Next Syntactic-Unit Code Completion and Applications

Anh Tuan Nguyen Aashish Yadavally Tien N. Nguyen
Axon University of Texas at Dallas University of Texas at Dallas
Hanoi, Vietnam Texas, USA Texas, USA

ntanhbk44@gmail.com
ABSTRACT

Code completion is an important feature in an IDE to improve de-
velopers’ productivity. Existing code completion approaches focus
on completing the current code token, next token or statement, or
code pattern. We propose AsTCC, a code completion approach to
suggest the next syntactic unit via an AST-based statistical language
model. AsTCC learns from a large code corpus to derive the next
AST subtree representing a syntactic unit, and then fills in the tem-
plate with the concrete variables from the current program scope.
Our empirical evaluation shows that ASTCC can correctly suggest
the next syntactic unit in 33% of the cases, and in 62% of the cases,
it correctly suggests within five candidates. We will also explain
the potential applications of AsTCC in automated program repair,
automated test case generation, and syntactic pattern mining.

CCS CONCEPTS

« Software and its engineering — Integrated and visual de-
velopment environments.

KEYWORDS
Code Completion; Statistical Language Model

ACM Reference Format:

Anh Tuan Nguyen, Aashish Yadavally, and Tien N. Nguyen. 2022. Next
Syntactic-Unit Code Completion and Applications. In 37th IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE °22), Oc-
tober 10-14, 2022, Rochester, MI, USA. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3551349.3559544

1 INTRODUCTION

A code completion (CC) tool in an integrated development environ-
ment (IDE) (e.g., Eclipse [8], Intelli] IDEA [9]) helps users speed up
the coding task by filling the desired code and reducing common
mistakes. Code completion is the third most useful feature in an IDE
(behind editing and compiling) [12]. Basic CC helps users complete
the names of classes, methods, fields, and keywords within the
visibility scope [9]. If CC is applied to a part of a field, parameter,
or variable declaration, the tool suggests a list of possible names
according to the entity’s type. Advanced CC tools [9] support the
completion in common program constructs, the right part of as-
signments, variable initializers, arguments of a method call, etc.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASE °22, October 1014, 2022, Rochester, MI, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9475-8/22/10...$15.00
https://doi.org/10.1145/3551349.3559544

aashish.yadavally@utdallas.edu

tien.n.nguyen@utdallas.edu

A code completion engine, as regarded as general code synthe-
sis, is actually useful in the other tasks, e.g., automated program
repair [11], test generation in automated testing [16], code synthe-
sis [5, 17], etc. A key common requirement for CC in those tasks is
the ability to synthesize any syntactic unit at any location. However,
the majority of the CC approaches support next-token completion,
and very few of them support next-statement completion [15].

Those CC services are built mainly using program analysis (PA)
on the currently edited code in the IDE. The issue with PA-based CC
approaches is that there is a large amount of possibilities with equal
likelihoods of code candidates that can be filled in at the cursor.
For example, after len =, the valid next-token candidates include a
limited set of code tokens. However, there is potentially an infinite
number of valid statements at that point. Moreover, PA cannot rank
the candidates based on their occurrence likelihoods.

To address those issues, several code mining and information
retrieval CC approaches have been proposed [1, 14, 18]. The idea is
that the CC tool could suggest and rank higher the more frequent
code. However, the tokens to be filled for the current code might
not be as frequent, leading to ineffectiveness of those approaches.
Moreover, code is repetitive as single tokens; while as entire state-
ments, it is quite specific for projects [19]. Thus, searching/mining
for a similar code to be filled is not effective across projects.

Deep learning (DL) and natural language processing (NLP) have
enabled several approaches for code completion using statistical
language models (LM) and DL models, which capture the regularity
of source code [3, 4, 7, 10, 15]. However, these approaches do not
explicitly account for the syntactic correctness of generated code.
Moreover, Chen et al. [2] qualitatively investigate Codex for varied
levels of abstraction to find that it can recommend syntactically in-
correct or undefined code; and can invoke functions, variables, and
attributes that are undefined or outside the scope of the codebase.

2 COMPLETING NEXT SYNTACTIC UNIT

We propose AsTCC that supports the suggestion of the next syntac-
tic unit. The most likely syntactic template is first suggested and
then filled with the proper program elements in the current scope.
AsTCC engine is general to work for both interaction within an
IDE or a setting of code synthesis at the current location.

AsTCC focuses on next syntactic unit CC that (1) has not been
investigated much in the literature, and (2) can be used to improve
the existing techniques in code completion and other applications.

Let us start with an example (Figure 1). A user is currently editing
a while loop in which (s)he would like to iterate over all the text
lines in a file. AsTCC will suggest the addition of the if statement
with a condition expression and a break statement. The reason is
that it has often encountered the templates where some condition
is evaluated inside a while loop. If the condition is satisfied, the
execution will break out of the loop. Our model learns from a large


https://doi.org/10.1145/3551349.3559544
https://doi.org/10.1145/3551349.3559544

ASE 22, October 10-14, 2022, Rochester, MI, USA

Figure 1 Suggesting a Valid Syntactic Unit

1 = T o

2 while (textFile.hasNextLine()) 2 while (textFile.hasNextLine())

3{ > |31

4 String line; 4 _S_t_ri_r!q[ipg;_ _________

51} 5 !if (CondExpr) break;
[0 :

(AST N

Block

Method
Invocation| Statement

- —_—
Variable hasNext Vanablfe
Line Declaration
textFile Type | | Variable
4 [ ]

code corpus such common syntactic structure, i.e., a while loop with
an if-break. Let us call it a syntactic template. AsTCC will concretize
the template to complete that syntactic unit.

To realize AsTCC, we follow the direction of an AST-based sta-
tistical language model (LM). There are two key departure points
in AsTCC in comparison with existing CC approaches.

1) We do not predict the next token based on the sequence of pre-
vious tokens in the current code. Instead, we leverage AsTLAN [13],
an AST-based LM that predicts the next “expansion” of the current
AST subtree based on the surrounding code structure.

2) Instead of verifying the syntactic correctness of candidate code
after generating them, we integrate such verification into the process
of learning the expansion from a smaller AST subtree to a larger
one (Section 4). With this integration strategy, our model learns
the valid expansions, i.e., syntactically correct code, thus, ensuring
that the suggested next syntactic units will be valid. The choice
of using statistical LM (rather than Deep Learning) makes AsTCC
more light-weight and facilitates the above integration. Except a
few high-computational models [2-4], most DL-based CC models
focus on next-token [10] or next-statement [15] completion.

3 ASTLAN: AST-BASED LANGUAGE MODEL

Ancestor-Descendant AST relation. The key idea is that the next
syntactic unit is the addition of some AST subtree to the current AST.
As shown in Figure 1, the newly suggested syntactic unit (i.e., the
if statement with break) is the extension/addition to the current
AST on the left. Therefore, AsTLAN models the expansion from a
smaller AST to a large one, instead of expansion from a smaller
sequence to a large one as in a sequence-based language model
(e.g., n-gram). The relation between a smaller AST and the larger
one with additional nodes is called ancestor-descendant relation.

DEFINITION 1 (Ancestor-Descendant ASTs [13]). An ASTC
is a descendant of AST P (P is a ancestor of C) if
1) C is formed by adding a minimal (sub)tree T to a node in P; and
2) P and C are syntactically valid.

A minimal T is defined as the subtree such that if any node in T is
removed, C will become syntactically incorrect. The first condition is
aimed to produce the next smallest, valid AST template of a certain
syntactic type. This is enabled via the descendant AST C in the
Ancestor-Descendant relation, such that the descendant must not

Anh Tuan Nguyen et al.

contain another valid syntactic type that is larger than the ancestor
AST P, and smaller than the descendant AST C. This can only be
achieved by ensuring that the subtree T that is to be added to P is
minimal/irreducible among the subtrees with the same syntactic
type. The IfStatement subtree added as a child node of BlockStatement
in Figure 1 (highlighted in yellow), is the smallest IfStatement subtree
that produces a syntactically valid tree. The second condition ensures
the validity of the suggested code. In Figure 1, the suggested subtree
at the IfStatement is syntactically valid. Any added smaller subtree,
such as IfStatement — Cond, would produce invalid syntactic code
(missing the True part).

To enhance the capability of applying the template learned from
one place to another, we alpha-rename the variables and keep only
the token type and the data type for each AST node corresponding
to an identifier. This allows for bound variable names to be changed.
For a local variable node in a subtree or a label in a switch statement,
its label is the name of that variable (via alpha-renaming within
the subtree), concatenated with its type [13]. In Figure 1, textFile
becomes VAR1_Scanner, and line becomes VAR2_String. A literal becomes
alabel ‘LIT’ with its type attached at the end. The special values such
as empty string, zero, and null are abstracted with special string
tokens, indicating special situations, e.g., nullity checking.

4 ASTCC: NEXT SYNTACTIC UNIT
SYNTHESIS

Step 1. Training for AsTLAN. The first important step is to train
the model by mining all the pairs of ancestor-descendant ASTs
from a corpus of syntactically correct programs. Because AsTLAN
is a general language model, it does not consider the syntactic
correctness of the generated code. Thus, to ensure that correctness,
in AsTCC, we modify the training process in AsTLAN as follows.

Given a method, we build its AST. We traverse the AST from the
top and identify the pairs of ancestor and corresponding descendent
ASTs. When encountering an ancestor tree, we expand to visit a
descendant tree according to the rules in Table 1.

First, our algorithm aims to find one or more valid AST subtrees
as initial ancestor AST(s). Depending on the type of the current
AST node n, AsTCC expands the current subtree to include one of
its children nodes to form with n, a syntactically correct tree. Let
us take an example of the rule for IfStatement. There are three valid
expansions: 1) connecting if to E and s1 (i.e., the true branch), and 2)
connecting if to £ and both branches $1 and s2. We cannot connect if
to only the s2 branch because it would create an invalid code. The
presence of the true branch is necessary. After an expansion, we
consider one of the children nodes and repeat the same expansion
with those rules until it hits a leaf node. At an expansion step, for
a possibility, after traversing to c’s children, if the resulting AST
fragment formed by the tree expanding to c, c itself, and ¢’s children,
is valid, we will consider it as a descendant tree. For example, in
Figure 1, we have two initial ancestor ASTs: 1) the left subtree at
While (P1), and 2) left subtree at While and BlockStatement (P2).

Let us detail the process of expansion via the edges coming out
of the initial ancestor tree P. Let us use n; to denote the node at
the end of an outgoing edge from the ancestor tree P. For example,
BlockStatement is such a node for P; and VariableDeclaration is such a
node for P,. To find a descendant tree of the ancestor tree, we



Next Syntactic-Unit Code Completion and Applications

Table 1: Examples of Expansion Rules [13]

Syntax Valid Expansion
If := if E S1S2 If - E,S1

If — E, S1,S2
While ::= while E Stmt While — E

While — E, Stmt

For ::= for Init E Update
Stmt

For — Init, E, Update
For — Init, E, Update, Stmt

Switch ::= switch E Case™
Def

Switch — E

Switch — E, F with F € all Case combinations
Switch — E, Def

Switch — E, F, Def with F € all Case combs

Case ::= case E: Stmt

Case > E
Case — E, Stmt

InfixOp ::= E1 Op E2

InfixOp — E1, E2

EnhancedFor ::= VarDec, Ref, Stmt

ForEach — VarDec, Ref
ForEach — VarDec, Ref, Stmt

Do ::= Stmt, Cond

Do — Stmt, Cond

Try == try Block {Catches
| Finally}

Try — Block, all combinations of Catches
Try — Block, Finally
Try — Block , all comb. of Catches, Finally

Conditional ::= E1 ? E2: E3

Conditional — E1, E2, E3

Synchronized ::= Exp, Stmt

Synchronized — Exp, Stmt

Labeled ::= Lit, Stmt

Labeled — Lit, Stmt

Variable Dec. ::= TypeRef, VarSpec

VarDec — TypeRef, VarSpec

Variable Spec. ::= Name, Init

VarSpec — Name

VarSpec — Name, Init

Type Reference ::= TypeName, TypeArg | TypeRef — TypeName

TypeRef — TypeName, TypeArg
Other All combinations

attempt to expand from the ancestor to include n; and further
to n;’s children node. The expansion rules in Table 1 are used to
determine the valid edges for expansion. The node n; and each
of the valid combinations of its children nodes to form different
possible subtree(s) are collected. Among them, the subtrees with
the minimum number of nodes is used to connect to the ancestor
tree to form one of the descendant trees for the ancestor tree.

The possible subtrees with larger sizes are used as the further
descendant ASTs of the collected descendant ASTs when the ex-
pansion continues. At the later step, the descendant ASTs are used
as the ancestor ASTs for the next traversal. For example, P; is an
ancestor AST of P2, which in turn is an ancestor AST of the entire
subtree at While. To derive other ancestor AST for a descendant AST
C, each ancestor of P is connected to the corresponding T of C. If
the resulting tree is valid and connected to the ancestor AST, we
consider it as a new ancestor of C. The training data consists of all
the mined ancestor and descendant AST sub-trees.

Step 2. Predicting/Generating the template of the next valid

AST subtree. This section explains how we use the collection of
ancestor-descendant ASTs to suggest the complete valid syntactic
template. ASTCC relies on the Bayesian Statistical Inference with
the input from the subtrees in the current code as the context. AsT-
LAN performs the prediction as follows. First, AsTLAN extracts the
contextual information in the form of context trees from the current
code. It finds the smallest, valid subtree Ts with the correspond-
ing source code covering the current position. ASTLAN collects all
the AST subtrees that contain the root of Ts and have a height
greater than a certain threshold. Those subtrees are considered as
the context for our inference to predict the next descendant AST. In
Figure 1, if we extract the context from the subtree at BlockStatement,
the trees rooted at WhileStatement and BlockStatement with the heights
smaller than a threshold are collected in the context.

ASE ’22, October 10-14, 2022, Rochester, MI, USA

Algorithm 1 Concretizing Syntactic Template

1: function MaIN(templ, V)
2: candList = concretizeNext(templ,V, 0,1)
3: return candList

4: function CoNcreTIZE(templ,V,curCandList,loc)

5 if loc > size(templ) then return curCandList
6: codeCands = 0

7: codeTokens = a(templ[loc],V)

8 if curCandList = () then

9: for all ¢t € codeTokens do

10: newCand = connect(EMPTY_TREE, t)

11: codeCands.adds(newCand)

12: else

13: for all t € codeTokens do

14: for all cand € curCandList do

15: newCand = connect(cand, t)

16: codeCands.adds(newCand)

17: return Concretize(templ,V,codeCands, DFS.next(loc))

According to Nguyen et al. [13], given the context trees, the
probability of a given tree T can be computed based on the num-
bers of ancestor-descendant ASTs. Using the Bayesian statistical
inference, the generation probability of a new valid AST C(¢) given
the context including ¢ (e.g., t = t;) can be computed as follows [13]:

Pr(C(t)|Ctxt) = Pr((t, N*,E%)|t1, .., tn)

_ #methods(t1,C(t))+a #methods(t(;_1),C(t))+a 1

~ #method(C(t))+a.#methods """ #method(C(t))+a.#methods " ( )

#methods(t,C(t)) #methods(t) #methods(tn,C(t))+a
#methods(t) ° #methods ° #method(C(t))+a.#methods

Pr(C(t)|Ctxt) is computed for each context tree ¢;. Finally, the
corresponding additional AST’s subtrees are computed and ranked
by those probabilities.

Step 3. Concretizing the variables’ names. After having a list
of ranked candidate templates, we need to concretize the variables’
names in a template with the accessible variables in the current
scope. We then use a language model on the concrete code se-
quences corresponding to the concretized subtrees for ranking.

The key concretization steps are in Algorithm 1. Each AST node
corresponding to a variable in the syntactic template is concretized
first via the accessible variables in the current scope. The candidate
variables must also conform to the type of the AST node. Function
a checks those two conditions to return the code tokens. Initially,
after applying «, we obtain the initial concretized AST (lines 9-11).
We recursively expand the AST (line 17) with each of the candidate
trees, and produce the larger concretized tree (lines 13-16).

After finishing the concretization process for all the candidates,
we obtain the list of code sequences of the candidates. We then rank
them by training an n-gram language model on the lexical code
sequences extracted from a large code corpus. All the source files
are tokenized into the sub-tokens using Hungarian or Camelcase
conventions. The trained n-gram model is used to estimate the
occurrence likelihood of the sequences produced by our model (not
shown in Algorithm 1). Given the current code C, the likelihood of
the candidate syntactic unit y is: ¢ (serialize(connect(C, y))), where
C and y are the lexical forms of C and y, respectively. connect is



ASE 22, October 10-14, 2022, Rochester, MI, USA

Table 2: Data Collection

Total projects 1,000
Total classes 104,645
Total methods 638,293
Total SLOCs 7,144,198
Total valid AST’s fragments | 1,047,614,720
Total distinctive fragments 36,608,102
Total distinctive AST nodes 302,367

Table 3: Accuracy % in Next-Syntactic-Unit Suggestion

Top-1 | Top-2 | Top-3 | Top-4 | Top-5
33.2 42.6 43.7 50.6 62.1

the function to connect for expansion with the subtrees. serialize
is the function to serialize the AST into a code sequence.

5 PRELIMINARY EMPIRICAL EVALUATION

5.1 Accuracy in Suggesting Next Syntactic Unit

5.1.1 Experimental Setting. We reused a large Java corpus (Table 2)
that have been used in prior code completion work [13] (duplicated
code was removed). The ASTs are extracted from the source code
and a database of pairs of ancestor-descendant ASTs is built. In
total, we have about 1,047 billion ASTs, of which 36M are distinct.

For experiments, we used the simulation process as in the prior
work [13]. We began with the first valid syntactic unit, i.e., the first
valid AST subtree. Initially, the current position of the cursor is
placed at the code location corresponding to the right-most leaf
node in the first valid AST subtree. We then obtain the context
subtrees with the code tokens of their leaf nodes appearing prior to
the current location according to the description in Section 4. We
use the code completion engine to suggest the top-k valid syntac-
tic units. To measure the performance, we compare the predicted
syntactic unit against the actual next valid AST. If they match, we
count it as a hit and otherwise, as a miss. We repeat the process
by moving the current location to the end of the next syntactic
unit until the entire method is scanned. Top-k accuracy is defined
as the ratio between the number of hits over the total number of
suggestions. For a dataset, we perform 10-fold cross validation. We
split the training/test sets by project.

5.1.2  Experimental Results. As seen in Table 3, with a single sug-
gestion, in 33.2% of the cases, our model correctly suggests the next
syntactic unit. In 62% of the cases, it correctly suggests the next unit
within five candidates. We also manually examined the suggested
syntactic templates and found that the model is able to learn inter-
esting patterns. For example, a common syntactic pattern is the for
loop, in which the body evaluates a condition, and correspondingly
breaks out of the loop body. Several other patterns that are specific
to software libraries were also found, for example, a pattern of the
initialization of a display in the SWT library.

5.2 Accuracy in Next-Statement Suggestion

Regardless of our model suggestion being the next valid syntac-
tic unit, we aim to evaluate it in the next-statement suggestion

Anh Tuan Nguyen et al.

Table 4: Accuracy % in Next-Statement Suggestion

Top1 | Top3 | Top 6 | Top 10
AutoSC [15] | 20.3 28.5 32.0 42.2
PCC [19] 28.9 51.1 54.8 59.3
AsTCC 35.1 59.0 67.8 80.7

setting. We compare our code completion engine with two state-
of-the-art next-statement code completion approaches: PCC [19]
and AutoSC [15]. We use the same process as in the experiment
for next-valid-syntactic-unit suggestion, except that we move the
current location to the end of the next statement (rather than at the
end of the next syntactic unit) until the entire method is scanned.

As seen in Table 4, AsTCC performs better than both the base-
lines. While AsTCC integrates the process of verifying syntactically
correct units into the candidate generation process, the other two
approaches use program analysis to verify the candidates. Thus,
the program analysis components of AutoSC, e.g., identifying the
valid next-token candidates or type-checking, do not perform well.

5.3 Future Applications and Plan

5.3.1 Real-world Code Completion Benchmark and Human Studies.
Currently, we evaluate ASTCC with the assumption of the invoca-
tion of auto-completion at every syntactic unit (or statement). We
plan to perform an evaluation on the real-world CC data introduced
in [6]. We also plan to conduct human studies in a controlled setting
for real-world developer trials to quantify AsTCC’s performance.

5.3.2  Syntactic Patterns Mining. With AsTCC’s syntactic templates,
we can tailor it to mine syntactic patterns such as those involving
common structures, e.g., if, for, while, etc., or API common usages.
These patterns will be useful for CC tool builders and researchers.

5.3.3  Automated Program Repair. Training AsTCC with the corpus
of bug-fixing changes, we could use it to predict the syntactic unit
at the fixing location. The syntactic correctness of the generated
code reduces the need of post-processing as in current APR tools.

5.3.4 Using AsTCC in Automated Unit Test Generation. With the
knowledge discovered from the codebase on the test code patterns,
AsTCC will help developers to complete their test code in a higher
volume, and also a more complete and correct manner.

6 CONCLUSION

We propose AsTCC, a novel code completion approach that utilizes a
novel direction in AST-based statistical language modeling. AsTCC
suggests the next syntactic unit by learning from a large code
corpus, the potential expansion from a smaller AST subtree to a
larger one. The second key novelty in AsTCC is the integration of
syntactic correctness verification into the process of learning the
expansion, thus, making the model learn the valid expansion of
the next unit. After deriving the next syntactic template, AsTCC
fills in the template candidates with the concrete variables from the
current scope. Our empirical evaluation shows a promising result
with top-1 accuracy of 33% and top-5 accuracy of 62%.



Next Syntactic-Unit Code Completion and Applications

ACKNOWLEDGMENTS

This work was supported in part by the US National Science Founda-
tion (NSF) grants CNS-2120386, CCF-1723215, CCF-1723432, TWC-
1723198, and the US National Security Agency (NSA) grant NCAE-
C-002-2021 on Cybersecurity Research Innovation.

ASE ’22, October 10-14, 2022, Rochester, MI, USA

REFERENCES

(1]

—
=

—_ =
L X

=
=

—_
o

[12

[13

(14]

[15

[16

(17

(18]

[19

Marcel Bruch, Martin Monperrus, and Mira Mezini. 2009. Learning from Examples
to Improve Code Completion Systems. In Proceedings of the the 7th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT Symposium
on The Foundations of Software Engineering (ESEC/FSE "09). ACM, 213-222.
Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-
tanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei,
Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large
Language Models Trained on Code. arXiv:2107.03374 [cs.LG]

M. Ciniselli, N. Cooper, L. Pascarella, A. Mastropaolo, E. Aghajani, D. Poshyvanyk,
M. Di Penta, and G. Bavota. 5555. An Empirical Study on the Usage of Transformer
Models for Code Completion. IEEE Transactions on Software Engineering 01 (nov
5555), 1-1. https://doi.org/10.1109/TSE.2021.3128234

Copilot [n.d.]. Copilot. https://copilot.github.com/.

Tihomir Gvero and Viktor Kuncak. 2015. Synthesizing Java Expressions from Free-
form Queries. In Proceedings of the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications (Pittsburgh,
PA, USA) (OOPSLA 2015). ACM, New York, NY, USA, 416-432. https://doi.org/
10.1145/2814270.2814295

Vincent J. Hellendoorn, Sebastian Proksch, Harald C. Gall, and Alberto Bacchelli.
2019. When Code Completion Fails: A Case Study on Real-world Completions. In
Proceedings of the 41st International Conference on Software Engineering (Montreal,
Quebec, Canada) (ICSE '19). IEEE Press, Piscataway, NJ, USA, 960-970. https:
//doi.org/10.1109/ICSE.2019.00101

Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu.
2012. On the Naturalness of Software. In Proceedings of the 34th International
Conference on Software Engineering (ICSE ’12). IEEE Press, 837-847.

Informer [n.d.]. Informer. http://javascript.software.informer.com/download-
javascript-code-completion-tool-for-eclipse-plugin/.

Intellisense [n. d.]. Intellisense. http://blogs.msdn.com/b/vcblog/archive/tags/
intellisense/.

Seohyun Kim, Jinman Zhao, Yuchi Tian, and Satish Chandra. 2021. Code Pre-
diction by Feeding Trees to Transformers. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). 150-162. https://doi.org/10.1109/
ICSE43902.2021.00026

Yi Li, Shaohua Wang, and Tien N. Nguyen. 2020. DLFix: Context-Based Code
Transformation Learning for Automated Program Repair. In Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering (Seoul, South
Korea) (ICSE 20). Association for Computing Machinery, New York, NY, USA,
602-614. https://doi.org/10.1145/3377811.3380345

Gail C. Murphy, Mik Kersten, and Leah Findlater. 2006. How Are Java Software
Developers Using the Eclipse IDE? IEEE Softw. 23, 4 (July 2006), 76-83. https:
//doi.org/10.1109/MS.2006.105

Anh Tuan Nguyen and Tien N. Nguyen. 2015. Graph-based Statistical Language
Model for Code. In Proceedings of the 37th International Conference on Software
Engineering - Volume 1 (ICSE ’15). IEEE Press, 858-868.

Anh Tuan Nguyen, Tung Thanh Nguyen, Hoan Anh Nguyen, Ahmed Tamrawi,
Hung Viet Nguyen, Jafar Al-Kofahi, and Tien N. Nguyen. 2012. Graph-based
Pattern-oriented, Context-sensitive Source Code Completion. In Proceedings of
the 34th International Conference on Software Engineering (Zurich, Switzerland)
(ICSE ’12). IEEE Press, Piscataway, NJ, USA, 69-79. http://dl.acm.org/citation.
cfm?id=2337223.2337232

Son Nguyen, Hoan Nguyen, Ngoc Tran, Hieu Tran, and Tien N. Nguyen. 2019.
Feature-Interaction Aware Configuration Prioritization for Configurable Code. In
Proceedings of the 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE ’19). IEEE Press, 489-501. https://doi.org/10.1109/ASE.2019.
00053

Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. 2007.
Feedback-directed random test generation. In ICSE 2007, Proceedings of the 29th
International Conference on Software Engineering. Minneapolis, MN, USA, 75-84.
Mukund Raghothaman, Yi Wei, and Youssef Hamadi. 2016. SWIM: Synthesizing
What I Mean. In Proceedings of the 38th International Conference on Software
Engineering (Austin, United States of America) (ICSE 2016 - to appear).

R. Robbes and M. Lanza. 2008. How Program History Can Improve Code Com-
pletion. In Proceedings of the 2008 23rd IEEE/ACM International Conference on
Automated Software Engineering (ASE 08). IEEE Computer Society, 317-326.
Yixiao Yang, Yu Jiang, Ming Gu, Jiaguang Sun, Jian Gao, and Han Liu. 2017. A
Language Model for Statements of Software Code. In Proceedings of the 32nd


https://arxiv.org/abs/2107.03374
https://doi.org/10.1109/TSE.2021.3128234
https://doi.org/10.1145/2814270.2814295
https://doi.org/10.1145/2814270.2814295
https://doi.org/10.1109/ICSE.2019.00101
https://doi.org/10.1109/ICSE.2019.00101
https://doi.org/10.1109/ICSE43902.2021.00026
https://doi.org/10.1109/ICSE43902.2021.00026
https://doi.org/10.1145/3377811.3380345
https://doi.org/10.1109/MS.2006.105
https://doi.org/10.1109/MS.2006.105
http://dl.acm.org/citation.cfm?id=2337223.2337232
http://dl.acm.org/citation.cfm?id=2337223.2337232
https://doi.org/10.1109/ASE.2019.00053
https://doi.org/10.1109/ASE.2019.00053

ASE 22, October 10-14, 2022, Rochester, MI, USA Anh Tuan Nguyen et al.

IEEE/ACM International Conference on Automated Software Engineering (ASE 2017). IEEE Press, 682-687.



