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ABSTRACT

Code completion is an important feature in an IDE to improve de-
velopers’ productivity. Existing code completion approaches focus
on completing the current code token, next token or statement, or
code pattern. We propose AstCC, a code completion approach to
suggest the next syntactic unit via an AST-based statistical language
model. AstCC learns from a large code corpus to derive the next
AST subtree representing a syntactic unit, and then fills in the tem-
plate with the concrete variables from the current program scope.
Our empirical evaluation shows that AstCC can correctly suggest
the next syntactic unit in 33% of the cases, and in 62% of the cases,
it correctly suggests within five candidates. We will also explain
the potential applications of AstCC in automated program repair,
automated test case generation, and syntactic pattern mining.
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1 INTRODUCTION

A code completion (CC) tool in an integrated development environ-
ment (IDE) (e.g., Eclipse [8], IntelliJ IDEA [9]) helps users speed up
the coding task by filling the desired code and reducing common
mistakes. Code completion is the third most useful feature in an IDE
(behind editing and compiling) [12]. Basic CC helps users complete
the names of classes, methods, fields, and keywords within the
visibility scope [9]. If CC is applied to a part of a field, parameter,
or variable declaration, the tool suggests a list of possible names
according to the entity’s type. Advanced CC tools [9] support the
completion in common program constructs, the right part of as-
signments, variable initializers, arguments of a method call, etc.
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A code completion engine, as regarded as general code synthe-
sis, is actually useful in the other tasks, e.g., automated program
repair [11], test generation in automated testing [16], code synthe-
sis [5, 17], etc. A key common requirement for CC in those tasks is
the ability to synthesize any syntactic unit at any location. However,
the majority of the CC approaches support next-token completion,
and very few of them support next-statement completion [15].

Those CC services are built mainly using program analysis (PA)
on the currently edited code in the IDE. The issue with PA-based CC
approaches is that there is a large amount of possibilities with equal
likelihoods of code candidates that can be filled in at the cursor.
For example, after len =, the valid next-token candidates include a
limited set of code tokens. However, there is potentially an infinite
number of valid statements at that point. Moreover, PA cannot rank
the candidates based on their occurrence likelihoods.

To address those issues, several code mining and information
retrieval CC approaches have been proposed [1, 14, 18]. The idea is
that the CC tool could suggest and rank higher the more frequent
code. However, the tokens to be filled for the current code might
not be as frequent, leading to ineffectiveness of those approaches.
Moreover, code is repetitive as single tokens; while as entire state-
ments, it is quite specific for projects [19]. Thus, searching/mining
for a similar code to be filled is not effective across projects.

Deep learning (DL) and natural language processing (NLP) have
enabled several approaches for code completion using statistical
language models (LM) and DL models, which capture the regularity
of source code [3, 4, 7, 10, 15]. However, these approaches do not
explicitly account for the syntactic correctness of generated code.
Moreover, Chen et al. [2] qualitatively investigate Codex for varied
levels of abstraction to find that it can recommend syntactically in-
correct or undefined code; and can invoke functions, variables, and
attributes that are undefined or outside the scope of the codebase.

2 COMPLETING NEXT SYNTACTIC UNIT

We propose AstCC that supports the suggestion of the next syntac-
tic unit. The most likely syntactic template is first suggested and
then filled with the proper program elements in the current scope.
AstCC engine is general to work for both interaction within an
IDE or a setting of code synthesis at the current location.

AstCC focuses on next syntactic unit CC that (1) has not been
investigated much in the literature, and (2) can be used to improve
the existing techniques in code completion and other applications.

Let us start with an example (Figure 1). A user is currently editing
a while loop in which (s)he would like to iterate over all the text
lines in a file. AstCC will suggest the addition of the if statement
with a condition expression and a break statement. The reason is
that it has often encountered the templates where some condition
is evaluated inside a while loop. If the condition is satisfied, the
execution will break out of the loop. Our model learns from a large
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Figure 1 Suggesting a Valid Syntactic Unit
1    ...
2   while (textFile.hasNextLine()) 
3   {
4       String line; 
5   }

1    ...
2   while (textFile.hasNextLine()) 
3   {
4       String line; 
5       if (CondExpr) break;
6   }
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code corpus such common syntactic structure, i.e., a while loop with
an if-break. Let us call it a syntactic template. AstCC will concretize
the template to complete that syntactic unit.

To realize AstCC, we follow the direction of an AST-based sta-
tistical language model (LM). There are two key departure points
in AstCC in comparison with existing CC approaches.

1) We do not predict the next token based on the sequence of pre-
vious tokens in the current code. Instead, we leverage AstLan [13],
an AST-based LM that predicts the next “expansion” of the current
AST subtree based on the surrounding code structure.

2) Instead of verifying the syntactic correctness of candidate code
after generating them, we integrate such verification into the process
of learning the expansion from a smaller AST subtree to a larger
one (Section 4). With this integration strategy, our model learns
the valid expansions, i.e., syntactically correct code, thus, ensuring
that the suggested next syntactic units will be valid. The choice
of using statistical LM (rather than Deep Learning) makes AstCC
more light-weight and facilitates the above integration. Except a
few high-computational models [2–4], most DL-based CC models
focus on next-token [10] or next-statement [15] completion.

3 ASTLAN: AST-BASED LANGUAGE MODEL

Ancestor-Descendant AST relation. The key idea is that the next
syntactic unit is the addition of some AST subtree to the current AST.
As shown in Figure 1, the newly suggested syntactic unit (i.e., the
if statement with break) is the extension/addition to the current
AST on the left. Therefore, AstLan models the expansion from a
smaller AST to a large one, instead of expansion from a smaller
sequence to a large one as in a sequence-based language model
(e.g., 𝑛-gram). The relation between a smaller AST and the larger
one with additional nodes is called ancestor-descendant relation.

Definition 1 (Ancestor-Descendant ASTs [13]). An AST 𝐶

is a descendant of AST 𝑃 (𝑃 is a ancestor of 𝐶) if
1) 𝐶 is formed by adding a minimal (sub)tree 𝑇 to a node in 𝑃 ; and
2) 𝑃 and 𝐶 are syntactically valid.

A minimal𝑇 is defined as the subtree such that if any node in𝑇 is
removed,𝐶 will become syntactically incorrect. The first condition is
aimed to produce the next smallest, valid AST template of a certain
syntactic type. This is enabled via the descendant AST 𝐶 in the
Ancestor-Descendant relation, such that the descendant must not

contain another valid syntactic type that is larger than the ancestor
AST 𝑃 , and smaller than the descendant AST 𝐶 . This can only be
achieved by ensuring that the subtree 𝑇 that is to be added to 𝑃 is
minimal/irreducible among the subtrees with the same syntactic
type. The IfStatement subtree added as a child node of BlockStatement

in Figure 1 (highlighted in yellow), is the smallest IfStatement subtree
that produces a syntactically valid tree. The second condition ensures
the validity of the suggested code. In Figure 1, the suggested subtree
at the IfStatement is syntactically valid. Any added smaller subtree,
such as IfStatement → Cond, would produce invalid syntactic code
(missing the True part).

To enhance the capability of applying the template learned from
one place to another, we alpha-rename the variables and keep only
the token type and the data type for each AST node corresponding
to an identifier. This allows for bound variable names to be changed.
For a local variable node in a subtree or a label in a switch statement,
its label is the name of that variable (via alpha-renaming within
the subtree), concatenated with its type [13]. In Figure 1, textFile
becomes VAR1_Scanner, and line becomes VAR2_String. A literal becomes
a label ‘LIT’with its type attached at the end. The special values such
as empty string, zero, and null are abstracted with special string
tokens, indicating special situations, e.g., nullity checking.

4 ASTCC: NEXT SYNTACTIC UNIT

SYNTHESIS

Step 1. Training for AstLan. The first important step is to train
the model by mining all the pairs of ancestor-descendant ASTs
from a corpus of syntactically correct programs. Because AstLan
is a general language model, it does not consider the syntactic
correctness of the generated code. Thus, to ensure that correctness,
in AstCC, we modify the training process in AstLan as follows.

Given a method, we build its AST. We traverse the AST from the
top and identify the pairs of ancestor and corresponding descendent
ASTs. When encountering an ancestor tree, we expand to visit a
descendant tree according to the rules in Table 1.

First, our algorithm aims to find one or more valid AST subtrees
as initial ancestor AST(s). Depending on the type of the current
AST node 𝑛, AstCC expands the current subtree to include one of
its children nodes to form with 𝑛, a syntactically correct tree. Let
us take an example of the rule for IfStatement. There are three valid
expansions: 1) connecting if to E and S1 (i.e., the true branch), and 2)
connecting if to E and both branches S1 and S2. We cannot connect if
to only the S2 branch because it would create an invalid code. The
presence of the true branch is necessary. After an expansion, we
consider one of the children nodes and repeat the same expansion
with those rules until it hits a leaf node. At an expansion step, for
a possibility, after traversing to 𝑐’s children, if the resulting AST
fragment formed by the tree expanding to 𝑐 , 𝑐 itself, and 𝑐’s children,
is valid, we will consider it as a descendant tree. For example, in
Figure 1, we have two initial ancestor ASTs: 1) the left subtree at
While (𝑃1), and 2) left subtree at While and BlockStatement (𝑃2).

Let us detail the process of expansion via the edges coming out
of the initial ancestor tree 𝑃 . Let us use 𝑛𝑖 to denote the node at
the end of an outgoing edge from the ancestor tree 𝑃 . For example,
BlockStatement is such a node for 𝑃1 and VariableDeclaration is such a
node for 𝑃2. To find a descendant tree of the ancestor tree, we
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Table 1: Examples of Expansion Rules [13]

Syntax Valid Expansion

If ::= if E S1 S2 If→ E, S1
If→ E, S1, S2

While ::= while E Stmt While→ E
While→ E, Stmt

For ::= for Init E Update For→ Init, E, Update
Stmt For→ Init, E, Update, Stmt
Switch ::= switch E Case∗ Switch→ E
Def Switch→ E, F with F ∈ all Case combinations

Switch→ E, Def
Switch→ E, F, Def with F ∈ all Case combs

Case ::= case E: Stmt Case→ E
Case→ E, Stmt

InfixOp ::= E1 Op E2 InfixOp→ E1, E2
EnhancedFor ::= VarDec, Ref, Stmt ForEach→ VarDec, Ref

ForEach→ VarDec, Ref, Stmt
Do ::= Stmt, Cond Do→ Stmt, Cond
Try ::= try Block {Catches Try→ Block, all combinations of Catches

| Finally} Try→ Block, Finally
Try→ Block , all comb. of Catches, Finally

Conditional ::= E1 ? E2 : E3 Conditional→ E1, E2, E3
Synchronized ::= Exp, Stmt Synchronized→ Exp, Stmt
Labeled ::= Lit, Stmt Labeled→ Lit, Stmt
Variable Dec. ::= TypeRef, VarSpec VarDec→ TypeRef, VarSpec
Variable Spec. ::= Name, Init VarSpec→ Name

VarSpec→ Name, Init
Type Reference ::= TypeName, TypeArg TypeRef→ TypeName

TypeRef→ TypeName, TypeArg
Other All combinations

attempt to expand from the ancestor to include 𝑛𝑖 and further
to 𝑛𝑖 ’s children node. The expansion rules in Table 1 are used to
determine the valid edges for expansion. The node 𝑛𝑖 and each
of the valid combinations of its children nodes to form different
possible subtree(s) are collected. Among them, the subtrees with
the minimum number of nodes is used to connect to the ancestor
tree to form one of the descendant trees for the ancestor tree.

The possible subtrees with larger sizes are used as the further
descendant ASTs of the collected descendant ASTs when the ex-
pansion continues. At the later step, the descendant ASTs are used
as the ancestor ASTs for the next traversal. For example, 𝑃1 is an
ancestor AST of 𝑃2, which in turn is an ancestor AST of the entire
subtree at While. To derive other ancestor AST for a descendant AST
𝐶 , each ancestor of 𝑃 is connected to the corresponding 𝑇 of 𝐶 . If
the resulting tree is valid and connected to the ancestor AST, we
consider it as a new ancestor of 𝐶 . The training data consists of all
the mined ancestor and descendant AST sub-trees.

Step 2. Predicting/Generating the template of the next valid

AST subtree. This section explains how we use the collection of
ancestor-descendant ASTs to suggest the complete valid syntactic
template. AstCC relies on the Bayesian Statistical Inference with
the input from the subtrees in the current code as the context. Ast-
Lan performs the prediction as follows. First, AstLan extracts the
contextual information in the form of context trees from the current
code. It finds the smallest, valid subtree 𝑇𝑆 with the correspond-
ing source code covering the current position. AstLan collects all
the AST subtrees that contain the root of 𝑇𝑆 and have a height
greater than a certain threshold. Those subtrees are considered as
the context for our inference to predict the next descendant AST. In
Figure 1, if we extract the context from the subtree at BlockStatement,
the trees rooted at WhileStatement and BlockStatement with the heights
smaller than a threshold are collected in the context.

Algorithm 1 Concretizing Syntactic Template
1: function Main(𝑡𝑒𝑚𝑝𝑙 ,𝑉 )
2: 𝑐𝑎𝑛𝑑𝐿𝑖𝑠𝑡 = 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑖𝑧𝑒𝑁𝑒𝑥𝑡 (𝑡𝑒𝑚𝑝𝑙,𝑉 , ∅, 1)
3: return 𝑐𝑎𝑛𝑑𝐿𝑖𝑠𝑡

4: function Concretize(𝑡𝑒𝑚𝑝𝑙 ,𝑉 ,𝑐𝑢𝑟𝐶𝑎𝑛𝑑𝐿𝑖𝑠𝑡 ,𝑙𝑜𝑐)
5: if 𝑙𝑜𝑐 > 𝑠𝑖𝑧𝑒 (𝑡𝑒𝑚𝑝𝑙) then return 𝑐𝑢𝑟𝐶𝑎𝑛𝑑𝐿𝑖𝑠𝑡

6: 𝑐𝑜𝑑𝑒𝐶𝑎𝑛𝑑𝑠 = ∅
7: 𝑐𝑜𝑑𝑒𝑇𝑜𝑘𝑒𝑛𝑠 = 𝛼 (𝑡𝑒𝑚𝑝𝑙 [𝑙𝑜𝑐 ],𝑉 )
8: if 𝑐𝑢𝑟𝐶𝑎𝑛𝑑𝐿𝑖𝑠𝑡 = ∅ then

9: for all 𝑡 ∈ 𝑐𝑜𝑑𝑒𝑇𝑜𝑘𝑒𝑛𝑠 do

10: 𝑛𝑒𝑤𝐶𝑎𝑛𝑑 = 𝑐𝑜𝑛𝑛𝑒𝑐𝑡 (𝐸𝑀𝑃𝑇𝑌_𝑇𝑅𝐸𝐸, 𝑡 )
11: 𝑐𝑜𝑑𝑒𝐶𝑎𝑛𝑑𝑠.𝑎𝑑𝑑𝑠 (𝑛𝑒𝑤𝐶𝑎𝑛𝑑)
12: else

13: for all 𝑡 ∈ 𝑐𝑜𝑑𝑒𝑇𝑜𝑘𝑒𝑛𝑠 do

14: for all 𝑐𝑎𝑛𝑑 ∈ 𝑐𝑢𝑟𝐶𝑎𝑛𝑑𝐿𝑖𝑠𝑡 do

15: 𝑛𝑒𝑤𝐶𝑎𝑛𝑑 = 𝑐𝑜𝑛𝑛𝑒𝑐𝑡 (𝑐𝑎𝑛𝑑, 𝑡 )
16: 𝑐𝑜𝑑𝑒𝐶𝑎𝑛𝑑𝑠.𝑎𝑑𝑑𝑠 (𝑛𝑒𝑤𝐶𝑎𝑛𝑑)
17: return𝐶𝑜𝑛𝑐𝑟𝑒𝑡𝑖𝑧𝑒 (𝑡𝑒𝑚𝑝𝑙,𝑉 , 𝑐𝑜𝑑𝑒𝐶𝑎𝑛𝑑𝑠, 𝐷𝐹𝑆.𝑛𝑒𝑥𝑡 (𝑙𝑜𝑐))

According to Nguyen et al. [13], given the context trees, the
probability of a given tree 𝑇 can be computed based on the num-
bers of ancestor-descendant ASTs. Using the Bayesian statistical
inference, the generation probability of a new valid AST𝐶 (𝑡) given
the context including 𝑡 (e.g., 𝑡 = 𝑡𝑖 ) can be computed as follows [13]:

𝑃𝑟 (𝐶 (𝑡 ) |𝐶𝑡𝑥𝑡 ) = 𝑃𝑟 ( (𝑡, 𝑁 +, 𝐸+) |𝑡1, .., 𝑡𝑛)
=

#𝑚𝑒𝑡ℎ𝑜𝑑𝑠 (𝑡1,𝐶 (𝑡 ) )+𝛼
#𝑚𝑒𝑡ℎ𝑜𝑑 (𝐶 (𝑡 ) )+𝛼.#𝑚𝑒𝑡ℎ𝑜𝑑𝑠

...
#𝑚𝑒𝑡ℎ𝑜𝑑𝑠 (𝑡 (𝑖−1) ,𝐶 (𝑡 ) )+𝛼

#𝑚𝑒𝑡ℎ𝑜𝑑 (𝐶 (𝑡 ) )+𝛼.#𝑚𝑒𝑡ℎ𝑜𝑑𝑠
.

#𝑚𝑒𝑡ℎ𝑜𝑑𝑠 (𝑡,𝐶 (𝑡 ) )
#𝑚𝑒𝑡ℎ𝑜𝑑𝑠 (𝑡 ) .

#𝑚𝑒𝑡ℎ𝑜𝑑𝑠 (𝑡 )
#𝑚𝑒𝑡ℎ𝑜𝑑𝑠

...
#𝑚𝑒𝑡ℎ𝑜𝑑𝑠 (𝑡𝑛 ,𝐶 (𝑡 ) )+𝛼

#𝑚𝑒𝑡ℎ𝑜𝑑 (𝐶 (𝑡 ) )+𝛼.#𝑚𝑒𝑡ℎ𝑜𝑑𝑠

(1)

𝑃𝑟 (𝐶 (𝑡) |𝐶𝑡𝑥𝑡) is computed for each context tree 𝑡 𝑗 . Finally, the
corresponding additional AST’s subtrees are computed and ranked
by those probabilities.

Step 3. Concretizing the variables’ names. After having a list
of ranked candidate templates, we need to concretize the variables’
names in a template with the accessible variables in the current
scope. We then use a language model on the concrete code se-
quences corresponding to the concretized subtrees for ranking.

The key concretization steps are in Algorithm 1. Each AST node
corresponding to a variable in the syntactic template is concretized
first via the accessible variables in the current scope. The candidate
variables must also conform to the type of the AST node. Function
𝛼 checks those two conditions to return the code tokens. Initially,
after applying 𝛼 , we obtain the initial concretized AST (lines 9–11).
We recursively expand the AST (line 17) with each of the candidate
trees, and produce the larger concretized tree (lines 13–16).

After finishing the concretization process for all the candidates,
we obtain the list of code sequences of the candidates. We then rank
them by training an 𝑛-gram language model on the lexical code
sequences extracted from a large code corpus. All the source files
are tokenized into the sub-tokens using Hungarian or Camelcase
conventions. The trained 𝑛-gram model is used to estimate the
occurrence likelihood of the sequences produced by our model (not
shown in Algorithm 1). Given the current code 𝐶 , the likelihood of
the candidate syntactic unit𝛾 is:𝜙 (𝑠𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒 (𝑐𝑜𝑛𝑛𝑒𝑐𝑡 (𝐶,𝛾))), where
𝐶 and 𝛾 are the lexical forms of 𝐶 and 𝛾 , respectively. 𝑐𝑜𝑛𝑛𝑒𝑐𝑡 is
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Table 2: Data Collection

Total projects 1,000
Total classes 104,645
Total methods 638,293
Total SLOCs 7,144,198
Total valid AST’s fragments 1,047,614,720
Total distinctive fragments 36,608,102
Total distinctive AST nodes 302,367

Table 3: Accuracy % in Next-Syntactic-Unit Suggestion

Top-1 Top-2 Top-3 Top-4 Top-5
33.2 42.6 43.7 50.6 62.1

the function to connect for expansion with the subtrees. 𝑠𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒
is the function to serialize the AST into a code sequence.

5 PRELIMINARY EMPIRICAL EVALUATION

5.1 Accuracy in Suggesting Next Syntactic Unit

5.1.1 Experimental Setting. We reused a large Java corpus (Table 2)
that have been used in prior code completion work [13] (duplicated
code was removed). The ASTs are extracted from the source code
and a database of pairs of ancestor-descendant ASTs is built. In
total, we have about 1,047 billion ASTs, of which 36M are distinct.

For experiments, we used the simulation process as in the prior
work [13]. We began with the first valid syntactic unit, i.e., the first
valid AST subtree. Initially, the current position of the cursor is
placed at the code location corresponding to the right-most leaf
node in the first valid AST subtree. We then obtain the context
subtrees with the code tokens of their leaf nodes appearing prior to
the current location according to the description in Section 4. We
use the code completion engine to suggest the top-𝑘 valid syntac-
tic units. To measure the performance, we compare the predicted
syntactic unit against the actual next valid AST. If they match, we
count it as a hit and otherwise, as a miss. We repeat the process
by moving the current location to the end of the next syntactic
unit until the entire method is scanned. Top-𝑘 accuracy is defined
as the ratio between the number of hits over the total number of
suggestions. For a dataset, we perform 10-fold cross validation. We
split the training/test sets by project.

5.1.2 Experimental Results. As seen in Table 3, with a single sug-
gestion, in 33.2% of the cases, our model correctly suggests the next
syntactic unit. In 62% of the cases, it correctly suggests the next unit
within five candidates. We also manually examined the suggested
syntactic templates and found that the model is able to learn inter-
esting patterns. For example, a common syntactic pattern is the for

loop, in which the body evaluates a condition, and correspondingly
breaks out of the loop body. Several other patterns that are specific
to software libraries were also found, for example, a pattern of the
initialization of a display in the SWT library.

5.2 Accuracy in Next-Statement Suggestion

Regardless of our model suggestion being the next valid syntac-
tic unit, we aim to evaluate it in the next-statement suggestion

Table 4: Accuracy % in Next-Statement Suggestion

Top 1 Top 3 Top 6 Top 10
AutoSC [15] 20.3 28.5 32.0 42.2
PCC [19] 28.9 51.1 54.8 59.3
AstCC 35.1 59.0 67.8 80.7

setting. We compare our code completion engine with two state-
of-the-art next-statement code completion approaches: PCC [19]
and AutoSC [15]. We use the same process as in the experiment
for next-valid-syntactic-unit suggestion, except that we move the
current location to the end of the next statement (rather than at the
end of the next syntactic unit) until the entire method is scanned.

As seen in Table 4, AstCC performs better than both the base-
lines. While AstCC integrates the process of verifying syntactically
correct units into the candidate generation process, the other two
approaches use program analysis to verify the candidates. Thus,
the program analysis components of AutoSC, e.g., identifying the
valid next-token candidates or type-checking, do not perform well.

5.3 Future Applications and Plan

5.3.1 Real-world Code Completion Benchmark and Human Studies.

Currently, we evaluate AstCC with the assumption of the invoca-
tion of auto-completion at every syntactic unit (or statement). We
plan to perform an evaluation on the real-world CC data introduced
in [6]. We also plan to conduct human studies in a controlled setting
for real-world developer trials to quantify AstCC’s performance.

5.3.2 Syntactic PatternsMining. WithAstCC’s syntactic templates,
we can tailor it to mine syntactic patterns such as those involving
common structures, e.g., if, for, while, etc., or API common usages.
These patterns will be useful for CC tool builders and researchers.

5.3.3 Automated Program Repair. Training AstCCwith the corpus
of bug-fixing changes, we could use it to predict the syntactic unit
at the fixing location. The syntactic correctness of the generated
code reduces the need of post-processing as in current APR tools.

5.3.4 Using AstCC in Automated Unit Test Generation. With the
knowledge discovered from the codebase on the test code patterns,
AstCC will help developers to complete their test code in a higher
volume, and also a more complete and correct manner.

6 CONCLUSION

WeproposeAstCC, a novel code completion approach that utilizes a
novel direction in AST-based statistical language modeling. AstCC
suggests the next syntactic unit by learning from a large code
corpus, the potential expansion from a smaller AST subtree to a
larger one. The second key novelty in AstCC is the integration of
syntactic correctness verification into the process of learning the
expansion, thus, making the model learn the valid expansion of
the next unit. After deriving the next syntactic template, AstCC
fills in the template candidates with the concrete variables from the
current scope. Our empirical evaluation shows a promising result
with top-1 accuracy of 33% and top-5 accuracy of 62%.
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