that represents a variable with minified
name, we perform masking the node feature with a special mask
token for the variable name and consider it as a missing feature. In
the VNG model, we leverage an advanced neural network called
Graph Convolutional Network–Missing Features (GCNmf) [34].
The actual names are used as the ground truth labels to train the
GCNmf model. The key characteristic of GCNmf is its ability to
deal with incomplete and missing features in a GCN. It represents
the missing data by Gaussian Mixture Model (GMM) and calculates
the expected activation of neurons in the first hidden layer of GCN,
while keeping the other GCN layers unchanged. The GMM param-
eters and GCNmf weight parameters are learned within the same

architecture, enabling the learning of missing features. The GCNmf
model is trained with the masks for the minified variable names.
For prediction, applying on the minified code (without names), the
GCNmf model outputs the vectors for the nodes in the graph𝐺 and
the vectors for the missing features.

The vectors representing the missing features, i.e., the missing
variables’ names in the input graph𝐺 are used next. We leverage an
Gate Recurrent Unit (GRU) as a decoder. The decoder accepts those
vectors for missing names as input and generates the names for the
variable nodes (During training, the name labels are known and
used). Finally, we apply the semantic checkers to make sure that
the variables’ names are valid in the scope and the same variable is
assigned with a consistent name.

Let us use Figure 4 to illustrate the benefit of modeling the vari-
able name generation/recovery problem as predicting the missing
features using GCNmf [34]. A variable with a minified name is mod-
eled as a nodel in our graph, e.g., 𝑟 , 𝑞, and 𝑑 . The prior works based
on machine translation (e.g., JSNaughty [38]) aiming to translate
the minified code to the orginal code, face an issue of different nam-
ing schemes used by different minification tools. For example, the
variable range might become 𝑟1, instead of 𝑟 , by a different minifica-
tion tool or by alpha-renaming. In DeMinify, the minified names
themselves do not play a crucial role in deciding the original names
as in prior work. They help mainly in recognizing the occurrences
of the same variable. In our graph 𝐺 , DeMinify considers a node
for a minified variable as a placeholder with a missing feature that
it aims to fill in. In prediction, GCNmf will create the vectors 𝑣𝑟 , 𝑣𝑞 ,
and 𝑣𝑑 for the nodes. During the convolution process, those vectors
are automatically updated based on the neighboring node features
and the relations. After convolution, the final vectors will be fed
into the GRU decoder for variable name prediction.

Next, let us present the variable type generation model, and then
the dual-task learning scheme between VNG and VTG models.

6 VARIABLE TYPE GENERATION MODEL

This section presents the Variable Type Generation Model (VTG).
The input is the minified code with all the original variables’ names
and types during training, and without the types during prediction.
Similar to VNG model, the combined graph𝐺 is processed in which
the names in the code sequence of each node 𝑛 is tokenized and an
embedding model is applied to build the vector for 𝑛 considering
each sequence of sub-tokens for 𝑛 as a sentence.

Next, we feed the graph𝐺 with those vectors to Edge-Enhanced
Graph Convolutional Network (EE-GCN) [9]. EE-GCN could accept
both node and edge features. We use the above vectors as node
features, and the edge types in the graph 𝐺 (built from TDG and
RG) as the edge features. The rationale for choosing EE-GCN is
its capability producing the embeddings emphasizing on the edges
in 𝐺 , which represent the relations/dependencies among the data
types. A key characteristic of EE-GCN is that it has an edge-aware
node updatemodule and a node-aware edge updatemodule, and two
modules work in a mutual way by updating each other iteratively.
Specifically, “for each layer, the edge-aware node update module
is first performed for aggregating information from neighbors of
each node through specific edges. Then, a node-aware edge update
module is used to dynamically refine the edge representation with
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Figure 7: Variables Name Generation Model (VNG)

Figure 8: Variable Type Generation Model (VTG)

its connected node representations, making the edge representation
more informative” [9]. The output of the EE-GCN model includes
the list of the representation vectors 𝑉𝑛 for all the nodes in 𝐺 .

To further propagate the impact from variable name learning to
type learning, we combine the above vectors 𝑉𝑛 with the vectors
obtained from the GCNmf in the Variable Name Generation model.
Specifically, we use the cross-product between the two vectors to
produce the final vectors𝑉𝑓 for the type prediction for all the nodes.
Next, we leverage a Gate Recurrent Unit (GRU) as a decoder, which
accepts the vectors𝑉𝑓 s as input and generates the type for the node.
(During training, the type labels are used). DeMinify handles the
primitive and non-primitive types in the same way as the decoder
generates them as texts for the type names. Finally, we also apply
the rule-based filter, which performs type-checking to eliminate
the candidates that violate the type inference rules. In the current
implementation, we used a small subset of the static type inference
rules for Python [18]. For example, we check the types of the left-
hand-side and the right-hand-side of an assignment, the type of the
condition in an if statement, the type of a comparison operation,
the simple sub-typing rules for primitive types and for lists, tuples,
and dictionaries, etc. The final result contains the types for all the
nodes including the the nodes for the variables.

7 DUAL-TASK LEARNING FOR VNG AND VTG

In DeMinify, to propagate the mutual learning between variable
name learning and variable type learning, we leverage a dual-task
learning framework to train both VNG and VTG models together.
As for these two tasks, DeMinify regards them as the regression
problem and multi-task loss [8] to learn both of them at the same
time. Specifically, for each regression, DeMinify uses a smooth L1
loss function to estimate the accuracy of output as follows:

𝐿 = {𝑙1, 𝑙2, ..., 𝑙𝑛}𝑇 (1)

𝑙𝑛 =

{
0.5(𝑓 (𝑥)𝑛 − 𝑦𝑛)2 |𝑓 (𝑥)𝑛 − 𝑦𝑛 | < 1
|𝑓 (𝑥)𝑛 − 𝑦𝑛 | − 0.5 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2)

Where 𝑓 (𝑥)𝑛 is the output for a variable 𝑛 in a regression task 𝑓 ; 𝑦𝑛
is the ground truth. To get the joint loss function for the dual-task
learning with uncertainty weighting, following Kendall et al.’s [8],
we have:

𝐿𝑖 (𝑊 ) = {𝑙𝑊1 , 𝑙𝑊2 , ..., 𝑙𝑊𝑛 }𝑇 (3)

𝑙𝑊𝑛 =

{
0.5(𝑓 (𝑥)𝑊𝑛 − 𝑦𝑛)2 |𝑓 (𝑥)𝑊𝑛 − 𝑦𝑛 | < 1
|𝑓 (𝑥)𝑊𝑛 − 𝑦𝑛 | − 0.5 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4)

𝐿(𝑊,𝜎1, 𝜎2) =
∑︁
𝑖

1
2𝜎2

𝑖

𝐿𝑖 (𝑊 ) + 𝑙𝑜𝑔𝜎2𝑖 (5)

Where𝑊 is the weight adding to the input, 𝜎𝑖 is the 𝑖𝑡ℎ noise scalar,
and𝑊 and 𝜎𝑖 are both trainable parameters in the model.

By combining all the loss functions into one as in Formula 5,
DeMinify trains the variable name model and the type prediction
model together. We choose the smallest loss results to get the most
suitable model parameters for DeMinify.

8 EMPIRICAL EVALUATION

8.1 Research Questions and Datasets

To evaluate DeMinify, we seek to answer the following questions:
RQ1. Comparative Study on Variable Name Prediction. How
well does DeMinify perform in comparison with the state-of-the-
art variable name prediction approaches on the Python dataset?
RQ2. Comparative Study on Variable Name Prediction. How
well does DeMinify perform in comparison with the state-of-the-
art variable name prediction approaches on the JavaScript dataset?
RQ3. Comparative Study on Variable Type Prediction. How
well does DeMinify perform in comparison with the state-of-the-
art variable type prediction approaches on the Python dataset?
RQ4. Ablation Study.How do the key features in DeMinify affect
its overall performance?

Dataset. We have conducted our experiments to evaluate DeMinify
on the well-established Python dataset, ManyTypes4Py provided
in the work by Mir et al. [20]. The dataset includes +180k methods
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from 4,000 Python projects with 37,408 different variable types. We
applied Pyminifier [30], a minification tool for Python to minify
the variable names in the source files. We also used a dataset in
JavaScript (JS) provided in a prior work, JSNeat [35]. The JS dataset
includes +320k methods from 20,000 projects with 176k unique vari-
able names. We minified them with the minifying tool UglifyJS [37].

8.2 Experimental Methodology

8.2.1 Comparison on Variable Name Prediction in Python (RQ1).
Baselines. We compared DeMinify against the state-of-the-art vari-
able name recovery approaches for minified code including JS-
Neat [35], JSNice [32], and JSNaughty [38].

Procedure. We took all the methods in the Python dataset and
used Pyminifier to produce the minified code with variable name
mininification. We randomly split all the methods into 80%, 10%,
10% in which 80% of the methods as the training dataset, 10% of
the methods as the tuning dataset, and 10% of the methods as the
testing dataset for all the baselines and DeMinify.

Parameter Tuning. We tuned DeMinify with autoML [1] for the
following key hyper-parameters to have the best performance: (1)
Epoch size (100, 150, 200); (2) Batch size (64, 128, 256); (3) Learning
rate (0.001, 0.005, 0.010); (4) Vector length of feature embeddings
and its output (32, 64, 128); (5) Number of GCN layers (4, 8, 16).

8.2.2 Comparison on Variable Name Prediction in JS (RQ2). We
build the JS representation graph and use the same model.

Baselines.We compared DeMinify against the state-of-the-art
approaches JSNeat [35], JSNice [32], and JSNaughty [38].

Procedure and Tuning. We used UglifyJS for code minification in
the JS dataset. We used the same splitting and tuning as in RQ1.

8.2.3 Comparison on Variable Type Prediction (RQ3). Baselines: we
compared DeMinify against the state-of-the-art variable type pre-
diction approaches: Ivanov et al. [16], Typilus [4], TypeWriter[28],
Type4Py [21], and HiTyper [25].

We did not compare our approach with Xu et al. [40], Deep-
Typer [14], NL2Type [19], LAMBDANET [39], OptTyper [24], and
TypeBERT [17], because in its paper, Type4Py has been shown to
perform better than those tools. We did not compare on JS code
because JS variables must not always have type declarations.

Procedure. With all variable type information summarized in the
ManyTypes4Py dataset, we directly used the types for the variables
as the ground truth for all the approaches. We used the same data
splitting for training, tuning, and testing as in RQ1. We ran the
baselines on the original source code with the parameters in their
documentation. We fed to DeMinify the minified code but with the
original names and no types (i.e., the original code), and obtained
the resulting types from the variable type generation (VTG) model
for all the variables/expressions in the code.

Parameter Tuning. Tuning was done via autoML [1] as in RQ1.

8.2.4 Ablation Study (RQ4). We built several variants of DeMinify
to evaluate different factors in its components by measuring their
accuracies and making comparisons. First, we evaluated our hy-
pothesis that mutual impact exists between name learning and type
learning via dual-task learning. We built two variants VNG and
VTG separately without connecting them via dual-task learning.
Second, the graph representation for source code is important in the

Figure 9: Top-1 Accuracy on Name Prediction (Python) (RQ1)

name and type prediction. Thus, we kept the same architecture for
DeMinify and fed to it different graph representations for source
code. This allows us to evaluate the impact of our chosen graph rep-
resentations for this problem. Third, the key technical solution in
DeMinify is the formulation in which predicting names and types
for variables is considered as predicting the missing features of con-
nected program elements. We currently used the EE-GCN model to
capture the relations and dependencies among program elements.
We replaced it with the Label-GCN [6] and made a comparison.

Evaluation Metrics. For the variable name prediction, we follow a
prior work [35] to calculate the prediction accuracy on local vari-
ables and all variables. We compared the resulting names from a
tool against the original names. A tool is considered to correctly
recover the name of a variable 𝑣 if the recovered name is matched
exactly with its original name. For 𝑣 , if matching, we count it as
a hit, otherwise, it is a miss. Accuracy is measured by the ratio
between the total number of hits over the total number of cases.
Top-𝑘 accuracy is measured similarly, however, a hit is achieved
when the correct name is in the top-𝑘 candidate list from a tool.

For the variable type prediction, we use two metrics, Exact-Match
and Parametric-Match with the top-𝑘 accuracy as in HiTyper [25].
Exact-Match occurs when the resulting type matches exactly with
the human-annotations. Parametric-Match occurs if the result matches
with the correct type but those of the parameters might not. For
example, Dict[int,str] is parametric-matched with Dict[int,int].

9 EXPERIMENTAL RESULTS

9.1 Comparison on Name Prediction (RQ1)

As seen in Figure 9, for all variables in minified Python code, DeM-
inify achieves high top-1 accuracy of 76.7%: i.e., in 76.7% of the
cases, it can recover the correct variable names with a single predic-
tion. The relative improvements in top-1 accuracy for all variables
over JSNice, JSNaughty, and JSNeat are 40.7%, 28.7%, and 15.3%,
respectively. The absolute improvements in top-1 accuracy over
those state-of-the-art approaches are from 10.2%–22.2%.

Considering only local variables, in 67.5% of them, DeMinify
correctly predicts their original names with a single result. The rel-
ative improvements in top-1 accuracy in recovering local variables’
names over JSNice, JSNaughty, and JSNeat are 62.2%, 39.8%, and
15.9%, respectively. The absolute improvements in top-1 accuracy
over those state-of-the-art approaches are from 9.3%–25.9%.
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Table 1: Comparison on Variable Name Prediction (RQ1)

Top-1 Top-3 Top-5
Local All Local All Local All

JSNice [32] 41.2 54.1 52.2 63.0 59.5 67.8
JSNaughty [38] 48.1 59.2 59.8 69.7 66.3 75.0
JSNeat [35] 58.2 66.5 65.3 75.4 71.6 80.1
DeMinify 67.5 76.7 75.4 84.3 82.1 90.2

As seen in Table 1, the result is also consistent for top-3 and
top-5 accuracies for DeMinify. The relative improvements are with
same trends in comparison with the baselines.

We examined the predicted names from all the baselines. Com-
pared to JSNeat, an information retrieval approach, we found that
it often failed in the following cases. (1) It has not seen the names
before in the database. DeMinify can generate a new name with its
decoder. Due to its explicitly setting of similarity thresholds, JSNeat
faces two other issues. (2) The correct name was not returned since
the relations and contexts are not similar enough with pre-defined
thresholds. (3) If two variables in the same function are assigned
with the same name via the similarity measure, JSNeat cannot de-
cide one, turning to a random selection. Avoiding feature matching
and explicit similarity threshold, DeMinify with its neural network
can implicitly do so without any pre-defined threshold.

Compared to JSNaughty [38] with statistical machine translation
from minified code to original code, we found that it relies much
on the minified names in minified code. We examine the phrase
mapping table, a byproduct of their machine translation model,
which contains the knowledge it learned from training. We reported
that JSNaughty learns inconsistent mappings between the minified
names and original ones. That is, there are several mappings for
the same minified names with different weights depending on their
occurrences in the corpus. For example, b ↔ doc, b ↔ book, etc. In
contrast, DeMinify does not rely on the minified names themselves,
by modeling them as the nodes with missing features (i.e., missing
names and types) in the graph-based GCNmf model [34].

DeMinify is similar in spirit to JSNice [32] in which both formu-
lates the problem as predicting the features/attributes of the nodes
in a graph. The Conditional Random Field in JSNice uses proba-
bilistic name prediction graph. In comparison, DeMinify leverages
more advanced neural network in GCNmf [34] as well as a more
specialized graph with the help of the type prediction model.

9.2 Comparison on Name Prediction in JS (RQ2)

As seen in Figure 10, for all variables in minified JS code, DeMi-
nify achieves high top-1 accuracy of 81.6%: i.e., in 4 out 5 cases,
it can recover the correct variable names with a single prediction.
The relative improvements in top-1 accuracy for all variables over
JSNice, JSNaughty, and JSNeat are 49.7%, 36.9%, and 7.7%, respec-
tively. The absolute improvements in top-1 accuracy over those
state-of-the-art approaches are from 5.8%–27.1%.

Considering only local variables, in 76.8% of them, DeMinify
correctly predicts their original names with a single result. The rel-
ative improvements in top-1 accuracy in recovering local variables’
names over JSNice, JSNaughty, and JSNeat are 84.6%, 59.0%, and
11.1%, respectively. As seen in Table 2, the comparison result is
also consistent for top-1, top-3, and top-5 accuracies.

Figure 10: Top-1 Accuracy on Name Prediction in JS (RQ2)

Table 2: Comparison on Name Prediction in JS (RQ2)

Top-1 Top-3 Top-5
Local All Local All Local All

JSNice [32] 41.6 54.5 56.4 68.2 64.2 72.4
JSNaughty [38] 48.3 59.6 64.1 74.5 71.8 79.6
JSNeat [35] 69.1 75.8 69.6 79.5 76.9 86.0
DeMinify 76.8 81.6 76.2 85.6 83.3 91.8

As seen in Figures 9 and 10, DeMinify improves over the base-
lines in both languages. However, its relative improvement over
the top baseline, JSNeat [35], for Python is higher than that for JS.
The reason is that JS is a weakly typed language. In JS code, the
types of variables do not need to be specified, and can be changed
(that is, type information is not always available). DeMinify is less
effective in those cases, while JSNeat [35], an IR approach, is still
effective since the variable names might be seen in the JS dataset.

9.3 Comparison on Type Prediction (RQ3)

While we focus on variable name prediction, the result of variable
type prediction is also useful since the types in the minified code
are exactly the same for the original code. In this study, we evalu-
ate DeMinify’s accuracy and compare it with the state-of-the-art
approaches in variable type prediction. As seen in Figure 11, for all
variables, DeMinify achieves high top-1 accuracy of 79% for exact-
matches of the types and 89% for the parametric matches. That is,
in 79% of the cases, it can recover the correct variable types with a
single prediction. The relative improvements in top-1 accuracy in
exact-matching over Ivanov et al. [16], TypeWriter[28], Typilus [4],
Type4Py [21], and HiTyper [25] are 51.9%, 43.6%, 33.8%, 27.4%, and
14.5%, respectively. The absolute improvements in top-1 accuracy
over those type prediction approaches are from 10%–27%.

Regarding the parametric matches (disregarding the types of
the parameters), DeMinify achieves higher top-1 accuracy. In 89%
of the cases, it can recover the correct variable types (regardless
of parameters’ types) with a single prediction. The relative im-
provements in top-1 accuracy in parametric-matching over Ivanov
et al. [16], TypeWriter [28], Typilus [4], Type4Py [21], and Hi-
Typer [25] are 53.4%, 45.9%, 34.8%, 34.8%, and 15.5%, respectively.
The absolute improvements in top-1 accuracy with parametric
matching over those state-of-the-art approaches are from 12%–31%.

Moreover, DeMinify also achieves high top-𝑘 (𝑘=3,5) accura-
cies: as seen in Table 3, in 88% of the variables, the correct types
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Figure 11: Top-1 Accuracy on Type Prediction (RQ3)

Table 3: Comparison on Type Prediction (RQ3)

Top-1 Top-3 Top-5
EM PM EM PM EM PM

Ivanov et al. [16] 52 58 55 63 60 67
TypeWriter [28] 55 61 59 66 62 70

Typilus [4] 59 66 63 71 64 73
Type4Py [21] 62 66 66 72 67 73
HiTyper [25] 69 77 72 81 72 82
DeMinify 79 89 87 90 88 94

EM: Exact Match, PM: Parametric Match

of the variables are in the list of five candidate types. The rela-
tive improvements in top-5 accuracy in parametric-matching over
Ivanov et al. [16], TypeWriter[28], Typilus [4], Type4Py [21], and
HiTyper [25] are 46.6%, 42%, 37.5%, 31.3%, and 22.2%, respectively.

We examined the cases that DeMinify predicted correctly and
the baselines missed. Compared with HiTyper [25], HiTyper did not
perform well for the isolated groups of a couple variables. That is,
the groups are isolated, i.e., not type-dependent to other variables
and HiTyper did not correctly detect any of those variable types. In
those cases, DeMinify could rely on the concordance between the
names and types of a variable. For example, the type of a variable
named index or count will likely be int.

Type4Py [21] uses a hierarchical neural network model to learn
to distinguish between similar/dissimilar types in a vector space.
The candidate types are predicted via nearest neighbor search. In
contrast, DeMinify also encodes the information on variable names
into the embeddings in the high-dimensional space via two mecha-
nisms: dual-task learning and cross-product of vectors. Thus, DeMi-
nify could perform better in the cases in which the embeddings for
types are not sufficiently distinguishable from one another, which
poses challenges for Type4Py. Regarding the used neural networks,
it uses Recurrent Neural Network (RNN) operating on the code
token embeddings built from the AST. In contrast, we use GCNmf
that captures better the dependencies with different types of edges.

Compared to Typilus [4], DeMinify relatively improves 31.6%
in top-1 accuracy. Similar to Type4Py, Typilus builds a vector space
for type embeddings. It uses a graph neural network to learn to map
variables, parameters, and function returns to a type embedding
space using deep similarity learning. For type inference, using the
type map, it accepts unannotated code, computes type embeddings
with the trained GNN and finds the concrete 𝑘 nearest neighboring

Figure 12: Dual-Task Learning on Name Prediction (RQ4)

Figure 13: Dual-Task Learning on Type Prediction (RQ4)

types as the candidates. There are two key limitations in Typilus
that DeMinify overcomes. First, their graph representation does
not directly encode the type dependencies. It encodes among the
code tokens the next-lexical-token relation, structural/syntactical
relations, and data dependencies. Second, it does not have the as-
sistance of the learning of variable names via dual-task learning as
explained in the comparative analysis with HiTyper.

TypeWriter [28] builds token embeddings and uses two RNNs
for identifiers and for code to merge them to form type vectors. It
then uses feedback-directed search on the results from a static type
checker to search for consistent types. The key limitation is that
the type dependencies are not encoded during the learning. Instead,
TypeWriter leverages an external static type checker and relies
on the feedback-directed searching for the right types. If the RNN
models do not produce the right types at the first place, searching
via a static type checker will not result in any better output.

For Ivanov et al. [16], DeMinify has the same advantages as the
comparison to the above approaches with graph embeddings.

9.4 Ablation Study (RQ4)

9.4.1 Impact of Dual-Task Learning. Figure 12 shows the Top-1 ac-
curacy in variable name prediction when we removed the dual-task
learning scheme and measured only the accuracy of the variable
name generation (VNG) model. As seen, without the impact from
variable type generation (VTG) via dual-task learning, VNG still
performs better than the best baseline, JSNeat (69.4% versus 66.5%).
The drop in Top-1 accuracy from DeMinify is 10.5% (from 76.7%
down to 69.4%). Similarly, as seen in Figure 13, without the impact
from VNG due to the removal of the dual-task learning scheme,
VTG performs slightly worse than the best baseline HiTyper. The
drop in Top-1 accuracy from DeMinify is 14.4%. These results in-
dicate the positive contribution to DeMinify from the dual-task
learning for the mutual impact of VNG and VTG (Key Idea 1).

9.4.2 Impact of Different Types of Program Graphs. As in any ap-
proach, code representation is important and affects the perfor-
mance. In this study, we kept the same neural network architecture,
however, we changed different input graphs extracted from source
code. In addition to the graphs used in DeMinify (Relation Graph
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Figure 14: Impact of Input Graphs on Name Prediction (RQ4)

CPG: Code Property Graph, TDG: Type Dependency Graph,
RG:Relation Graph.

Figure 15: Impact of Input Graphs on Type Prediction (RQ4)

Table 4: Impact of EE-GCN on Top-1 Accuracy (RQ4)

Accuracy (%) Name Prediction Type Prediction
Label-GCN+GCNmf 68.5 71.1
EE-GCN+GCNmf (DeMinify) 76.7 79

Label-GCN: Label Graph Convolutional Network,
EE-GCN: Edge-Enhanced Graph Convolutional Network,
GCNmf: Graph Convolutional Network - Missing Features

(RG), Type Dependency Graph (TDG)), we experimented with code
property graph (CPG) [41] since it has been used in several machine
learning approaches for code [41]. We did not experiment with pro-
gram dependence graph (PDG) because it works at the statement
level, which does not help with variable name prediction.

As seen in Figure 14 and Figure 15, for variable name prediction,
RG helps the model more than TDG and for variable type prediction,
TDG helps the model more than RG. This is expected because
each of them is designed toward capturing the key features for
its problem. For the dual tasks, the combined graph (RG+TDG) in
DeMinify yields the highest accuracies in both name prediction
and type prediction. In contrast, CPG capturing the dependencies
among program elements are not specifically designed for handling
variable names and types, thus, did not yield high accuracy as TDG,
RG, and CG. An interesting observation is that CPG, which contains
lexical, syntax, and dependency information, did not help the model
as much as others. It seems that CPG contains too much irrelevant
information for variable name and type prediction.

9.4.3 Impact of Graph Models. Table 4 shows the accuracy of the
variant model as we replaced the graph neural network EE-GCN
with the Label Graph Convolutional Network (Label-GCN) [6]. We
did not replace GCNmf because it is the core component in our so-
lution, which formulates the name/type recovery as the prediction
of missing features. As seen, Edge-Enhanced GCN helps improve

accuracy more than Label-GCN. EE-GCN enables the modeling of
different types of relations because it handles different edge types
in different channels, while Label-GCN just integrates the edge in-
formation as simple labels. This is crucial for our problem in which
the type dependencies and the variable relations are well captured.

9.5 Limitations, Examples, Threats to Validity

9.5.1 Limitations. First, DeMinify does not predict names well for
the original code with the short andmeaningless names, e.g., i, j, etc.
In this case, the variable type could not help because the name and
type are not in accordance. The relations among the variables in the
context do not help either because there does not exist the natural-
language semantic connections among their names. The following
example shows such a case: the variable r at line 2 was minified into
e at line 6. DeMinify failed this case and JSNeat predicted correctly
as it has seen the code with the same names.

1 if (word.indexOf( 'G') === 0 || word.indexOf( 'M') === 0) {
2 r = _find (SMOOTHIE_MODAL_GROUPS, (group) => {
3 return _includes (group.modes, word); ...
4 // Minified code
5 if (s . indexOf("G")===0|| s . indexOf("M")===0){
6 e =_find(SMOOTHIE_MODAL_GROUPS,t=>{
7 return _includes ( t .modes,s) ; ...

Second, DeMinify does not produce well long variable names with
several sub-tokens. In the next example, the variable resetDocument-

PropertyIsSet (line 2) wasminified into t (line 6). DeMinify predicted
an incorrect name resetDocumentOwnProperty with its current decoder.
A solution could be to replace the GRU decoder with a better model
that can predict the length of the name and the name itself.

1 function shouldResetDoc(config) {
2 var resetDocumentPropertyIsSet = config .hasOwnProperty(" ... " ) ;
3 return config . resetDocument || ! resetDocumentPropertyIsSet; ...
4 // Minified code
5 function shouldResetDoc(e) {
6 var t = e .hasOwnProperty(" ... " ) ;
7 return e . resetDocument || ! t ; ...

Third, for the type prediction, DeMinify works not so well for the
user-defined types with long names. Fourth, in some cases, generic
types (e.g., String) did not help learn variable names.

Finally, we currently implemented DeMinify for two languages:
Python and JS. However, the approach is general for any language
with a weak/strong type system in which it works better for a
strong one. To expand for a new such language, one just needs to
have a parser and a representation graph building module for that
language. The graphs will be fed to the same architecture model.
9.5.2 Examples. Figure 16 shows an example of correct predictions
from DeMinify. At line 16 (minified code), our model can derive
the type bool for p due to the if statement. At line 15, p has a relation
via an assignment with check_request_limit(), then our model can
produce the name is_limited (instead of limit) for p. At line 14, the
variable q has a relation with extract_ip_from, DeMinify can use the
name relevant to ip for q, e.g., client_ip.

At line 18 with a minus operation, DeMinify can derive the type
of the variable m as int. It also has a relation with BirdNameDatabase.-

objects.count(), thus, our model can derive the name count for m.
At line 20, n is used as the index of an array type. Moreover, at

line 19, our model can derive its type of int due to the relation
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1 def get(self, request):
2 client_ip = self.extract_ip_from(request)
3 is_limited = self.check_request_limit(client_ip)
4 if is_limited:
5 return Response({}, status=rest_framework.status.HTTP_403_FORBIDDEN)
6 count = BirdNameDatabase.objects.count() - 1
7 index = randint(0, count)
8 bn = BirdNameDatabase.objects.all()[index]
9 serialized = BirdNameSerializer(bn, many=False)

10 self.save_general_statistics(client_ip, bn)
11 return Response(serialized.data)
12 // Minified code
13 def get(self, r):
14 q = self.extract_ip_from(r)
15 p = self.check_request_limit(q)
16 if p:
17 return Response({}, status=rest_framework.status.HTTP_403_FORBIDDEN)
18 m = BirdNameDatabase.objects.count() - 1
19 n = randint(0, m)
20 t = BirdNameDatabase.objects.all()[n]
21 s = BirdNameSerializer(t, many=False)
22 self.save_general_statistics(q, t)
23 return Response(s.data)

Figure 16: A Correct Prediction Example by DeMinify

1 def post(self, event: Subscribable) -> None:
2 event_class = type(event)
3 if event_class not in self._listeners:
4 return
5 for listener in self._listeners[event_class]:
6 listener(event)
7 // Minified code
8 def post(self, B:Subscribable)->None:
9 C=type(B)

10 if C not in self._listeners:
11 return
12 for D in self._listeners[C]:
13 D(B)

Figure 17: Another Correct Prediction Example by DeMinify

with randInt(). Thus, our model can assign the name index for n.
Moreover, due to the not-so-much-meaningful name bn at line 8,
our model did not produce the name for t at line 20.

Figure 17 shows another example in the project EventBus in our
dataset. At line 12, our model can recognize the variable D used
in a for loop with an array of listeners, thus, can assign for D the
name listener. From line 8, our model can learn that B is of the type
Subcribable and at line 13 and it knows that B is related to D (listener).
Thus, from Subcribable and listener, it could derive the name for B

as event. At line 9, if our model can learn that type is to return the
class for B, it can assign event_class for C due to the assignment.
9.5.3 Threats to Validity. We evaluated in one dataset, which might
not be representative. However, the dataset has been verified and
used in prior work. DeMinify currently works for Python and JS.
Other programming languages could be supported as explained
above. Because some of the baselines for variable name recovery
were designed for JS, we re-implemented for Python based on their
source code and documentation. We kept all the parameters in their
tools as in their documentation or original source code.

10 RELATEDWORK

Variable Name Recovery approaches. The approaches follow
the three categories: information retrieval (IR), statistical learning,
and machine learning (ML). JSNeat [35] follows an IR approach to
search for the names in large code corpus, but is not effective for
un-seen names. JSNice [32] infers the variable names via structured

prediction with conditional random fields (CRFs) [32]. We showed
that deriving missing features via a neural network yields higher ac-
curacy than predicting program properties with statistical learning.
DeMinify is computationally heavier than those approaches.

JSNaughty [38] uses a statistical machine translation from the
minified code to recovered code. First, it faces the issue of relying
on minified names as explained. Second, it uses a phrase-based
translation model, which enforces a strict order between the re-
covered variable names in a function. The other methods for code
deobfuscation mainly leverage static/dynamic analyses [7, 22, 36].
ML-based Type Inference approaches. HiTyper [25] is a hybrid
approach between static inference and deep learning. It uses TDG
to encode type inference rules to conduct type rejection to inspect
the output predictions. It iteratively conducts static inference and
DL-based prediction until the TDG is fully inferred. As shown,
DeMinify also improves over HiTyper due to the propagation of
VNG to VTG. Type4Py [21] is a deep similarity learning-based hi-
erarchical neural network model. It learns to discriminate between
similar and dissimilar types in a high-dimensional space. DeMinify
avoids finding similar types via embeddings. Typilus [4] proposes
TypeSpace containing the embeddings with type properties of a
symbol. TypeWriter [28] learns to infer the return and argument
types for functions from partially annotated code bases by com-
bining the natural language properties of code with programming
languages. DeMinify does not use natural-language properties.
Ivanov et al. [16] show that graph-based embeddings could improve
type prediction. We use GCNmf to predict the missing features.

Statistical NLP approaches have been used for name and code
style suggestions [2, 3]. Other applications include code sugges-
tion [15, 23], code convention [2], name suggestion [3], API sugges-
tions [33], codemining [5], type resolution [27], patternmining [11],
code generation e.g., SWIM [31], DeepAPI [12], Anycode [13].

11 CONCLUSION

We introduce DeMinify, a Deep-Learning (DL)-based approach that
formulates name recovery problem as the predicting themissing fea-
tures in Graph Convolution Network-Missing Features. The learn-
ing of types and names are mutual to support both tasks of name
and type recovery. The graph represents both the relations among
the variables and those among their types. DeMinify also leverages
dual-task learning to propagate the mutual impact between the
learning of the variable names and that of their types. Our empiri-
cal evaluation on real-world data shows that DeMinify relatively
improves from 15.3–40.7% in top-1 accuracy over the existing vari-
able name recovery approaches. It relatively improves 14.5%–51.9%
in top-1 accuracy over the existing type prediction approaches. We
plan to explore the GCN-Missing Features in other problems in
traditional languages, e.g., Java in which the attributes of a node
could possess the domain logic, or other properties, e.g., values.

12 DATA AVAILABILITY

Data and code is available in a website [10].

ACKNOWLEDGMENTS

This work was supported in part by the US NSF grant CNS-2120386
and the NSA grant NCAE-C-002-2021.

768



ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Yi Li, Aashish Yadavally, Jiaxing Zhang, Shaohua Wang, and Tien N. Nguyen

REFERENCES

[1] 2021. The NNI autoML tool. https://github.com/microsoft/nni
[2] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles Sutton. 2014. Learn-

ing Natural Coding Conventions. In Proceedings of the 22nd ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering (Hong Kong, China)
(FSE 2014). Association for Computing Machinery, New York, NY, USA, 281–293.
https://doi.org/10.1145/2635868.2635883

[3] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles Sutton. 2015. Sug-
gesting Accurate Method and Class Names. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering (Bergamo, Italy) (ES-
EC/FSE 2015). Association for Computing Machinery, New York, NY, USA, 38–49.
https://doi.org/10.1145/2786805.2786849

[4] Miltiadis Allamanis, Earl T. Barr, Soline Ducousso, and Zheng Gao. 2020. Typ-
ilus: Neural Type Hints. In Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI 2020). Association for
Computing Machinery, New York, NY, USA, 91–105. https://doi.org/10.1145/
3385412.3385997

[5] Miltiadis Allamanis and Charles Sutton. 2013. Mining Source Code Repositories
at Massive Scale Using Language Modeling. In Proceedings of the 10th Working
Conference on Mining Software Repositories (San Francisco, CA, USA) (MSR ’13).
IEEE Press, 207–216.

[6] Claudio Bellei, Hussain Alattas, and Nesrine Kaaniche. 2021. Label-GCN: An
EffectiveMethod for Adding Label Propagation to GraphConvolutional Networks.
CoRR abs/2104.02153 (2021). arXiv:2104.02153 https://arxiv.org/abs/2104.02153

[7] Mihai Christodorescu and Somesh Jha. 2003. Static Analysis of Executables to
Detect Malicious Patterns. In Proceedings of the 12th Conference on USENIX Secu-
rity Symposium - Volume 12 (Washington, DC) (SSYM’03). USENIX Association,
12–12. http://dl.acm.org/citation.cfm?id=1251353.1251365

[8] R. Cipolla, Y. Gal, and A. Kendall. 2018. Multi-task Learning Using Uncertainty
to Weigh Losses for Scene Geometry and Semantics. In 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society, Los
Alamitos, CA, USA, 7482–7491. https://doi.org/10.1109/CVPR.2018.00781

[9] Shiyao Cui, Bowen Yu, Tingwen Liu, Zhenyu Zhang, Xuebin Wang, and Jinqiao
Shi. 2020. Edge-Enhanced Graph Convolution Networks for Event Detection with
Syntactic Relation. In Findings of the Association for Computational Linguistics:
EMNLP 2020. Association for Computational Linguistics, Online, 2329–2339.
https://doi.org/10.18653/v1/2020.findings-emnlp.211

[10] DeMinify [n. d.]. DeMinify. https://github.com/variable-name-type-
prediction/variable-name-type-prediction/.

[11] Jaroslav M. Fowkes and Charles A. Sutton. 2015. Parameter-Free Probabilistic
API Mining at GitHub Scale. CoRR abs/1512.05558 (2015). http://arxiv.org/abs/
1512.05558

[12] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2016. Deep
API Learning. In Proceedings of the 2016 24th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering (Seattle, WA, USA) (FSE 2016).
Association for Computing Machinery, New York, NY, USA, 631–642. https:
//doi.org/10.1145/2950290.2950334

[13] Tihomir Gvero and Viktor Kuncak. 2015. Synthesizing Java Expressions from
Free-Form Queries. In Proceedings of the 2015 ACM SIGPLAN International Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications
(Pittsburgh, PA, USA) (OOPSLA 2015). Association for Computing Machinery,
New York, NY, USA, 416–432. https://doi.org/10.1145/2814270.2814295

[14] Vincent J. Hellendoorn, Christian Bird, Earl T. Barr, and Miltiadis Allamanis.
2018. Deep Learning Type Inference. In Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (Lake Buena Vista, FL, USA) (ESEC/FSE
2018). Association for Computing Machinery, New York, NY, USA, 152–162.
https://doi.org/10.1145/3236024.3236051

[15] Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu.
2012. On the Naturalness of Software. In Proceedings of the 34th International
Conference on Software Engineering (Zurich, Switzerland) (ICSE ’12). IEEE Press,
837–847.

[16] Vladimir Ivanov, Vitaly Romanov, and Giancarlo Succi. 2021. Predicting Type
Annotations for Python using Embeddings from Graph Neural Networks. In
Proceedings of the 23rd International Conference on Enterprise Information Sys-
tems - Volume 1: ICEIS,. INSTICC, SciTePress, 548–556. https://doi.org/10.5220/
0010500305480556

[17] Kevin Jesse, Premkumar T. Devanbu, and Toufique Ahmed. 2021. Learning
Type Annotation: Is Big Data Enough?. In Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (Athens, Greece) (ESEC/FSE 2021). Asso-
ciation for Computing Machinery, New York, NY, USA, 1483–1486. https:
//doi.org/10.1145/3468264.3473135

[18] Eva Maia, Nelma Moreira, and Rogerio Reis. 2011. A Static Type Inference for
Python. In DYLA 2011.

[19] Rabee Sohail Malik, Jibesh Patra, and Michael Pradel. 2019. NL2Type: Inferring
JavaScript Function Types from Natural Language Information. In Proceedings
of the 41st International Conference on Software Engineering (Montreal, Quebec,

Canada) (ICSE ’19). IEEE Press, 304–315. https://doi.org/10.1109/ICSE.2019.00045
[20] Amir M. Mir, E. Latoskinas, and G. Gousios. 2021. ManyTypes4Py: A Benchmark

Python Dataset for Machine Learning-Based Type Inference. In IEEE/ACM 18th
International Conference on Mining Software Repositories (MSR). IEEE Computer
Society, 585–589. https://doi.org/10.1109/MSR52588.2021.00079

[21] Amir M. Mir, Evaldas Latoškinas, Sebastian Proksch, and Georgios Gousios. 2022.
Type4Py: Practical Deep Similarity Learning-Based Type Inference for Python.
In Proceedings of the 44th International Conference on Software Engineering (ICSE
’22). Association for Computing Machinery, New York, NY, USA, 2241–2252.
https://doi.org/10.1145/3510003.3510124

[22] Andreas Moser, Christopher Kruegel, and Engin Kirda. 2007. Exploring Multiple
Execution Paths for Malware Analysis. In Proceedings of the 2007 IEEE Symposium
on Security and Privacy (SP ’07). IEEE Computer Society, 231–245.

[23] Lili Mou, Ge Li, Zhi Jin, Lu Zhang, and Tao Wang. 2014. TBCNN: A Tree-Based
Convolutional Neural Network for Programming Language Processing. CoRR
abs/1409.5718 (2014). http://arxiv.org/abs/1409.5718

[24] Irene Vlassi Pandi, Earl T. Barr, Andrew D. Gordon, and Charles Sutton. 2020.
OptTyper: Probabilistic Type Inference by Optimising Logical and Natural Con-
straints. CoRR abs/2004.00348 (2020). arXiv:2004.00348 https://arxiv.org/abs/
2004.00348

[25] Yun Peng, Cuiyun Gao, Zongjie Li, Bowei Gao, David Lo, Qirun Zhang, and
Michael Lyu. 2022. Static Inference Meets Deep Learning: A Hybrid Type
Inference Approach for Python. In Proceedings of the 44th International Con-
ference on Software Engineering (Pittsburgh, Pennsylvania) (ICSE ’22). Asso-
ciation for Computing Machinery, New York, NY, USA, 2019–2030. https:
//doi.org/10.1145/3510003.3510038

[26] Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove:
Global vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP). 1532–1543.

[27] Hung Phan, Hoan Anh Nguyen, Ngoc M. Tran, Linh H. Truong, Anh Tuan
Nguyen, and Tien N. Nguyen. 2018. Statistical Learning of API Fully Qualified
Names in Code Snippets of Online Forums. In Proceedings of the 40th International
Conference on Software Engineering (Gothenburg, Sweden) (ICSE ’18). Association
for Computing Machinery, New York, NY, USA, 632–642. https://doi.org/10.
1145/3180155.3180230

[28] Michael Pradel, Georgios Gousios, Jason Liu, and Satish Chandra. 2020. Type-
Writer: Neural Type Prediction with Search-Based Validation. In Proceedings
of the 28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE 2020).
Association for Computing Machinery, New York, NY, USA, 209–220. https:
//doi.org/10.1145/3368089.3409715

[29] Michael Pradel and Koushik Sen. 2018. DeepBugs: A Learning Approach to
Name-Based Bug Detection. Proc. ACM Program. Lang. 2, OOPSLA, Article 147
(oct 2018), 25 pages. https://doi.org/10.1145/3276517

[30] pyminifier [n. d.]. pyminifier. https://github.com/liftoff/pyminifier.
[31] Mukund Raghothaman, Yi Wei, and Youssef Hamadi. 2016. SWIM: Synthesizing

What I Mean - Code Search and Idiomatic Snippet Synthesis. In 2016 IEEE/ACM
38th International Conference on Software Engineering (ICSE). 357–367. https:
//doi.org/10.1145/2884781.2884808

[32] Veselin Raychev, Martin Vechev, and Andreas Krause. 2015. Predicting Program
Properties from "Big Code". In Proceedings of the 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (Mumbai, India)
(POPL ’15). Association for Computing Machinery, New York, NY, USA, 111–124.
https://doi.org/10.1145/2676726.2677009

[33] Veselin Raychev, Martin Vechev, and Eran Yahav. 2014. Code Completion with
Statistical Language Models. In Proceedings of the 35th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (Edinburgh, United
Kingdom) (PLDI ’14). Association for Computing Machinery, New York, NY, USA,
419–428. https://doi.org/10.1145/2594291.2594321

[34] Hibiki Taguchi, Xin Liu, and Tsuyoshi Murata. 2021. Graph convolutional net-
works for graphs containing missing features. Future Generation Computer
Systems 117 (04 2021), 155–168. https://doi.org/10.1016/j.future.2020.11.016

[35] Hieu Tran, Ngoc Tran, Son Nguyen, Hoan Nguyen, and Tien N. Nguyen. 2019.
Recovering Variable Names forMinified Codewith Usage Contexts. In Proceedings
of the 41st International Conference on Software Engineering (Montreal, Quebec,
Canada) (ICSE ’19). IEEE Press, 1165–1175. https://doi.org/10.1109/ICSE.2019.
00119

[36] Sharath K. Udupa, Saumya K. Debray, and Matias Madou. 2005. Deobfusca-
tion: Reverse engineering obfuscated code. In Proceedings of the 12th Working
Conference on Reverse Engineering (WCRE’05). IEEE Computer Society, 45–54.

[37] Uglify [n. d.]. Uglify. https://github.com/mishoo/UglifyJS.
[38] Bogdan Vasilescu, Casey Casalnuovo, and Premkumar Devanbu. 2017. Recovering

Clear, Natural Identifiers from Obfuscated JS Names. In Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering (Paderborn, Germany)
(ESEC/FSE 2017). Association for Computing Machinery, New York, NY, USA,
683–693. https://doi.org/10.1145/3106237.3106289

[39] Jiayi Wei, Maruth Goyal, Greg Durrett, and Isil Dillig. 2020. LambdaNet: Proba-
bilistic Type Inference using Graph Neural Networks. In International Conference

769

https://github.com/microsoft/nni
https://doi.org/10.1145/2635868.2635883
https://doi.org/10.1145/2786805.2786849
https://doi.org/10.1145/3385412.3385997
https://doi.org/10.1145/3385412.3385997
https://arxiv.org/abs/2104.02153
https://arxiv.org/abs/2104.02153
http://dl.acm.org/citation.cfm?id=1251353.1251365
https://doi.org/10.1109/CVPR.2018.00781
https://doi.org/10.18653/v1/2020.findings-emnlp.211
http://arxiv.org/abs/1512.05558
http://arxiv.org/abs/1512.05558
https://doi.org/10.1145/2950290.2950334
https://doi.org/10.1145/2950290.2950334
https://doi.org/10.1145/2814270.2814295
https://doi.org/10.1145/3236024.3236051
https://doi.org/10.5220/0010500305480556
https://doi.org/10.5220/0010500305480556
https://doi.org/10.1145/3468264.3473135
https://doi.org/10.1145/3468264.3473135
https://doi.org/10.1109/ICSE.2019.00045
https://doi.org/10.1109/MSR52588.2021.00079
https://doi.org/10.1145/3510003.3510124
http://arxiv.org/abs/1409.5718
https://arxiv.org/abs/2004.00348
https://arxiv.org/abs/2004.00348
https://arxiv.org/abs/2004.00348
https://doi.org/10.1145/3510003.3510038
https://doi.org/10.1145/3510003.3510038
https://doi.org/10.1145/3180155.3180230
https://doi.org/10.1145/3180155.3180230
https://doi.org/10.1145/3368089.3409715
https://doi.org/10.1145/3368089.3409715
https://doi.org/10.1145/3276517
https://doi.org/10.1145/2884781.2884808
https://doi.org/10.1145/2884781.2884808
https://doi.org/10.1145/2676726.2677009
https://doi.org/10.1145/2594291.2594321
https://doi.org/10.1016/j.future.2020.11.016
https://doi.org/10.1109/ICSE.2019.00119
https://doi.org/10.1109/ICSE.2019.00119
https://doi.org/10.1145/3106237.3106289


DeMinify: Neural Variable Name Recovery and Type Inference ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

on Learning Representations. https://openreview.net/forum?id=Hkx6hANtwH
[40] Zhaogui Xu, Xiangyu Zhang, Lin Chen, Kexin Pei, and Baowen Xu. 2016. Python

Probabilistic Type Inference with Natural Language Support. In Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (Seattle, WA, USA) (FSE 2016). Association for Computing Machinery,
New York, NY, USA, 607–618. https://doi.org/10.1145/2950290.2950343

[41] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. 2014. Modeling and
Discovering Vulnerabilities with Code Property Graphs. In 2014 IEEE Symposium
on Security and Privacy. 590–604. https://doi.org/10.1109/SP.2014.44

Received 2023-02-02; accepted 2023-07-27

770

https://openreview.net/forum?id=Hkx6hANtwH
https://doi.org/10.1145/2950290.2950343
https://doi.org/10.1109/SP.2014.44

	Abstract
	1 Introduction
	2 Motivating Example
	3 Approach Overview
	4 Important Concepts
	5 Variable Name Generation Model
	6 Variable Type Generation Model
	7 Dual-Task Learning for VNG and VTG
	8 Empirical Evaluation
	8.1 Research Questions and Datasets
	8.2 Experimental Methodology

	9 Experimental Results
	9.1 Comparison on Name Prediction (RQ1)
	9.2 Comparison on Name Prediction in JS (RQ2)
	9.3 Comparison on Type Prediction (RQ3)
	9.4 Ablation Study (RQ4)
	9.5 Limitations, Examples, Threats to Validity

	10 Related Work
	11 Conclusion
	12 Data Availability
	References

