
A Hybrid Approach for Inference between Behavioral Exception
API Documentation and Implementations, and Its Applications

Hoan Anh Nguyen
Amazon

Washington, USA
nguyenanhhoan@gmail.com

Hung Dang Phan
Iowa State University

Iowa, USA
hungphd@iastate.edu

Samantha Khairunnesa
Bradley University

Illinois, USA
skhairunnesa@bradley.edu

Son Van Nguyen
University of Texas at Dallas

Texas, USA
sonnguyen@utdallas.edu

Aashish Yadavally
University of Texas at Dallas

Texas, USA
aashish.yadavally@utdallas.edu

Shaohua Wang
New Jersey Institute of Technology

New Jersey, USA
davidshwang@ieee.org

Hridesh Rajan
Iowa State University

Iowa, USA
hridesh@iastate.edu

Tien N. Nguyen
University of Texas at Dallas

Texas, USA
tien.n.nguyen@utdallas.edu

ABSTRACT

Automatically producing behavioral exception (BE) API documen-
tation helps developers correctly use the libraries. The state-of-the-
art approaches are either rule-based, which is too restrictive in
its applicability, or deep learning (DL)-based, which requires large
training dataset. To address that, we propose StatGen, a novel
hybrid approach between statistical machine translation (SMT) and
tree-structured translation to generate the BE documentation for
any code and vice versa. We consider the documentation and source
code of an API method as the two abstraction levels of the same
intent. StatGen is specifically designed for this two-way inference,
and takes advantage of their structures for higher accuracy.

We conducted several experiments to evaluate StatGen. We
show that it achieves high precision (75% and 75%), and recall (81%
and 84%), in inferring BE documentation from source code and vice
versa. StatGen achieves higher precision, recall, and BLEU score
than the state-of-the-art, DL-based baseline models. We show Stat-
Gen’s usefulness in two applications. First, we use it to generate
the BE documentation for Apache APIs that lack of documentation
by learning from the documentation of the equivalent APIs in JDK.
44% of the generated documentation were rated as useful and 42%
as somewhat useful. In the second application, we use StatGen
to detect the inconsistency between the BE documentation and
corresponding implementations of several JDK8 packages.

This work was done during the first author’s postdoc program at Iowa State Univeristy.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’22, October 10–14, 2022, Rochester, MI, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9475-8/22/10. . . $15.00
https://doi.org/10.1145/3551349.3560434

CCS CONCEPTS

• Software and its engineering→ Software verification.

KEYWORDS

Behavioral Exception Specification; Hybrid Machine Translation;
Inference between Documentation and Code

ACM Reference Format:

Hoan Anh Nguyen, Hung Dang Phan, Samantha Khairunnesa, Son Van
Nguyen, Aashish Yadavally, Shaohua Wang, Hridesh Rajan, and Tien N.
Nguyen. 2022. A Hybrid Approach for Inference between Behavioral Ex-
ception API Documentation and Implementations, and Its Applications. In
37th IEEE/ACM International Conference on Automated Software Engineering
(ASE ’22), October 10–14, 2022, Rochester, MI, USA. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3551349.3560434

1 INTRODUCTION

API documentation specifies the conditions that users must follow
to integrate APIs into their codebase. Specifically, behavioral excep-
tion (BE) documentation indicates the circumstances under which
an API throws an exception. Besides allowing users to understand
the APIs better [54], API documentation on BE also enables auto-
mated tools to verify program properties [57]. However, the lack of
specifications has hindered software library utilization [12]. To ad-
dress that, many approaches have been proposed for automated API
documentation generation. They can be classified into four catego-
ries: program analysis (PA),mining software repositories (MSR), rule-
based natural language processing (NLP), andmachine learning (ML).

In the PA direction, dynamic analysis approaches [3–7, 15, 17, 28,
29, 33–37, 40, 46, 51, 52, 64] dynamically infer program properties by
detecting data and temporal invariants. However, they require large
test suites, which might be incomplete, leading to inaccurate results.
In contrast, static analysis approaches [9, 14, 27, 30, 53, 63, 68]
overestimate program behaviors and have high false positives.

Techniques in MSR leverage data mining to derive or check API
usage specifications from existing repositories. They mine the call
sites of the APIs and focus on the API usage or temporal orders, e.g.,

https://doi.org/10.1145/3551349.3560434
https://doi.org/10.1145/3551349.3560434
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3551349.3560434&domain=pdf&date_stamp=2023-01-05

ASE ’22, October 10–14, 2022, Rochester, MI, USA Hoan Anh Nguyen et al.

sets [31, 32], pairs [16, 61, 65] or sequences [58, 70] of co-occurring
APIs, predicates [42, 50], or graphs of APIs [44, 48, 60, 67]. They do
not focus on behavior exceptions/properties of the mined code.

Several rule-based, Natural language Processing (NLP) tech-
niques [8, 18, 57, 71] analyze existing textual documentation to
derive the pre-conditions, based on which they detect inconsis-
tencies and directive defects in the corresponding source code.
They use rules, patterns, lexical and semantic matching to derive
pre/post-conditions to support testing. While these approaches do
not require large training data, the extracted lexical and semantic
rules are restricted by the pre-defined templates and not generaliz-
able for BE documentation.

Recent advances in Machine Learning (ML) are also applied in
specification mining. Phan et al. [47] leverage phrase-based Statisti-
cal machine translation (SMT) to derive BE specification from code.
However, it treats code as texts without considering structure.

Other advanced ML approaches including deep learning (DL) mod-
els, e.g., tree-based transformer [56], dual-task learning [62], neural
network machine translation [11, 22, 23], are used for the general
purpose of code-to-text or text-to-code translations. However, these
approaches cannot directly be extended for the translation between
BE documentation and source code for the following reasons: first,
they require a large amount of training data, which is not viable as
software libraries often lack such specifications [42]; second, they
are not specifically designed to exploit the structural information
in (either or) both BE documentation sentences and source code.

In this work, we propose StatGen, a hybrid (structural and sta-
tistical) machine translation approach that supports bi-directional
inference between BE documentation and its corresponding imple-
mentation. We consider an API method to possess two levels of
abstraction: its implementation and documentation. Both serve a
similar purpose, i.e., the BE documentation (in the natural language
domain) outlines the behavior before or after the API method is
called, and the respective BE part of source code (in the program-
ming language domain) describes the exception behavior.

To overcome the aforementioned issues, we customize/modify
an SMT model and enhance it with the structural information from
both documentation and source code. Besides enabling learning
in a low-data setting, this reduces the burden of mapping/translat-
ing the structures as in the sequence-based DL models. Moreover,
it provides the flexibility over the rule-based NLP approaches in
learning implicit translation rules in both directions.

The key idea in StatGen is to carry out translation via divide-
and-conquer, in a syntax-directed fashion, that is similar in spirit to
syntax-directed program editing to improve editing correctness. For
code→ BE documentation, we take advantage of well-structured
source code to generate the clausal structure of a sentence in BE
documentation. Next, for each syntactic code structure, we use
phrase-based SMT to produce the translated clause in the documen-
tation. Finally, the translated clauses are merged according to the
clausal structure to produce the final BE documentation. For BE
documentation→ code, we first parse the sentences and normalize
them into the clause trees that represent the conditions for the API
stated in the documentation. We then generate the syntactic units
in source code corresponding to those clause trees, and use the
phrase-based SMT to produce the code for each clause. The final

Figure 1 Example of java.lang.String.

// @throws StringIndexOutOfBoundsException - if beginIndex is negative
// or larger than the length of this String object.
public String substring (int beginIndex) {

if (beginIndex < 0) throw new StringIndexOutOfBoundsException(beginIndex);
if (beginIndex > length) throw new StringIndexOutOfBoundsException(beginIndex); ...

}

BE code is formed by merging the results for all clauses, based on
the generated syntactic structure in source code.

StatGen’s two-way inference supports the following us-
ages: (1) if new API code does not have BE documentation, one
could use StatGen to generate and use it as an initial point; (2)
if an API has BE documentation, one could check the consistency
between the implementation and the BE documentation by asking
StatGen to generate the code from the BE documentation, then
checking the code against the generated BE code. An inconsis-
tency signals an out-of-date or imprecise documentation or source
code. This could reduce potential misuses by alerting a developer
in API usages.

We empirically evaluate StatGen to show that it achieves high
precision (75% and 75%), and recall (81% and 84%), as inferring BE
documentation from source code and vice versa, respectively. Our
results also show that StatGen outperforms the state-of-the-art
SMT [47], dual-task learner [62], tree-based transformer [56], and
hybrid neural machine translation [22]. We also showed its use-
fulness in two applications in both directions Code-to-Doc and
Doc-to-Code (we use the word Doc to refer to BE documentation
and the word Code for the exception-throwing BE code). First, we
used StatGen to generate the BE documentation for Apache APIs
that lack documentation by learning from the documentation of the
equivalent APIs in JDK. 44% of the generated documentation are
rated as useful and 42% as somewhat useful. Second, we used Stat-
Gen to detect the inconsistency between the implementations and
documentation on behavior exceptions of several JDK8 packages.

In this paper, we make the following contributions:
A.Methodology.Ahybridmodel for BE documentation↔ code

that works better than the state-of-the-art, rule-based approaches
and the deep learning ones, while having the best of both worlds.

B. Applications. We show StatGen’s usefulness in 1) gener-
ating BE documentation by learning from the equivalent APIs, 2)
detecting inconsistency between implementations and BE texts.

C. Empirical Evaluation. An extensive empirical evaluation
instrinsically and extrinsically to show StatGen’s higher accuracy
than the state-of-the-art approaches. The data is available at [1].

2 KEY IDEAS AND APPROACH OVERVIEW

2.1 Key Ideas

For brevity, we show a simple example of the JDK API substring in Fig-
ure 1 (Section 9 shows complex examples from StatGen). The BE
documentation is listed before the code: the API throws StringOut-
OfBoundsException if the stated condition occurs. We also extract
the corresponding exception-throwing BE code. StatGen aims to
translate the BE documentation into the corresponding BE code
and vice versa. We design StatGen with the following key ideas:

ASE ’22, October 10–14, 2022, Rochester, MI, USA

Figure 2 StatGen: Approach Overview.

 API
Method

Extract Doc
Clause Trees

Extract Code
Clause Trees

Serialize
Tree-Seq

Statistical
Learning

Serialize
Tree-Seq

 Doc
Sequences

 Code
Sequences

Doc-to-Code
 Translation

Doc

Code
Code-to-Doc
 Translation

Doc Code

Extract Doc
Clause Trees

Doc-to-Code
 Translation

Extract Code
Clause Trees

TRAINING

GENERATION

Code-to-Doc
 Translation

2.1.1 Divide-and-Conquer, Bidirectional Translation. Feed-
ing the entire BE sentence/code as is to amodel would burden it with
implicitly learning the structural mappings. In a low-data setting,
this is inefficient. Instead, we utilize phrase-based statistical ma-
chine translation (SMT) with a structure-based, divide-and-conquer
strategy. This is achieved by breaking the given BE sentence/code
into smaller fragments, translating individual fragments, and finally
merging the results into the final translated BE code/sentences.

2.1.2 Structural Translation. Instead of letting the model learn
the structure mappings, to enable structural translation, we take
advantage of the structure information in BE sentences and BE
code by splitting them into the smaller document clause trees and
code clause trees. SMT is used to learn and translate the phrases
within the clauses in the trees. Such a design choice helps us in
avoiding the use of complex models in structure learning.

2.1.3 Implicit Learning of Translation Rules via Statistical

Machine Translation. While the structure translation is per-
formed deterministically first, SMT is used later to learn the map-
pings between the words/phrases in a clause and the code token-
s/sequences in an expression. SMT is data-driven, helping learn
the translation rules implicitly, without having to explicitly specify
them, as in the rule-based NLP approaches.

2.2 StatGen: Approach Overview

Figure 2 shows StatGen’s overview with two processes. In train-

ing, we take the corpus of the API methods with BE documentation
and source code, parse the documentation to extract the clauses and
build the clause trees to represent the conditions for the API stated
in the documentation. We also parse the code to extract the excep-
tional flow graphs and build the code clause trees representing the
exception conditions. Clause trees in both sides are serialized into
sequences to train the corresponding phrase-based SMT models in
two directions. The documentation and code sequences are used
accordingly for source and target in each direction.

For generation from Doc-to-Code, we parse the BE sentences
in Javadoc to extract the clause trees, and convert them into the
code clause trees. We then feed the texts in each document clause
to the trained SMT model to produce the translated code for each

Figure 3 A Documentation Clause Tree.

or

beginIndex is negative beginIndex is larger than the
length of this String object

Figure 4 A Code Clause Tree.

||

beginIndex < 0 beginIndex > length

clause. Finally, we merge and serialize the translated code for all
the clauses into the final result. A similar process is performed for
Code-to-Doc model in the reverse direction.

3 DOCUMENTATION & CODE CLAUSE TREES

A challenge as using phrase-based SMT for Doc-to-Code is the gen-
erated code with incorrect syntaxes [47]. For example, the condition
to throw StringIndexOutOfBoundsException, “if beginIndex is negative or
larger than the length of this String object”, would be translated
into beдinIndex < 0 | | > lenдth. The reason is that the subject
beginIndex do not need to be repeated for the part “larger than the
length of this String object”, however in source code, we need to have
beдinIndex > lenдth. To overcome that, we use tree-structured rep-
resentations for the texts for the BE conditions and for the source
code. For the API subString, the condition of the exception StringIndex-

OutOfBoundException to be thrown is either “the beginIndex is negative” or
“it is greater than the length of this string Object”. The conditions can
be expressed in two forms: texts in documentation (e.g., in English)
and expressions in source code (e.g., in Java logical expressions).

3.1 Document Clause Tree

We aim to convert the clause describing a condition (e.g., the condi-
tion “if” clause in the documentation) into a tree-structured form,
called a documentation clause tree. In a clause tree, the root and the
intermediate nodes are either the connective words “and” or “or”,
and the leaf nodes are simple logical clauses that cannot be broken
further into a conjunctive (via “and”) or disjunctive (via “or”) of any
other clauses. An example of a simple logical clause (simple clause
for short) is “beginIndex is negative”. Another example is “beginIndex is
larger than the length of this String object”. A simple clause often has
the syntactical structure of either NounPhrase VerbPhrase AdjectivePhrase

or NounPhrase VerbPhrase NounPhrase. On the other hand, a clause tree
represents a complex logical clause, representing a condition with
conjunction(s) and/or disjunction(s) among simple clauses and/or
other complex clauses. An example of a complex logical clause
(complex clause for short) is a clause tree rooted at an “or” node,
which has two children (Figure 3). The first child of the root is the
simple clause “beginIndex is negative” and the second one is the simple
clause “beginIndex is larger than the length of this String object”. The
algorithm to parse documentation into clause trees is in Section 4.1.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Hoan Anh Nguyen et al.

Figure 5 A Parse Tree.

3.2 Code Clause Tree

Weparse the code to build a tree for the condition for each exception.
The tree is adapted from the structure of a Java logical expression.
In this representation, which we refer to as a code clause tree, a leaf
node is an atomic Java logical expression that cannot be further
broken down into a conjunctive or disjunctive of any other logical
expressions. The root or an intermediate node is a logical AND (&&)
or a logical OR (| |) operator (see an example in Figure 4).

4 CLAUSE EXTRACTION ALGORITHMS

4.1 Extracting Documentation Clause Trees

Let us explain how StatGen parses an API documentation to
build the clause trees for relevant exceptions. For example, for
subString(beginIndex), the pair is StringIndexOutOfBoundException and the
clause tree in Figure 3. If the API method is relevant to multiple
exceptions, there are multiple pairs of exceptions and clause trees.

StatGen processes the tags throws and exception. For each tag, it
extracts the exception’s name and the condition clause after the
keyword “if” to build a clause tree for that exception. StatGen
first identifies the code elements embedded within the documenta-
tion such as the method’s arguments and fields, and replaces them
by special tokens CODE with indexes for their identifications. The
rationale for this step is that if they are kept intact, the names of
the code elements could be mistakenly treated as regular English
terms by the NLP parser to be used for text analysis later. Next,
StatGen uses the Stanford NLP tool [25] to parse the text into a
parse tree with the part of speech (POS) tagging. In the case of
comparative sentences, StatGen heuristically moves prepositional
phrases, e.g., “than the length...” to be a child of the node of the
related comparative adjective e.g., “greater” instead of being a child
of an adjective phrase as in the NLP parse tree. The parse tree for
our running example is shown in Figure 5.

Listing 1 shows the pseudo-code for our clause tree building
algorithm. It first decides if the given parse tree PT is the case of
a conjunction or disjuntion sentence. If it is the case, StatGen
identifies the corresponding connective word CC at the highest
level in the parse tree. The Stanford parser annotates such connec-
tive words with the label CC (coordinating conjunction). Then, an
intermediate node N is created in the resulting clause tree corre-
sponding to the operator for CC (i.e., either an “and” or “or” node).
For each subtree t rooted at theCC node of the given parse tree PT ,

Listing 1: Clause Tree Building Algorithm

1 function ClauseTree CTBuild (PT : ParseTree)
2 ClauseTree CT
3 if PT is a conjunction/disjunction sentence with a connective word CC
4 OP = convertIntoLogicalOperator(CC)
5 N = new ClauseTreeIntermediateNode (OP)
6 foreach subtree t rooted at CC of PT
7 if t is not a complete English clause , do t = Enhance(t)
8 CT = N ⊕ CTBuild (t)
9 else
10 LeafNode L = new LeafNode(textsOf(PT))
11 CT = new ClauseTree(L)
12 return CT
13
14 function Enhance (t , PT : ParseTree)
15 Identify the missing prefix or suffix of t in PT
16 Duplicate into the subtree p or s of the prefix / suffix
17 Connect t with p or s
18 return t

Figure 6 Implementation of java.util.ArrayList.

1 public class ArrayList<E> ... {
2 public E get(int index) {
3 rangeCheck(index);
4 return elementData(index) ;
5 }
6 ...
7 private void rangeCheck(int index) {
8 if (index >= size)
9 throw new IndexOutOfBoundsException(...) ;

10 }
11 ...
12 E elementData(int index) {
13 return (E) elementData[index];
14 }
15 ...
16 public int size () {
17 return size ;
18 }
19 }

we check whether t is a complete English clause (e.g., in the form
of either NounPhrase VerbPhrase AdjectivePhrase or NounPhrase VerbPhrase

NounPhrase). If it is not, we need to complete it by calling Enhance(t)

(line 7). In our example, the subtree for the phrase “larger than the
length of this String object” is not a complete English clause.

To complete the phrase with Enhance, StatGen first identifies the
missing prefix/suffix using the original parse tree PT . For example,
the missing prefix for the phrase above is “beginIndex is”, which cor-
responds to the subtrees marked as (NP (NN beginIndex)) and (VP (VBZ is)).
StatGen duplicates the subtrees and connects with the incomplete
phrase (line 17). For example, after enhancing, we have the parse
tree for “beginIndex is larger than the length of this String object”.
The subtree t after being enhanced becomes complete, is used in a
recursive call at line 8. Then, the result is formed by connecting the
new intermediate node N with the resulting clause tree returned
from the clause tree built by the recursive call on t . At lines 10–11,
if the given PT is not a conjunction or disjunction, StatGen creates
and returns the clause tree with a single leaf node containing the
entire texts of PT . Finally, the clause tree CT is returned.

ASE ’22, October 10–14, 2022, Rochester, MI, USA

Figure 7 The PDG of ArrayList.get(int) in Figure 6. Two sub-PDGs in
dashed boxes represent two methods called inside its body.

if

>=

index size

throw

return

cast

array

elementData index

ArrayList.rangeCheck(int)

ArrayList.elementData(int)

truefalse

cond

argarg

qual arg

arg

arg

sizeelementData

index

ref

ref

ref

statement

data

operation

control dependence

data dependence

Legend

false

false

ref

field field

arg0D1

D2

D3

D4

O1

S1

S2

4.2 Extracting Code Clause Trees

Let us explain how we build the clause trees for corresponding code.
We first build an intra-procedural PDG (iPDG) for the body of the
API. We inline the methods called in the iPDG (Section 4.2.1) and
partially evaluate the expressions with concrete values resulting
from method inlining (Section 4.2.2). We then extract the parts
of PDG that lead to exception exit points to construct the inter-
procedural EFG (Section 4.2.3). Finally, we collect the conditions
in the EFG to build the code clause trees of logical expressions
(Section 4.2.4). Next, let us provide the details of these steps.

4.2.1 Method Inlining. To be complete in detecting exceptional
flow paths, we need to perform inter-procedural analysis. The PDG
for the body of an API might contain calls to other methods whose
bodies contain control conditions and exception exit points. In Fig-
ure 6, the method get(index) calls rangeCheck(index) to check the control
condition index>=size before throwing an exception. In this work,
instead of supporting inter-procedural analysis, we inline the PDGs
of those callees to reveal all the conditions and exit points. The inlin-
ing process stops when there is no callee or the bodies of the callees
are not available, i.e., calling to a method in an external library or
calling to a native method. We also stop inlining if encountering a
recursive call. Inlining is realized through the connections of the
PDG дm of a methodm into the PDG д of its caller.

4.2.2 Partial Evaluation. When inliningдm inд, the calling context
of the methodm in its caller could help partially evaluate expres-
sions in дm . For example, substring(begin) calls substring(begin, end) in
its body and passes the field count as the second parameter in the
place of the formal parameter end. The exception handling occurs
in the body of substring(begin, end). Thus, during inlining, the expres-
sion end>count becomes count>count and can be evaluated to false. This
partial evaluation helps eliminate infeasible paths and/or simplify
the control conditions in detecting the exceptional flows.

4.2.3 Exceptional Flow Graph Extraction. After building intra-
procedural PDGs, performing method inlining, and partial eval-
uation, we extract the EFG. An EFG of an API is a slice of the
constructed PDG leading to all exception exit points. We consider
all throw and assert statements as exception exit points. We do not
consider method invocation nodes because they would or would
not lead to an exception. Using conditions along the paths that it
is not sure if they lead to exception would result in preconditions
stronger than needed.

4.2.4 Condition Abstraction. The preconditions extracted from the
implementation could be invisible from outside of the library, e.g.,
client code, due to information hiding. For example, we could get
header.next == header in which header is a private field. However, we aim
to derive general preconditions accessible from client code. There-
fore, we need to perform the abstraction step on the conditions.

Predicate Method Replacement. We overcome the above
problem by searching for a predicate method that is equivalent
to the expression containing a private member, and then replace
it. For example, the private field size on line 9 of Figure 6 can be
replaced with the predicate method size() (lines 17–19).

The search is performed by comparing the PDG of each expres-
sion with the PDG of each predicate method in the library (in case
that a predicate is a static method in another class). We only search
for predicate methods that have no side-effects. The attribute key is
used as label when comparing data nodes. We use an approximate
method [43] to efficiently compare graphs via vectors.

Argument Replacement. The variables/expressions passed as
parameters of an API could be named differently from the names of
formal arguments of the API. Thus, we abstract the formal argument
names by its position in the argument list. We use the symbolic
name argi to denote the i-th argument in the argument list of the API.
For example, the label index of node D1 is abstracted into arg0 because
it is the first argument of the API. We use the def-use relation via
the ref edges to identify the references of the arguments of the API
and abstract their names. For example, for the condition index>=size,
operation node O1 with two operands D2 and D4, will be abstracted
into arg0>=size because D2 refers to the first argument of the API call.

4.2.5 Condition Extraction and Clause Tree Building. We traverse
the EFG and collect the guard conditions leading to the exception(s).
The conditions are derived by negating these guard condition ex-
pressions. A condition is a single clause in the conjunctive normal
form of the negated logical expressions. Symbolic execution can
be used to better track the changes to the variables in a condition.
The clause of logical expressions is parsed into a clause tree (e.g.,
Figure 4). We discard the clauses having the API’s private members.

5 HYBRID TRANSLATIONWITH

STRUCTURAL & STATISTICAL INFERENCE

5.1 Background on Phrase-based SMT

We leverage a statistical machine translation (SMT) model (Figure 8)
in which the parameters of a statistical model are trained from a
corpus of source and translation texts [26]. In SMT, translation is
the process to produce a sequence t in the target language T from
a sequence s in the source language S , where t is the most likely

ASE ’22, October 10–14, 2022, Rochester, MI, USA Hoan Anh Nguyen et al.

Figure 8 Statistical Machine Translation [26].

Translation model Language model

Pre-
processing

Decoding
Post-

processing

P(s|t) P(t)

tbest = argmaxt P(t|s)

Code in
source

language

Doc in
target

language

Listing 2: Clause Tree Translation Algorithm

1 function DoctoCodeTranslate(Doc D)
2 ClauseTree T = BuildDocClauseTree(D)
3 ClauseTreeTranslate (T)
4 return T .unparseToCode()
5
6 function CodetoDocTranslate(Code C)
7 ClauseTree T = BuildCodeClauseTree(C)
8 ClauseTreeTranslate (T)
9 return T .unparseToDoc()
10
11 function ClauseTreeTranslate (ClauseTree T)
12 for each leaf node L in T
13 L.label = SMT(L.label)

sequence according to the translation and language models. The
language model specifies how likely sequence t occurs in the tar-
get language while the translation model specifies how likely two
sentences s and t co-occur in the corresponding texts of the two lan-
guages in the training corpus. Those two models in SMT maintain
the probabilities P(t) (probability of the sentence t occurring in the
target language) and P(s |t) for all possible sequences s and t (the
probability of the mapping between t and s). Those probabilities
are estimated from the training corpus of code and translated texts.
Once trained, the SMT model can be used for translation.

To apply SMT to our problem, first, for the language model on
the target side, we use the n-gram model. For training, the BE doc-
umentation and corresponding source code for each exception are
parsed to build the clause trees. StatGen then unparses the tree to
create the corresponding phrases (n-grams) between texts and code
to build the parallel corpus. For Doc-to-Code, the n-gram model is
used on the source code, while for Code-to-Doc, it is used on the
natural language texts for the BE documentation. The generating
probability of a unit in a sequence is dependent only on its local
context, i.e., a window called n-gram of n previously generated units.
Second, for the translation model, we use the phrase-based SMT.
More details on phrase-based SMT can be found in [26]. Next, let
us explain in details how we use SMT for our problem.

5.2 Hybrid Translation with Clause Trees

This section explains our algorithm to translate an API documen-
tation for a behaviorial exception into corresponding source code.
The pseudo-code for translation for each exception tag is displayed
in Listing 2. For the Doc-to-Code translation, StatGen first builds
the clause trees for the documentation as explained in Section 4.1. It
then performs a hybrid translation from each documentation clause
tree to a code clause tree ClauseTreeTranslate at line 11. The structure
of all the intermediate nodes remains the same and we use the SMT

Figure 9 An inconsistency between the documentation and imple-
mentation of an exception in JDK 1.8.

1
2 /∗ ∗ ...
3 ∗ ??param pos the position of the selected item
4 * ??exception IllegalArgumentException if the specified
5 ∗ position is greater than the
6 ∗ number of items or less than zero ... ∗/
7 public synchronized void select (int pos) {
8 if ((pos >= pItems. size ()) || (pos < 0)) {
9 throw new IllegalArgumentException(" illegal ␣Choice␣item␣ position : ␣ " +

pos) ;
10 }
11 if (pItems. size () > 0) {
12 selectedIndex = pos;
13 ChoicePeer peer = (ChoicePeer) this .peer ;
14 if (peer != null) {
15 peer . select (pos) ;
16 } ...

model (Figure 2) to perform the translation for the text of each leaf
node. The label of an intermediate node is also converted (e.g. or to
||). For example, the doc clause tree in Figure 3 is converted into the
code clause tree in Figure 4. StatGen performs Code-to-Doc trans-
lation in the same manner. At line 13, the label represents either the
text of a leaf node in a documentation clause tree or the expression
of a leaft node in a code clause tree. Finally, the translated clause
tree of each exception is unparsed and the result is returned.

6 CONSISTENCY CHECKINGWITH STATGEN

Let us present an application of StatGen in checking the consis-
tency between BE documentation and source code. In principle,
the documentation and implementation of an API method must
be consistent (i.e., having the same intent). However, the consis-
tency is not always maintained in practice. For example, Figure 9
shows an inconsistency between the BE documentation and the
implementation in the class java.awt.Choice of JDK 1.8. Especially, in
this example, the BE documentation (lines 2–5) describes that an
exception (IllegalArgumentException) is made if the argument position’s
value is greater than the number of items or less than 0. This means
that an IllegalArgumentException is thrown when the value of parameter
pos satisfies the condition (pos > pItems.size()) || (pos < 0). This condition is
inconsistent with the actual implementation (lines 7–9), in which
the condition to throw the exception is (pos >= pItems.size()) || (pos < 0).
The inconsistency between BE documentation and implementa-
tion might lead to API misuses and security vulnerabilities [41].
Therefore, there is a need to have an automated tool to detect such
inconsistency between BE documentation and implementation.

In general, to check such consistency, our algorithm first trans-
forms the two abstractions to the same representation level. In this
work, this has been done by using StatGen to generate source
code from the API BE documentation. The consistency between
them is formally verified by checking the equivalence of the actual
implementation and the generated code.

Listing 3 describes our inconsistency checking algorithm. Given
an API method (e.g., the example in Figure 9), it first extracts the
documentation and implementations of the behavioral exceptions

ASE ’22, October 10–14, 2022, Rochester, MI, USA

Listing 3: Consistency Checking Algorithm

1 function CheckConsistency (APIMethod m) {
2 doc = ExtractExceptionDoc (m)
3 impl = ExtractExceptionImpl (m)
4 if (NotReferToSameExpr (doc , impl)) return false
5 Exceptions = PairDocImpl (doc , impl)
6 for all e ∈ Exceptions
7 дenImpl = GenerateImplementation (e .doc)
8 actExp = ToLogicExpr (e .impl)
9 дenExp = ToLogicExpr (дenImpl)
10 if NotEquivalent (actExp , дenExp) return false
11 return true

(line 2 and line 3). In this example, there is only one exception doc-
umentation and one implementation: the text in Javadoc from lines
2–5 and the code fragment from lines 7–9. To check the consistency
between documentation and source code, the algorithm inspects
the consistency in the set of exceptions referred by the documenta-
tion and the code (line 4). Then, for each exception, the algorithm
checks the consistency between the precondition described by the
documentation and the condition expression implemented by the
source code (lines 5–10). Note that before checking the consistency
for each exception, in line 5, the algorithm pairs each exception’s
documentation and its corresponding source code.

In order to check the consistency between the precondition and
the actual implemented condition expression for an exception, Stat-
Gen generates a condition expression from the precondition in its
documentation. In the running example, the generated condition for
the case of an IllegalArgumentException being thrown is ((pos > pItems.size())

|| (pos < 0)). After that, in order to formally check the consistency, the
generated implementation and the actual code are transformed to
the logic expressions, Φдenerated and Φactual . For the example,
we have the following

Φдenerated (pos,pItems_size) = [(pos > pItems_size) ∨ (pos < 0)]

Φactual (pos,pItems_size) = [(pos ≥ pItems_size) ∨ (pos < 0)]
Finally, to examine the equivalence of Φдenerated and Φactual , we
use the SMT-solver Z3 [13]. For the running example, the first order
logic expression that needs to be checked is:

∀ pos ∀pItems_size Φдenerated (pos,pItems_size) ⇐⇒

∀pos ∀pItems_size Φactual (pos,pItems_size)
The result on the equivalence of Φдenerated and Φactual from

the SMT solver indicates the consistency between the BE documen-
tation and implementation.

7 EMPIRICAL EVALUATION

To evaluate StatGen, we seek to answer the following questions:
RQ1.[Intrinsic Evaluation]: Code-to-Doc. How well does
it generate BE documentation compared with the state-of-the-art
models?
RQ2.[Intrinsic Evaluation]: Doc-to-Code. How well does
it generate code from BE documentation compared with existing
models?
RQ3.[Extrinsic Evaluation]. Usefulness. How accurately does
StatGen generate behavioral exception documentation for equiva-
lent code in JDK and Apache whose documentation is missing?

RQ4.[Extrinsic Evaluation]. Usefulness. How useful is Stat-
Gen’s generated behavioral exception documentation in checking
the consistency between documentation and source code?

7.1 Experimental Methodology

We followed the five experiment steps described inWohlin et al. [66]:
scoping, planning, execution, analysis, and result presentation to
conduct the experiments to answer the aforementioned research
questions. Let us first start with the data collection.

To train the SMT model, we built a parallel corpus of BE source
code-documentation pairs, comprising the method implementa-
tions and their JavaDoc documentation from Java Development Kit
(JDK, jdk1.8.0_91). In total, we parsed 1,869 JDK classes with 6,802
methods. For the Javadoc of each method, we processed the @throws

and @exception descriptions. For each method implementation, we
constructed a Program Dependence Graph (PDG). In the PDG, con-
sidering all throw statements as exception exit points, we collected
all conditions along a slice of the PDG that leads to such exit points.
Such a slice of the PDG is referred to as the Exceptional Flow Graph.
We follow the exception flow analysis technique in Allen and Hor-
witz [2]. We then build the document and code clause trees. We
unparse the clause trees to form BE code-documentation pairs. The
methods without BE specification were discarded. Overall, we have
1,524 pairs: 1,371 pairs (90%) of which are used for training the
n-gram and mapping models; and 153 pairs (10%) are used for test-
ing. In our experiments, we use Phrasal SMT [10] (n=7). StatGen
is general for any phrase-based SMT. n=7 is the default value in
Phrasal. If n >7, the number of phrases increase significantly. If n
< 7, the phrases might be too short to capture the clauses.

We chose the following baselines including the rule-based NLP,
Statistical Machine Translation, and Deep Learning approaches:

1) Phrase-based SMT in Phan et al. [47] (SMT, sequence, no code
structure considered, both translation directions); (RQ1, RQ2),

2) Dual-task learner [62] (seq2seq LSTM, dual-task learning, no
structure considered, both directions); (RQ1, RQ2),

3) Hybrid-DeepCom [22] (neural machine translation with
encoder-decoder, attention, code structure considered, code-to-doc)
(RQ1),

4) TreeGen, a tree-based transformer [56] (AST structure, atten-
tion mechanism of Transformer, doc-to-code) (RQ2),

5) Jdoctor [8], a rule-based, Doc-to-Code approach (pre-defined
rules for lexical and semantic matching of texts) (RQ2),

6) Zhou et al. [71], a rule-based model, is used for RQ4 (consis-
tency checking). It does not explicitly generate BE code, thus, we do
not compare it in RQ2. The tools in 1–5 do not check consistency.

7.2 Infer BE Documentation from Code (RQ1)

For the test set constructed with the randomly-selected BE code-
documentation pairs, we compared the translated sequences (re-
sults) with the corresponding Javadoc sequences (references). We
compute the longest common subsequence (LCS) to assess the
similarity between the result and reference sequences while con-
sidering their token order. Utilizing LCS, we report two evaluation
metrics, Precision and Recall, which are formulated as follows:
Precision = |LCS |

|Result | , Recall =
|LCS |

|Ref erence | . They are accumula-
tively computed for all the sequences in the testing pairs. High

ASE ’22, October 10–14, 2022, Rochester, MI, USA Hoan Anh Nguyen et al.

Table 1: Code-to-Documentation Inference Result.

LG LR Pre. Rec. BLEU Match Same Close Incor

Phan et al. SMT [47] 12 8 58% 79% 43% 27% 12% 25% 36%
Dual-Task Learner [62] 12 8 61% 70% 30% 23% 13% 10% 54%
Hybrid-DeepCom [22] 12 8 62% 73% 35% 25% 15% 11% 49%

StatGen 10 8 75% 81% 56% 41% 7% 15% 37%

Figure 10 Examples of “Same”/“Close” Generated Documentation.

Generated: if horizon be less than 0 throw IllegalArgumentException
Reference : if horizon be negative throw IllegalArgumentException

Generated: if key or value be null throw NullPointerException
Reference : if value be null throw NullPointerException

Recall means that the generated sequences cover more words in
the references in the right order. High Precision means that more
words in the generated sequences are in the correct order.

We also measured BLEU score (0–1), a popular NLPmetric measur-
ing translation accuracy of all possible phrases with various lengths.
Specifically, BLEU = BP .e

1
n (log P1+...+log Pn). Pi is the metric mea-

suring the overlapping between the bag of i-grams appearing in the
results and that of i-grams appearing in the references. BP equals
to the ratio between the two lengths. We also manually compared
the semantics of the generated documentation with the references
with four categories: (1) the ones that are textually matched with
the references; (2) the ones that are not exactly matched but have
the same semantics; (3) the ones that are semantically close with
the reference and need slight modification for correction; and (4)
the ones that are incorrect or have totally different semantics.

As seen in Table 1, StatGen achieves precision of 75%, recall
of 81% and BLEU score of 56% in Code-to-Doc. The lengths of the
generated documentation sequences (LG) are close to those of the
references (LR). In terms of semantic accuracy, 48% of generated
documentations are correct, 41% of which are exactly matched with
the expected. In 7% cases, the generated documentation contains
phrases having the same semantics as in references even though
they are not lexically matched. For example, we generated the
phrase “less than 0” while the text in the reference is “negative” as
shown in Figure 10. There are 15% of generated sentences that are
semantically close to the references. For those cases, deleting or
adding a few words, or renaming an identifier to match with an
argument name of the API would make them correct (Figure 10).

Compared with Phan et al. [47], StatGen improves relatively
across all evaluation metrics: 29.3% in Precision, 2.5% in Recall,
and 30.2% in BLEU. These improvements can be attributed to Stat-
Gen’s design choice of leveraging structures in both documentation
sentences and code, which is not the case with Phan et al. [47].

Compared with the Dual-task learning model [62], StatGen
observes also high relative improvements: 22.9%, 15.7%, and 86.6%
in Precision, Recall, and BLEU score. Upon examining the results, we
see that similar to the results from Phan et al. [47], many generated

documentation sentences are grammatically incorrect and mean-
ingless. Despite supporting forward and back-translation, both
baselines (Phan et al. [47] and Dual-task learning [62]) with their
sequence representations are inadequate in learning the structure
in sentences and source code, and consequently, the mappings be-
tween them. In contrast, StatGen parses both texts and source
code, and maps the structures. This reduces the cascading effect of
incorrect learning and mapping of structures.

Compared with Hybrid-DeepCom [22], StatGen relatively im-
proves 20.9%, 10.9%, and 60% in Precision, Recall, and BLEU score,
respectively. Unlike Phan et al. [47] and Dual-task learning [62],
Hybrid-DeepCom [22] does consider structure, but only on the
source code side, and not for the document sentences. This is one
of the potential reasons for the lack in performance.

Importantly, the lack of training data (only 1,371 pairs) is a factor
making those deep learning-based models (i.e., the dual-task learner
[62] and tree-based neural machine translation in Hybrid-DeepCom
[22]) less accurate than StatGen. StatGenmakes explicit the trans-
lations of structures in documentation and code, and leverages the
phrase-based SMTmodel to learn the mappings of the short phrases.
Thus, with the divide-and-conquer strategy, SMT-based StatGen
does not need as much data as those DL models.

The attention mechanism in Hybrid-DeepCom [22] (Table 1),
also would not improve much due to the lack of training data.

Moreover, except Phan et al. [47], all the above DL models serve
the general purpose of code-to-text translation, rather than target-
ing and exploring the structures in BE documentation and source
code. For this problem, StatGen learns to build the document clause
trees in BE documentation and code structures and map them to
reduce the incorrect mappings between the structures in two sides.

7.2.1 Ability to learn the mappings between words and code tokens.
To study the knowledge that StatGen learned, we examined the
mapping table produced as the by-product of model training. We fo-
cused on the mappings of operators and methods’ argument names
that are used in the conditions of exception behaviors. First, we
examined 9 operators, including conditional, unary, equality, and re-
lational operators in Java. We manually checked the corresponding
mapping phrases for those operators in the mapping table produced
by Phrasal SMT. If a phrase is a correct description of an operator,
we note that as a correct one in the resulting list. We found that
StatGen produced the correct descriptions of 8 out of 9 operators at
the top rank, which gives the top-1 accuracy of 89%. Top-2 accu-
racy and top-3 accuracy are also 89%. All correct results of these
operators are in top-4 mappings.

Second, we randomly examined 100 identifiers used as the argu-
ment names of API calls and were used in the conditions leading to
exceptions. StatGen achieves 76% top-1 accuracy, i.e., in 3 out of
4 cases, it maps the identifiers in the code to the correct names in
Javadoc at the top rank. It maps almost all the names correctly at
top-3 positions and maps them all correctly at top-7 positions.

7.3 Infer Code from BE Documentation (RQ2)

We trained StatGen in the Doc-to-Code direction. With an in-
dependent test set of 153 randomly-selected documentation-code
pairs as the input of the trained model, we generate the corre-
sponding code sequences and compare against the references. As

ASE ’22, October 10–14, 2022, Rochester, MI, USA

Table 2: Documentation-to-Code Inference Result.

LG LR Pre. Rec. BLEU Match Same Close Incor

Phan et al. [47] 18 17 76% 77% 57% 29% 2% 18% 52%
Jdoctor [8] 21 17 68% 65% 48% 19% 4% 16% 61%
Dual-Task Learner [62] 23 17 60% 59% 26% 11% 3% 10% 76%
TreeGen [56] 22 17 61% 69% 42% 18% 5% 18% 59%

StatGen 18 17 75% 84% 63% 47% 4% 12% 37%

in Section 7.2, we use the same metrics: Precision, Recall, and BLEU

score. Precision = |LCS |
|Result | , Recall =

|LCS |
|Ref erence | . The generated

code is treated as the sequence of code tokens and LCS is computed
on the sequences. The rationale is that those metrics are applicable
to all compared models. Any structure-aware metric will not work
for the baselines that do not consider code structures.

As seen in Table 2, StatGen achieves high accuracy of 75%
precision, 84% recall, and 63% BLEU score. For semantic accuracy,
51% generated code fragments are correct, 47% of which are exactly
matched with the references and 4% others have the same semantics
as expected. Such an example is shown below: StatGen generates
the sequence !(size > 0) while the reference is size <= 0.

Generated: if (! (size > 0)) throw new IllegalArgumentException () ; (1)
Reference : if (size <= 0) throw new IllegalArgumentException () ;

There are 12% of generated code fragments that have semantics
close to the references. All of them have syntax errors. Deleting
or adding a punctuation or a few tokens, or renaming an identifier
to match with an API’s argument name would make them correct.
In the example below, one needs to rename index to fromIndex and
replace the redundant tokens at the end with a semi-colon.

Generated: if (index < 0) throw new IndexOutOfBoundsException () != null) if ((2)
Reference : if (fromIndex < 0) throw new IndexOutOfBoundsException () ;

Compared with Phan et al. [47], StatGen relatively improves
9.1% and 10.5%, in Recall and BLEU. Examining the result, more
generated code is syntactically incorrect for Phan et al. [47] since
it treats source code as sequences.

Compared with Jdoctor [8], StatGen improves relatively 10.3%,
29.2%, and 31.2% in Precision, Recall, and BLEU score. We examine
the results and found that the inaccuracy with Jdoctor is due to 1)
its specificity of the lexical/semantic patterns of texts, 2) the lack of
rules in handling complex cases, e.g., “if the length of the subtring
is smaller than or equal to the length of this string”. StatGen’s
document clause parser handles well such complex cases.

Compared with Dual-Task Learner [62], StatGen improves rela-
tively 25%, 42.4%, and 142% in Precision, Recall, and BLUE score.

Comparedwith TreeGen [56], a tree-based transformer, StatGen
also observes high relative improvements: 22.9%, 21.7%, and 50% in
Precision, Recall, and BLUE score.

The Dual-Task Learner [62] treats both code and documentation
as sequences of tokens. In contrast, TreeGen [56] considers code
structure, but not the structure of the sentences in BE documenta-
tion. Thus, both models are burdened with implicitly learning of
the text and code structures and the mappings between them. This
further raises the need for more training data, which is not available

Table 3: User Study Result.

Correct Good Start Not Sure SWIncor Incorrect Total
Number 48 45 4 6 5 108

Percentage 44% 42% 4% 6% 4% 100%

for this BE documentation. In contrast, StatGen, which considers
structure for both code and documentation, and uses a significantly
less complex ML algorithm, is more suitable and effective.

8 GENERATING DOCUMENTATION FOR

UNDOCUMENTED API METHODS (RQ3)

This section presents an experiment to show StatGen’s usefulness
in documentation generation. We used StatGen to generate the
behavior exception documentation for Apache APIs that lack docu-
mentation by learning from the BE documentation of the equivalent
APIs in JDK.We first trained Code-to-Doc model with all 1,524 pairs
of JDK API methods, and derived the BE documentation for all API
methods in apache.commons.collections that do not have pre-condition
documentation. Since they do not have documentation, we cannot
use Precision, Recall, or BLEU score. Thus, we used human judge-
ment on the BE documentation generated by StatGen.We recruited
three human subjects with several year experience on specification,
JDK library, and Javadoc to evaluate the result.

For preparation, each human subject was shown an example of an
JDKmethod (Figure 6) alongwith the documentations that StatGen
created for that API. We then pre-selected the correct answer (based
on the ground-truth) and explained why it is “correct”, “a good
starting point”, “not sure”, “somewhat incorrect”, and “incorrect”.
“Correct” means that the documentation can be used as-is (Figure 1).
“Good starting point” means that it needs small changes to be used
in a documentation, such as changing a comparison operator from
strict to non-strict (Example (1), Section 7.3). “Incorrect” means that
the condition is totally irrelevant in writing the documentation.
“Somewhat incorrect” means that the generated documentation
requires more changes for correction (Example (2), Section 7.3).

Next, each subject was shown a method and the generated doc-
umentation. (S)he was asked to rate the result and also given an
opportunity to write general comment. In total, (s)he rated 108 ran-
domly selected documentation for 108 API methods in Apache. For
the cases that the ratings from three human subjects were different,
they had a discussion to reach a consensus.

As seen in Table 3, the human subjects rated 44% of the results as
correct. While other results are not entirely correct, 42% of them are
deemed to be a good starting point for the human subject to begin
writing the BE documentation. Excluding the not-sure responses,
only 10% of the results were deemed to be incorrect and somewhat
incorrect. Only 4% are considered to be totally irrelevant. In other
words, 86% of the results are considered as correct and useful.
Examples. Here are some useful and somewhat-useful examples:

(1) IndexOutOfBoundsException (index is less than 0 or index is greater than size())
(2) NoSuchElementException (there be no setNextObject())

ASE ’22, October 10–14, 2022, Rochester, MI, USA Hoan Anh Nguyen et al.

Table 4: Inconsistency Checking for Packages in javax.

package SQL XML Lang Sec Util Management Others Total

pairs 150 178 122 180 520 178 2,228 3,557

The first one is inferred for getValue(int) in LinkedMap of
org.apache.commons.collections.map. The human subject rated it as cor-
rect since it reflects correctly the conditions in the code. The
second example is inferred for next() of the FilterIterator class
from org.apache.commons.collections.iterators. The inferred documenta-
tion states that NoSuchElementException will be thrown if there is no
setNextObject(), whereas, the expected condition for the API is that if
nextObjectSet returns false and not followed by an invocation to setNextOb-

ject(), NoSuchElementException is thrown. As the inferred documentation
is partially correct and close to what is expected, the human subjects
rated it as somewhat correct.

9 CONSISTENCY CHECKING (RQ4)

This section presents another StatGen application in detecting the
inconsistencies between BE documentation and implementations
of several packages in JDK8. We compared it against the state-of-
the-art approach by Zhou et al [71], which follows rule-based NLP.
We used the same testing dataset and ground truth used in their
work. The dataset includes the code and Javadoc documentation
on the core packages in JDK. We ran StatGen with the detection
algorithm in Listing 3 on the dataset. Because Zhou et al. [71]’s
technique works for general documentation, we only compared
the tools on BE documentation and source code. Specifically, we
compared the consistency checking only for the pairs of@exception
or @throw TagElement in documentation and the corresponding throw
statements in the source code that handle the same exceptions. We
also considered the cases where the documentation of an API is
inherited from the parent class. Thus, if a tool sees the Javadoc tag
@inheritDoc, it will consider the description in the parent class.

We use all the pairs of exception conditions between documen-
tations and implementations extracted from API methods in JDK8
core packages (under java) as the parallel corpus to train StatGen.
Finally, we have the dataset (Table 4) containing 3,557 methods that
have both Javadoc documentations describing exception behaviors
and implementation code throwing the matched exceptions.

Because we evaluate StatGen in consistency checking and for
comparison, we use the same metrics as in Zhou et al. [71] (rather
than the metrics in RQ1). Thus, Precision_Det is defined as the ratio
between the number of cases that a tool correctly detected as incon-
sistency over the total number of detected cases. Recall_Det is com-
puted as the ratio between the number of cases that a tool correctly
detected as inconsistency over the total number of inconsistent
cases. F-score is the harmonic mean of the two metrics: F-score =
2 × Precision_Det × Recall_Det/(Precision_Det + Recall_Det).

9.1 Results for All Packages

As seen in Table 5, StatGen improves with 27% more correct and
28%more complete result than the rule-based model Zhou et al. [71].

9.1.1 Correct Cases. As the first example, with the ex-
ception IllegalArgumentException thrown in the constructor

Table 5: Consistency Checking Result.

Precision_Det Recall_Det F-score
Zhou et al. [71] 36% 62% 46%

StatGen 63% 90% 74%

Table 6: Result for each Package in javax.

package SQL XML Lang Sec Util Manage Total

Precision_Det 88% 84% 82% 61% 65% 64% 71%

Recall_Det 93% 81% 78% 81% 85% 75% 82%

F-score 90% 83% 80% 70% 75% 69% 76%

LoggingPermission(String,String) in package java.util.logging, the doc-
umentation is "name empty or argument invalid". StatGen
produces the code (name.equals("") || actions != null). The implementation
is inconsistent with this formula.

For the API insert(int,String) of the class java.lang.AbstractStringBuilder,
the documentation states the condition for exception throwing is
“the offset invalid”. For this case, StatGen produced (offset < 0 || offset

> length()), which is consistent with the implementation. However,
Zhou et al. [71] converts the phrase into the predicate UnRecog-

nized(offset) using heuristics on phrase matching. Eventually, their
tool decided on an inconsistency, leading to a false positive case.

For the API RoleUnresolvedList(List) in the package javax.management,
the exception condition of IllegalArgumentException is described as "list
parameter null or list parameter contains any non-RoleUnresolved
object". However, in the implementation, the condition is only list

== null. StatGen is able to detect and report that inconsistency.

9.1.2 Incorrect Cases. We also investigated incorrect/incomplete
cases. An example of incomplete documentation is from the API
java.lang.Throwable.setStackTrace(StackTraceElement[]). The condition defen-

siveCopy[i] == null, which causes NullPointerException, is not described in
the documentation. That is, the documentation missed the descrip-
tion on "stackTrace is null or any element of stackTrace is null".

We additionally studied the false positive cases. We found that
the documentations in those cases are too abstract and vague. For
example, the documentations for some APIs state a condition as
“null parameter”. The translated result is often not correct. To over-
come this, one could encode such case in a rule for post processing
in order for the model to produce a better translation by updating
the correct parameter in the translated results.

One common source of false negative cases is out-of-vocabulary
units, in which StatGen cannot find the translation, mainly because
it has not encountered the texts in the input documentation. There-
fore, it cannot determine the inconsistency. An example is the case
of the API base64toInt(char) of the class javax.management.remote.rmi.RMICon-

nector. The documentation is unique in our dataset. In such cases,
training with a larger data can help StatGen observe similar ones.

Note that while Zhou et al. [71] is capable of handling several
types of API document directives, for comparison with StatGen,
we ran it only on exception handling. That is the reason for the
differences between our reported results (Table 5) and the ones in
their paper (in which their model was run on all types of directives).

ASE ’22, October 10–14, 2022, Rochester, MI, USA

Table 7: Accuracy for Different Condition Types.

Type Precision_Det Recall_Det F-score
NullnessNotAllow 67% 79% 72%
NullnessAllow 80% 100% 89%
RangeLimit 68% 93% 78%
TypeRestrict 60% 100% 75%
OtherType 75% 80% 78%

9.2 Results for Individual JDK Packages

We further analyze StatGen’s performance on each JDK package
(Table 6). The accuracy for javax.management is lower than others
because the documentation contains too abstract sentences such
as “null parameter”. In contrast, StatGen performs well on javax.sql

when the texts in documentation are quite standard English. Stat-
Gen was able to use its parsing to produce correct clause trees,
leading to better inconsistency detection.

We also analyzed the result according to different condition types
for exceptions. Zhou et al. [71] classify the documentation/specifi-
cation into different types that can cause exceptions. For example,
NullnessNotAllow and NullnessAllow refer to the conditions in which the
parameters of the API method is allowed to be null or not. RangeLimit

refers to the conditions on the range limits on the values of the
parameters. TypeRestrict refers to the restrictions on the types of the
parameters of an API. Zhou et al. [71] used different heuristics to
detect each type. In contrast, StatGen follows a NLP process to
generally parse and translate the documentation into code without
pre-defined heuristics for each type of condition. As seen in Table 7,
StatGen’s accuracy for all condition types are quite stable from
72-89% F-score. In other words, StatGen is quite effective across
all different condition types for exception behaviors.

9.3 Threats to Validity

Our experiments were run on Javadoc, however, our method is
general. In future, we will evaluate on other documentation for-
mats and programming languages. Our experiments were only on
two libraries. We will evaluate on other libraries. The selection
of 10% test set might affect the generalization of our results. Our
RQ3 experiment was with three human subjects. Despite strong
indications from the subjects via the high usefulness ratings, a
larger-scale survey would further help in establishing StatGen.

10 LESSONS LEARNED

In this section, we present our lessons learned from building Stat-
Gen. NLP tools such as phrase-based SMT and Stanford parsers are
well-equipped to handle textual documents. However, they fall short
while applying them directly to software documentation and source
code. First, software documentation has code elements embedded
within the texts. Such embedded code elements need to be handled
separately before feeding them into an SMT model because they
refer to the parameters in the APIs. Second, condition expressions
in source code have structures. Representing code as regular texts,
phrase-based SMT did not work well as we showed via StatGen’s
improvement in performance over Phan et al. [47]. Third, while
a translation model for texts is sufficient with phrase-to-phrase

mappings, for source code and software documentation, more cus-
tomization is required. Specifically, phrase-based translation works
better in the divide-and-conquer fashion where it applies to sub-
structures and the translated pieces are merged accordingly into the
structure. The techniques used in StatGen provide good lessons
for such customizations of SMT for text↔ code problems. Finally,
in future work, the customized SMT model is desirable to handle
the direct translation from text structure to code structure.

11 RELATEDWORK

StatGen is closely related to the work by Phan et al. [47]. In com-
parison, Phan et al. [47] do not consider the internal structure of API
documentation and that of source code. The dual-task learner [62]
also works in both directions between texts and code, however, it
uses only sequences. TreeGen [56], a tree-based transformer, lever-
age code structure for code generation but does not use the clause
structures in documentation. Sun et al. [55] generate code by in-
tegrating grammar rules of programming languages, but not for
texts. Similarly, Hybrid-DeepCom [22] does not leverage sentence
structures in generating code comments. Those text-to-code and
code-to-text DL models [19, 20, 22, 23, 38, 49, 55, 62] require large
training data and are not designed for BE documentation. Moreover,
they are not effective in a low-data setting as with this problem.

Jdoctor [8] and its earlier work, Toradocu [18], are rule-based
NLP approaches. Toradocu works for exception conditions, while
Jdoctor supports more conditions. Jdoctor does not support Code-to-
Doc. The nature of SMT enables StatGen work in both directions.

In Zhou et al. [71], Javadoc is analyzed and compared against the
source code to detect inconsistencies. In comparison, their approach
uses heuristics on the patterns of sentences in API documentation to
classify them into pre-defined categories such as NullAllow, Range-
Limit, etc. StatGen uses a generative approach in SMT without
heuristics and pre-defined categories. Tan et al. [57] use NLP to
analyze API Javadoc to produce test cases to detect inconsistencies.
While their approach and ours use NLP to parse the documentation,
we do not use NLP rules and patterns as in their work.

C2S [69] translates natural language comments into formal pro-
gram specifications. It constructs the alignments between natural
language word and specification tokens from existing comments
and their specifications via NLP rules. StatGen performs structure
mappings from both sides and use SMT for clause translation. Mah-
mud et al. [39] performed a comparative study on three source code
summarization models. They provided insights on the relations
between metric-based performance and model prediction errors.

The approaches on deriving API specifications from source code
come from two areas: program analysis and mining software reposi-
tories (MSR). Several static analysis approaches [9, 14, 27, 30, 50, 53,
63, 68] analyze the code statically to derive the conditions, however,
suffers the high false positive results due to the overestimation of
static analysis. Specification mining approaches relying on dynamic
analysis [3–7, 15, 17, 28, 29, 33–37, 40, 46, 51, 52, 64] are often in-
complete due to the incomplete test cases to reveal the conditions.
MSR techniques use the principle of frequently used patterns as
correct conditions. However, they focus on usage orders and tempo-
ral orders of APIs [16, 31, 32, 44, 48, 58, 60, 61, 65, 67, 70]. SMT has
also been used in software engineering problems [21, 24, 45, 59].

ASE ’22, October 10–14, 2022, Rochester, MI, USA Hoan Anh Nguyen et al.

12 CONCLUSION

In conclusion, we present a novel hybrid direction of statistical+stru-
ctural machine translation to support the inference between BE
documentation and implementations. Our empirical results showed
that StatGen achieves high accuracy in inferring BE documenta-
tion from source code and vice versa. While our currently used
phrase-based SMT achieves high results, more customization on the
mapping and language models are needed to accommodate more
formal specifications and source code. A combination of a model
for formal languages and a statistical language model is a good
direction. With respect to mapping algorithms, a structure-based
mapping model, e.g., tree-to-tree could improve the performance.

ACKNOWLEDGMENTS

This work was supported in part by the US National Science Founda-
tion (NSF) grants CNS-2120386, CCF-1723215, CCF-1723432, TWC-
1723198, and the US National Security Agency (NSA) grant NCAE-
C-002-2021 on Cybersecurity Research Innovation.

REFERENCES

[1] 2022. Statgen. https://nguyenhoan.github.io/statgen/
[2] Matthew Allen and Susan Horwitz. 2003. Slicing Java Programs That Throw and

Catch Exceptions. In Proceedings of the 2003 ACM SIGPLAN Workshop on Partial
Evaluation and Semantics-Based Program Manipulation (PEPM ’03). Association
for Computing Machinery, 44–54. https://doi.org/10.1145/966049.777394

[3] Glenn Ammons, Rastislav Bodík, and James R. Larus. 2002. Mining Specifications.
In Proceedings of the 29th ACM SIGPLAN SIGACT Symposium on Principles of
Programming Languages (Portland, Oregon) (POPL ’02). ACM, 4–16. https:
//doi.org/10.1145/503272.503275

[4] Ivan Beschastnikh, Yuriy Brun, Jenny Abrahamson, Michael D. Ernst, and Arvind
Krishnamurthy. 2013. Unifying FSM-inference Algorithms Through Declarative
Specification. In Proceedings of the 2013 International Conference on Software
Engineering (ICSE ’13). IEEE Press, 252–261.

[5] I. Beschastnikh, Y. Brun, J. Abrahamson, M. D. Ernst, and A. Krishnamurthy. 2015.
Using Declarative Specification to Improve the Understanding, Extensibility,
and Comparison of Model-Inference Algorithms. IEEE Transactions on Software
Engineering 41, 4 (April 2015), 408–428.

[6] Ivan Beschastnikh, Yuriy Brun, Michael D. Ernst, and Arvind Krishnamurthy.
2014. Inferring Models of Concurrent Systems from Logs of Their Behavior with
CSight. In Proceedings of the 36th International Conference on Software Engineering
(ICSE 2014). ACM, 468–479.

[7] Ivan Beschastnikh, Yuriy Brun, Sigurd Schneider, Michael Sloan, and Michael D.
Ernst. 2011. Leveraging Existing Instrumentation to Automatically Infer Invariant-
constrained Models. In Proceedings of the 19th Symposium on Foundations of
Software Engineering (Szeged, Hungary) (ESEC/FSE ’11). ACM, 267–277. https:
//doi.org/10.1145/2025113.2025151

[8] Arianna Blasi, Alberto Goffi, Konstantin Kuznetsov, Alessandra Gorla, Michael D.
Ernst, Mauro Pezzè, and Sergio Delgado Castellanos. 2018. Translating Code
Comments to Procedure Specifications. In Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA 2018). ACM,
242–253.

[9] Raymond P.L. Buse and Westley R. Weimer. 2010. Automatically Documenting
Program Changes. In Proceedings of the IEEE/ACM International Conference on
Automated Software Engineering (ASE ’10). ACM, 33–42.

[10] Daniel Cer, Michel Galley, Daniel Jurafsky, and Christopher D. Manning. 2010.
Phrasal: A Statistical Machine Translation Toolkit for Exploring New Model Fea-
tures. In Proceedings of the NAACL HLT 2010 Demonstration Session. Association
for Computational Linguistics, Los Angeles, California, 9–12.

[11] Xinyun Chen, Chang Liu, and Dawn Song. 2018. Tree-to-Tree Neural Net-
works for Program Translation. In Proceedings of the 32nd International Confer-
ence on Neural Information Processing Systems (NIPS’18). Curran Associates Inc.,
2552–2562.

[12] Barthélémy Dagenais and Martin P. Robillard. 2010. Creating and Evolving
Developer Documentation: Understanding the Decisions of Open Source Con-
tributors. In Proceedings of the Eighteenth ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE ’10). ACM, 127–136.

[13] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In
Proceedings of the Theory and Practice of Software, 14th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (Budapest,
Hungary) (TACAS’08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg, 337–340.
http://dl.acm.org/citation.cfm?id=1792734.1792766

[14] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf.
2001. Bugs As Deviant Behavior: A General Approach to Inferring Errors in
Systems Code. In Proceedings of the Eighteenth ACM Symposium on Operating
Systems Principles (Banff, Alberta, Canada) (SOSP’01). ACM, 57–72. https://doi.
org/10.1145/502034.502041

[15] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. 1999.
Dynamically Discovering Likely Program Invariants to Support Program Evolu-
tion. In Proceedings of the 21st International Conference on Software Engineering
(Los Angeles, California, USA) (ICSE’99). ACM, 213–224. https://doi.org/10.1145/
302405.302467

[16] Mark Gabel and Zhendong Su. 2008. Javert: Fully Automatic Mining of General
Temporal Properties from Dynamic Traces. In Proceedings of the 16th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (Atlanta,
Georgia) (SIGSOFT ’08/FSE-16). ACM, 339–349. https://doi.org/10.1145/1453101.
1453150

[17] Carlo Ghezzi, Mauro Pezzè, Michele Sama, and Giordano Tamburrelli. 2014.
Mining Behavior Models from User-intensive Web Applications. In Proceedings
of the 36th International Conference on Software Engineering (ICSE 2014). ACM,
277–287.

[18] Alberto Goffi, Alessandra Gorla, Michael D. Ernst, and Mauro Pezzè. 2016. Auto-
matic Generation of Oracles for Exceptional Behaviors. In Proceedings of the 25th
International Symposium on Software Testing and Analysis (ISSTA 2016). ACM,
213–224.

[19] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2016 (To
appear). Deep API Learning. In Proceedings of the ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE 2016). ACM.

[20] Tihomir Gvero and Viktor Kuncak. 2015. Synthesizing Java Expressions from Free-
formQueries. In Proceedings of the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications (Pittsburgh,
PA, USA) (OOPSLA 2015). ACM, New York, NY, USA, 416–432. https://doi.org/
10.1145/2814270.2814295

[21] Hideaki Hata, Emad Shihab, and Graham Neubig. 2018. Learning to Generate
Corrective Patches using Neural Machine Translation. CoRR abs/1812.07170
(2018). arXiv:1812.07170 http://arxiv.org/abs/1812.07170

[22] Xing Hu, Ge Li, Xin Xia, D. Lo, and Zhi Jin. 2019. Deep code comment generation
with hybrid lexical and syntactical information. Empirical Software Engineering
25 (2019), 2179–2217.

[23] Srini Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016. Summa-
rizing Source Code using a Neural Attention Model. In ACL.

[24] Alan Jaffe, Jeremy Lacomis, Edward J. Schwartz, Claire Le Goues, and Bogdan
Vasilescu. 2018. Meaningful Variable Names for Decompiled Code: A Machine
Translation Approach. In Proceedings of the 26th Conference on Program Compre-
hension (ICPC ’18). ACM, 20–30.

[25] Dan Klein and Christopher D. Manning. 2003. Accurate Unlexicalized Parsing. In
Proceedings of the 41st Annual Meeting on Association for Computational Linguistics
- Volume 1 (ACL ’03). Association for Computational Linguistics, 423–430.

[26] Philipp Koehn. 2010. Statistical Machine Translation (1st ed.). Cambridge Univer-
sity Press, New York, NY, USA.

[27] Ted Kremenek, Paul Twohey, Godmar Back, Andrew Ng, and Dawson Engler.
2006. From uncertainty to belief: inferring the specification within. In Proceedings
of the 7th symposium on Operating systems design and implementation (OSDI ’06).
USENIX Association, 161–176.

[28] Ivo Krka, Yuriy Brun, and Nenad Medvidovic. 2014. Automatic Mining of Specifi-
cations from Invocation Traces and Method Invariants. In Proceedings of the 22Nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(FSE 2014). ACM, 178–189.

[29] T. B. Le, X. D. Le, D. Lo, and I. Beschastnikh. 2015. Synergizing Specification Min-
ers through Model Fissions and Fusions (T). In 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE). 115–125.

[30] Tao Lei, Fan Long, Regina Barzilay, and Martin C. Rinard. 2013. From Natural
Language Specifications to Program Input Parsers. In ACL.

[31] Zhenmin Li and Yuanyuan Zhou. 2005. PR-Miner: Automatically Extracting
Implicit Programming Rules and Detecting Violations in Large Software Code. In
Proceedings of the 13th Symposium on Foundations of Software Engineering (Lisbon,
Portugal) (ESEC/FSE-13). ACM, 306–315. https://doi.org/10.1145/1081706.1081755

[32] Benjamin Livshits and Thomas Zimmermann. 2005. DynaMine: finding common
error patterns by mining software revision histories. SIGSOFT Softw. Eng. Notes
30, 5 (2005), 296–305.

[33] D. Lo and S. Khoo. 2006. QUARK: Empirical Assessment of Automaton-based
Specification Miners. In 2006 13th Working Conference on Reverse Engineering.
51–60.

[34] David Lo and Siau-Cheng Khoo. 2006. SMArTIC: Towards Building an Accurate,
Robust and Scalable Specification Miner. In Proceedings of the 14th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (SIGSOFT ’06/FSE-
14). ACM, 265–275.

[35] David Lo and Shahar Maoz. 2010. Scenario-based and Value-based Specification
Mining: Better Together. In Proceedings of the IEEE/ACM International Conference

https://nguyenhoan.github.io/statgen/
https://doi.org/10.1145/966049.777394
https://doi.org/10.1145/503272.503275
https://doi.org/10.1145/503272.503275
https://doi.org/10.1145/2025113.2025151
https://doi.org/10.1145/2025113.2025151
http://dl.acm.org/citation.cfm?id=1792734.1792766
https://doi.org/10.1145/502034.502041
https://doi.org/10.1145/502034.502041
https://doi.org/10.1145/302405.302467
https://doi.org/10.1145/302405.302467
https://doi.org/10.1145/1453101.1453150
https://doi.org/10.1145/1453101.1453150
https://doi.org/10.1145/2814270.2814295
https://doi.org/10.1145/2814270.2814295
https://arxiv.org/abs/1812.07170
http://arxiv.org/abs/1812.07170
https://doi.org/10.1145/1081706.1081755

ASE ’22, October 10–14, 2022, Rochester, MI, USA

on Automated Software Engineering (ASE ’10). ACM, 387–396.
[36] David Lo, Leonardo Mariani, and Mauro Pezzè. 2009. Automatic Steering of

Behavioral Model Inference. In Proceedings of the 7th Joint Meeting of the Euro-
pean Software Engineering Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering (ESEC/FSE ’09). ACM, 345–354.

[37] David Lo, Leonardo Mariani, and Mauro Santoro. 2012. Learning Extended
FSA from Software: An Empirical Assessment. J. Syst. Softw. 85, 9 (Sept. 2012),
2063–2076.

[38] Pablo Loyola, Edison Marrese-Taylor, and Yutaka Matsuo. 2017. A Neural Archi-
tecture for Generating Natural Language Descriptions from Source Code Changes.
In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics, ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 2: Short
Papers, Regina Barzilay and Min-Yen Kan (Eds.). Association for Computational
Linguistics, 287–292. https://doi.org/10.18653/v1/P17-2045

[39] Junayed Mahmud, Fahim Faisal, Raihan Islam Arnob, Antonios Anastasopoulos,
and Kevin Moran. 2021. Code to Comment Translation: A Comparative Study
on Model Effectiveness & Errors. In Proceedings of the 1st Workshop on Natural
Language Processing for Programming (NLP4Prog 2021). Association for Computa-
tional Linguistics, Online, 1–16. https://doi.org/10.18653/v1/2021.nlp4prog-1.1

[40] Leonardo Mariani and Fabrizio Pastore. 2008. Automated Identification of Failure
Causes in System Logs. In Proceedings of the 2008 19th International Symposium
on Software Reliability Engineering (ISSRE ’08). IEEE Computer Society, 117–126.
https://doi.org/10.1109/ISSRE.2008.48

[41] Sarah Nadi, Stefan Krüger, Mira Mezini, and Eric Bodden. 2016. Jumping Through
Hoops: Why Do Java Developers Struggle with Cryptography APIs?. In Proceed-
ings of the 38th International Conference on Software Engineering (Austin, Texas)
(ICSE ’16). ACM, New York, NY, USA, 935–946. https://doi.org/10.1145/2884781.
2884790

[42] Hoan Anh Nguyen, Robert Dyer, Tien N. Nguyen, and Hridesh Rajan. 2014.
Mining Preconditions of APIs in Large-scale Code Corpus. In Proceedings of
the 22Nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE 2014). ACM, 166–177.

[43] H. A. Nguyen, T. T. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N. Nguyen. 2009.
Accurate and Efficient Structural Characteristic Feature Extraction for Clone
Detection. In FASE ’09. Springer Verlag, 440–455.

[44] Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H. Pham, Jafar M. Al-Kofahi, and
Tien N. Nguyen. 2009. Graph-based Mining of Multiple Object Usage Patterns. In
Proceedings of Conference on the Foundations of Software Engineering (ESEC/FSE
’09). ACM, 383–392.

[45] Yusuke Oda, Hiroyuki Fudaba, Graham Neubig, Hideaki Hata, Sakriani Sakti,
Tomoki Toda, and Satoshi Nakamura. 2015. Learning to Generate Pseudo-Code
from Source Code Using Statistical Machine Translation (T). In Proceedings of the
2015 30th IEEE/ACM International Conference on Automated Software Engineering
(ASE) (ASE ’15). IEEE Computer Society, 574–584.

[46] Tony Ohmann, Michael Herzberg, Sebastian Fiss, Armand Halbert, Marc Palyart,
Ivan Beschastnikh, and Yuriy Brun. 2014. Behavioral Resource-aware Model Infer-
ence. In Proceedings of the 29th ACM/IEEE International Conference on Automated
Software Engineering (ASE ’14). ACM, 19–30.

[47] H. Phan, H. A. Nguyen, T. N. Nguyen, and H. Rajan. 2017. Statistical Learning
for Inference between Implementations and Documentation. In 2017 IEEE/ACM
39th International Conference on Software Engineering: New Ideas and Emerging
Technologies Results Track (ICSE-NIER). 27–30. https://doi.org/10.1109/ICSE-
NIER.2017.9

[48] Michael Pradel and Thomas R. Gross. 2009. Automatic Generation of Object Usage
Specifications from Large Method Traces. In Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software Engineering (ASE ’09). IEEE
Computer Society, 371–382. https://doi.org/10.1109/ASE.2009.60

[49] Mukund Raghothaman, Yi Wei, and Youssef Hamadi. 2016. SWIM: Synthesizing
What I Mean. In Proceedings of the 38th International Conference on Software
Engineering (ICSE 2016). ACM Press.

[50] Murali Krishna Ramanathan, Ananth Grama, and Suresh Jagannathan. 2007.
Static Specification Inference Using Predicate Mining. In Proceedings of the 2007
ACM SIGPLAN Conference on Programming Language Design and Implementation
(San Diego, California, USA) (PLDI ’07). ACM, 123–134. https://doi.org/10.1145/
1250734.1250749

[51] S. P. Reiss and M. Renieris. 2001. Encoding program executions. In Proceedings
of the 23rd International Conference on Software Engineering. ICSE 2001. IEEE CS,
221–230.

[52] Matthias Schur, Andreas Roth, and Andreas Zeller. 2013. Mining Behavior Models
from Enterprise Web Applications. In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering (ESEC/FSE 2013). ACM, 422–432.

[53] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori Pollock, and K. Vijay-
Shanker. 2010. Towards Automatically Generating Summary Comments for Java
Methods. In Proceedings of the IEEE/ACM International Conference on Automated
Software Engineering (ASE ’10). ACM, 43–52.

[54] Siddharth Subramanian, Laura Inozemtseva, and Reid Holmes. 2014. Live API
Documentation. In Proceedings of the 36th International Conference on Software
Engineering (Hyderabad, India) (ICSE 2014). 643–652.

[55] Zeyu Sun, Qihao Zhu, Lili Mou, Yingfei Xiong, Ge Li, and Lu Zhang. 2019. A
Grammar-Based Structural CNN Decoder for Code Generation. In Proceedings
of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First
Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Sym-
posium on Educational Advances in Artificial Intelligence (Honolulu, Hawaii,
USA) (AAAI’19/IAAI’19/EAAI’19). AAAI Press, Article 866, 8 pages. https:
//doi.org/10.1609/aaai.v33i01.33017055

[56] Zeyu Sun, Qihao Zhu, Yingfei Xiong, Yican Sun, Lili Mou, and Lu Zhang. 2020.
TreeGen: A Tree-Based Transformer Architecture for Code Generation. In The
Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-
Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020,
The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2020, New York, NY, USA, February 7-12, 2020. AAAI Press, 8984–8991.
https://ojs.aaai.org/index.php/AAAI/article/view/6430

[57] Shin Hwei Tan, Darko Marinov, Lin Tan, and Gary T. Leavens. 2012. @tCom-
ment: Testing Javadoc Comments to Detect Comment-Code Inconsistencies. In
Proceedings of the 2012 IEEE Fifth International Conference on Software Testing,
Verification and Validation (ICST ’12). IEEE CS, 260–269.

[58] Suresh Thummalapenta and Tao Xie. 2009. Alattin: Mining Alternative Patterns
for Detecting Neglected Conditions. In Proceedings of the 2009 IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE ’09). IEEE Computer
Society, 283–294. https://doi.org/10.1109/ASE.2009.72

[59] Michele Tufano, Jevgenija Pantiuchina, Cody Watson, Gabriele Bavota, and
Denys Poshyvanyk. 2019. On Learning Meaningful Code Changes via Neural Ma-
chine Translation. In Proceedings of the 41st International Conference on Software
Engineering (ICSE ’19). IEEE Press, 25–36.

[60] Andrzej Wasylkowski and Andreas Zeller. 2009. Mining Temporal Specifications
from Object Usage. In Proceedings of the 2009 IEEE/ACM International Conference
on Automated Software Engineering (ASE ’09). IEEE Computer Society, 295–306.
https://doi.org/10.1109/ASE.2009.30

[61] Andrzej Wasylkowski, Andreas Zeller, and Christian Lindig. 2007. Detecting
Object Usage Anomalies. In Proceedings of the Symposium on Foundations of
Software Engineering (Dubrovnik, Croatia) (ESEC-FSE ’07). ACM, 35–44. https:
//doi.org/10.1145/1287624.1287632

[62] Bolin Wei, Ge Li, Xin Xia, Zhiyi Fu, and Zhi Jin. 2019. Code Generation as a Dual
Task of Code Summarization. Curran Associates Inc., Red Hook, NY, USA.

[63] Yi Wei, Carlo A. Furia, Nikolay Kazmin, and Bertrand Meyer. 2011. Inferring
Better Contracts. In Proceedings of the 33rd International Conference on Software
Engineering (Waikiki, Honolulu, HI, USA) (ICSE ’11). ACM, 191–200. https:
//doi.org/10.1145/1985793.1985820

[64] Westley Weimer and George C. Necula. 2005. Mining Temporal Specifications
for Error Detection. In Proceedings of the 11th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (Edinburgh, UK)
(TACAS’05). Springer-Verlag, 461–476. https://doi.org/10.1007/978-3-540-31980-
1_30

[65] Chadd C. Williams and Jeffrey K. Hollingsworth. 2005. Automatic Mining of
Source Code Repositories to Improve Bug Finding Techniques. IEEE Trans. Softw.
Eng. 31, 6 (2005), 466–480.

[66] ClaesWohlin, Per Runeson, Martin Hst, Magnus C. Ohlsson, Bjrn Regnell, and An-
ders Wessln. 2012. Experimentation in Software Engineering. Springer Publishing
Company, Incorporated.

[67] Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, and Manuvir
Das. 2006. Perracotta: Mining Temporal API Rules from Imperfect Traces. In
Proceedings of the 28th International Conference on Software Engineering (Shanghai,
China) (ICSE ’06). ACM, 282–291. https://doi.org/10.1145/1134285.1134325

[68] Juan Zhai, Jianjun Huang, Shiqing Ma, Xiangyu Zhang, Lin Tan, Jianhua Zhao,
and Feng Qin. 2016. Automatic Model Generation from Documentation for Java
API Functions. In Proceedings of the 38th International Conference on Software
Engineering (ICSE ’16). ACM, 380–391.

[69] Juan Zhai, Yu Shi, Minxue Pan, Guian Zhou, Yongxiang Liu, Chunrong Fang,
Shiqing Ma, Lin Tan, and Xiangyu Zhang. 2020. C2S: Translating Natural Lan-
guage Comments to Formal Program Specifications. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE 2020). Association for Com-
puting Machinery, New York, NY, USA, 25–37. https://doi.org/10.1145/3368089.
3409716

[70] Hao Zhong, Tao Xie, Lu Zhang, Jian Pei, and Hong Mei. 2009. MAPO: Mining
and Recommending API Usage Patterns. In Proceedings of the 23rd European
Conference on ECOOP 2009 — Object-Oriented Programming. Springer-Verlag,
318–343.

[71] Yu Zhou, Ruihang Gu, Taolue Chen, Zhiqiu Huang, Sebastiano Panichella, and
Harald Gall. 2017. Analyzing APIs Documentation and Code to Detect Directive
Defects. In Proceedings of the 39th International Conference on Software Engineering
(ICSE ’17). IEEE Press, 27–37.

https://doi.org/10.18653/v1/P17-2045
https://doi.org/10.18653/v1/2021.nlp4prog-1.1
https://doi.org/10.1109/ISSRE.2008.48
https://doi.org/10.1145/2884781.2884790
https://doi.org/10.1145/2884781.2884790
https://doi.org/10.1109/ICSE-NIER.2017.9
https://doi.org/10.1109/ICSE-NIER.2017.9
https://doi.org/10.1109/ASE.2009.60
https://doi.org/10.1145/1250734.1250749
https://doi.org/10.1145/1250734.1250749
https://doi.org/10.1609/aaai.v33i01.33017055
https://doi.org/10.1609/aaai.v33i01.33017055
https://ojs.aaai.org/index.php/AAAI/article/view/6430
https://doi.org/10.1109/ASE.2009.72
https://doi.org/10.1109/ASE.2009.30
https://doi.org/10.1145/1287624.1287632
https://doi.org/10.1145/1287624.1287632
https://doi.org/10.1145/1985793.1985820
https://doi.org/10.1145/1985793.1985820
https://doi.org/10.1007/978-3-540-31980-1_30
https://doi.org/10.1007/978-3-540-31980-1_30
https://doi.org/10.1145/1134285.1134325
https://doi.org/10.1145/3368089.3409716
https://doi.org/10.1145/3368089.3409716

