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ABSTRACT

Predicting solar irradiance is an important topic in renewable energy generation. In this work, the

North American Mesoscale (NAM) Forecast System data is augmented with irradiance observations

from the solar farm at the University of Georgia, towards forecasting 24 hours into the future. For

the machine learning models used for this purpose, an input-selection scheme is presented and eval-

uated. This scheme significantly improved the performance, and resulted in a mean absolute error

(MAE) of 72.63W/m2, 44.94W/m2 and 63.60W/m2 for the dual-axis tracking, fixed-axis and single-

axis tracking solar arrays respectively. The effect of geographic expansion, by including additional

weather forecasts is evaluated. Furthermore, to correct the reported bias in global horizontal irradi-

ance (GHI) in NAM Forecast System, theory-driven bias-correction approaches are explored, where

NAM Forecast System is selectively combined with Clear-Sky Scaling and Liu-Jordan techniques.

In addition, the ability of predictive models involving clear-sky index to capture seasonal patterns

is evaluated.
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CHAPTER 1

INTRODUCTION

Fossil fuels are the dominant cause of climate change, and transitioning from energy sources

depending on them to renewable forms is one of the most powerful ways in which we can reduce our

ecological footprint as a society. However, owing to the unpredictability associated with carbon-free

sources such as solar energy and wind energy, incorporating them into an electrical energy system

is challenging. Thus, to ensure a balance between the consumption and production of solar energy,

accurate prediction of solar irradiance is of utmost importance.

Solar irradiance forecasting can be performed by several methods depending on the temporal

variability of the forecast horizon, ranging from a minute to several days [44]. Generally, the predic-

tions worsen as the forecast horizon increases. Numerical weather prediction (NWP) models utilize

mathematical models of atmosphere and ocean systems to predict weather variables from hours to

months in advance. Thus, using them for day-ahead solar forecasting is a common strategy. The

National Oceanic and Atmospheric Administration (NOAA) maintains various global and mesoscale

weather prediction models for weather forecasting. Mesoscale models are three-dimensional regional

models based on thermodynamic equations describing physical processes, which incorporate the in-

herent unpredictability of many small-scale phenomena. The North American Mesoscale (NAM)

Forecast System [12] is one of the major mesoscale-based weather forecast models maintained by

NOAA.

The specific purpose of this work is to develop machine learning models to effectively predict

surface-level solar irradiance 24 hours into the future at multiple fixed and tracking solar arrays

located at a solar farm near the University of Georgia. The developed models rely heavily on the use

of NAM weather forecasts, which are released four times a day at six-hour intervals (00h, 06h, 12h,

18h UTC) for a grid of 12km x 12km cells covering the continental United States. NAM forecasts

from the years 2017 and 2018 were used to develop and evaluate these models.
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The current work extends prior work undertaken at the University of Georgia related to solar

irradiance forecasting (which have been discussed in Chapter 2). Of special importance is the work

of Jones [58], who developed a machine learning pipeline to forecast day-ahead solar irradiance

using the weather forecast data from the NAM Forecast System. Chapter 3 begins by replicating

these results. The models developed by Jones [58] utilized nine weather variables from the NAM

data. Importantly, however, total cloud cover, which is defined as the fraction of the sky covered

by visible clouds was not considered. Cloudiness is considered to be an important meteorological

factor in determining the amount of solar radiation reaching earth’s surface. Thus, all the ten

weather variables were further analyzed with respect to the target irradiance observations recorded

at the solar farm, intending to quantify their usefulness in the day-ahead irradiance prediction. It

was found that surface temperature, global horizontal irradiance, total cloud cover and atmospheric

height were more significant than others.

The NAM Forecast System predicts values for weather variables 84 hours into the future. These

are referred to as feature projections. The first 37 feature projections are at a one-hour temporal

resolution (starting at the zero-hour or reference time). Feature projections corresponding to the

subsequent 48 hours are reported at a three-hour temporal resolution. In his work, Jones [58] used all

37 feature projections at a one-hour temporal resolution, for the nine weather variables as predictors

to the machine learning models.

In the current work, it was hypothesized that this was unnecessary and needlessly increases

model training time. To investigate this, the relationship between the first 25 feature projections

of GHI in NAM forecasts (starting at the zero-hour or reference time), was studied with respect to

the irradiance observations from the fixed-axis solar array in the forecast horizon. Using a mutual

information matrix, we concluded that the target irradiance observations for a particular target hour

did not depend on all the feature projections of the NAM weather variable. Because of this, only data

from 6 hours prior to the target hour to 6 hours ahead of the target hour were chosen as predictors

in the models developed. This input-selection scheme helped in reducing the computational cost of

training the machine learning models significantly.

This input-selection scheme was used in a series of experiments to develop models analogous

to those of Jones [58]. With respect to the performance of the latter, an average improvement in

performance (across different machine learning models) by 19.05%, 19.68% and 10.65% was recorded

for the dual-axis tracking, fixed-axis and single-axis tracking solar arrays. We attribute this improve-
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ment in performance to the weeding out of less relevant features with the help of the input-selection

scheme. The best performance was recorded using the random forest machine learning technique,

with a mean absolute error (MAE) of 72.63 W/m2, 44.94 W/m2 and 63.60 W/m2 respectively for

each of the solar arrays.

Another series of experiments was performed to test the effect of geographic expansion, i.e.

including a larger geographic area from the NAM forecast as input. The NAM Forecast System gen-

erates multiple grids of weather forecasts, where each cell corresponds to a 12km x 12km geographical

area. In [58], Jones included NAM forecasts corresponding to a grid of cells surrounding the cell

representing Athens. He noted that considering a 3 x 3 grid of cells was optimal, as the improvement

in performance diminished for even greater grid sizes. We also investigated the significance of similar

geographic expansion, but on the NAM data obtained by incorporating the input-selection scheme.

It is observed that such an expansion does not significantly improve the solar irradiance predictions.

In fact, in a few cases, the geographic expansion had a detrimental effect on the performance of the

machine learning models.

Beyond their overall performance, the performance of the machine learning models was inves-

tigated in a stratified manner. The predictions of each of the 00h, 06h, 12h and 18h NAM weather

forecasts were analyzed independently. For each, a diurnal analysis was performed, wherein the

performance of the models for each target hour in the forecast horizon was compared. Such an

analysis helped in understanding the ability of the machine learning models to gauge the diurnal

characteristics.

Among the variables modelled by the NAM Forecast System is downward short-wave radiation

flux (also called global horizontal irradiance, GHI [46]). It is an estimate of the total amount of short-

wave radiation that reaches the Earth’s surface, and is essential for short-term solar forecasting. It

has been reported in literature that the NAM Forecast System tends to overpredict GHI when visible

clouds are not present in the sky [46]. In order to correct such a bias, identifying the amount of clouds

in the sky becomes essential. This can be estimated using empirical solar radiation models, which

formulate relations between different meteorological variables through experimental observations.

In Chapter 4, theory-driven bias correction methodologies were explored, which involved blending

the physical NAM Forecast System with such solar radiation models, so as to selectively correct the

bias in GHI.
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From among the different empirical formulations proposed to estimate GHI from environmental

conditions, Clear-sky Scaling [52] and Liu-Jordan [55] techniques were studied. For the purpose

of correcting the bias in the GHI estimates from the NAM Forecast System, the GHI retrieved

through each of these empirical solar radiation models was combined with the GHI from the NAM

Forecast System depending on metrics such as clear-sky index and clearness index, which are different

measures for estimating the amount of cloudiness in the sky.

A series of experiments was conducted using the random forest algorithm to test the effectiveness

of such a model-blending approach. Three variants of NAM data was input to these machine learning

models: GHI from the NAM Forecast System (GHINAM); adjusted GHI, obtained from blending

NAM Forecast System with Clear-Sky Scaling technique (GHINAM+CS); adjusted GHI, obtained

by blending NAM Forecast System with Liu-Jordan model (GHINAM+LJ). The performance of the

random forests utilizing each of the adjusted GHI variants was compared with random forests utilizing

GHINAM . It was observed that the blending methodology involving NAM Forecast System and

Clear-Sky Scaling resulted in an improvement in performance (decrease in MAE) by 4.95%, 4.53%

and 4.12% for the dual-axis tracking, fixed-axis and single-axis tracking solar arrays respectively.

In comparison, the blending methodology involving NAM Forecast System and Liu-Jordan model

recorded an improvement in performance by 4.17%, 4.14% and 3.62% for each of the solar arrays.

The above experiments were only based on GHI, however. That is, GHI (corrected or un-

corrected) was the only predictor used to develop these models. A new series of experiments was

conducted by including the other weather variables from NAM Forecast System such as air tem-

perature, total cloud cover and atmospheric height along with the three variants of GHI used in

the previous set of experiments. The input-selection scheme described earlier was incorporated into

this weather forecast data, and select feature projections depending on the target hour in forecast

horizon was selected for each of these weather variables. In this case however, the model-blending

methodology involving NAM Forecast System performed slightly better than both of the blend-

ing methodologies. For the model-blending methodology involving Clear-Sky Scaling technique,

an MAE of 72.57 W/m2, 44.91 W/m2 and 63.56 W/m2 was recorded for the dual-axis tracking,

fixed-axis and single-axis tracking solar arrays respectively. For the blending methodology involving

Liu-Jordan model, an MAE of 72.74 W/m2, 45.25 W/m2 and 63.97 W/m2 was recorded for each

of the solar arrays.
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Clear-sky index (which is computed using various meteorological variables such as GHI, solar

position and solar zenith angle) is known to capture the diurnal and seasonal trends in weather

data effectively. Because of this, it was suspected that the clear-sky index might improve model

performance in comparison to using GHI. Thus, another series of experiments was conducted by

developing predictive models utilizing clear-sky index (in place of GHI), along with air temperature,

total cloud cover and atmospheric height. Select feature projections of each of these weather variables

were used as predictors to the machine learning models.

However, it was observed that the performance of these predictive models paled in comparison

to those utilizing the input-selected weather forecast data including GHINAM. An MAE of 79.58

W/m2, 49.18 W/m2 and 69.98 W/m2 was recorded for the dual-axis tracking, fixed-axis and single-

axis tracking solar arrays respectively. An analysis of the performance of individual 12h and 18h

NAM forecasts was conducted. The MAE corresponding to the spring and summer season increased

for the both the forecasts, with respect to the predictive models utilizing GHINAM. Consequently,

it can be concluded that the presumed ability of clear-sky index to capture the diurnal and seasonal

trends did not translate into improving the performance of the predictive models.

The theory-driven bias correction methodology undertaken in this work solely corrects the bias

in GHI, and doesn’t address the bias correction in other weather variables. In addition, the lack of

improvement in the performance of predictive models upon including additional weather variables

possibly indicates the inability of the models to identify the clear-sky conditions effectively. This,

in turn prevents accurate bias correction in GHI. Future work can explore superior approaches for

detecting clear-sky conditions, which will improve upon the bias correction in GHI, as well as other

weather variables. Furthermore, it was observed that the predictive models utilizing clear-sky index

performed worse than those utilizing GHI across all seasons in the year. We note that there are

other clear-sky models in literature which can conceivably improve the ability of clear-sky index to

capture such seasonal trends. These models can be investigated in further work.
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CHAPTER 2

LITERATURE REVIEW

High variability in solar radiation necessarily results in variability in the output of photovoltaic

(PV) power plants. What this essentially means is that, in order to effectively integrate PV systems

into a larger electrical grid (which must compensate for the variable output of PV systems to

ensure overall stability), effective prediction of solar irradiance is needed. In the last few decades,

solar forecasting researchers have developed a variety of data-driven approaches to improve solar

irradiance forecasting. Most of these approaches can be categorized based on the resolution of the

forecast horizon, ranging from a few minutes to a couple of days, weeks or months; and the spatial

resolution of the input data pertaining to a particular location.

For solar irradiance forecasts up to < 30 minutes ahead, a variety of techniques based on the

ground-to-sky imagers have been explored. The spatial resolution for the total sky imagery is in

the range of 10m - 100m. Using the sky images taken every 30 seconds, Chow et al [9] presented

a method for determining sky cover and solar irradiance nowcasting. Marquez et al. [10] used

image-processing techniques to calculate velocity fields and classify clouds in individual grids so as

to employ it to forecast Direct Normal Irradiance (DNI), an essential component of global irradiance,

for time horizons ranging from 3 minutes to 15 minutes.

Statistical time-series models such as Auto Regressive Integrated Moving Average (ARIMA) and

non-linear model approximators such as Artificial Neural Networks (ANNs) have been shown to be

more effective for forecasting solar irradiance up to 2 hours ahead [36]. Marquez and Coimbra [37]

successfully used meteorological variables from US National Weather Service (NWS) Forecasting

database as inputs to an ANN model for forecasting global and direct solar irradiance. In [38],

Reikard reviewed a variety of time-series modeling techniques for predicting solar irradiance, and

observed that the ARIMA models, in general, had the best forecasting results. However, as Lopez

et al. [39] note, these developed models are not transferable to different locations, especially ones

with varying cloudiness properties (this certainly applies to the work at UGA as well).
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Input data from satellite imagery tracking cloud motion has been shown to be useful for an

intra-day forecast horizon between 1 hour and 24 hours. The geostationary satellites detect clouds

with the help of visible and infra-red images, which generally have a spatial resolution of ∼1 km.

Various methods such as Heliosat-I [32], Heliosat-II [33] and Heliosat-III [34] have been implemented

which employ motion-vector fields to track the clouds using these images. By applying the calculated

motion vector fields on the actual image, the cloud index images can be determined. Hammer et al.

[35] employed Heliosat-I technique on such cloud index images for forecasting solar irradiance ∼30

minutes to 6 hours in future. Cloudiness has a significant impact on the surface solar irradiance,

and the basis of this methodology relies upon the determination of cloud structures.

For a days-ahead solar forecasting range which is essential for utility applications, the knowledge

of the meteorological weather parameters in that period is paramount. Numerical Weather Predic-

tion (NWP) models are physical models which make use of the current meteorological conditions

and predict weather conditions days into the future, on the basis of atmospheric equations. Notably,

NWP models are able to forecast up to two days ahead or beyond, depending on the spatial domain

of the model. Examples of the NWP models maintained by the National Oceanic and Atmospheric

Administration (NOAA), which record data across different spatial resolutions, across varying geo-

graphical expanse are the Global Forecast System (GFS) [11], North American Mesoscale (NAM)

[12], Rapid Refresh (RAP) and High Resolution Rapid Refresh (HRRR).

Several researchers have concentrated their efforts on comparing the effectiveness of each of

the NWP models for solar irradiance forecasting purposes at various locations. Mathiesen and

Kleissl [13] compared the irradiance parameter forecast in NWP models such as NAM, GFS and

ECMWF within the continental United States, with respect to solar forecasting. In this work,

they extensively studied the predictions using each of the NWP models in varying cloud conditions,

establishing a database to validate numerical weather predictions. In [14], Ruiz-Arias et al. found

that the NWP models based solar irradiance forecasting significantly outperforms satellite-based

methodologies while forecasting 6 hours and beyond, and attributed it to the effective simulation of

weather parameters of the entire atmospheric system in the NWP models.

Lorenz et al. [15] performed benchmarking studies to gauge the reliability of different solar

irradiance forecasting approaches. They investigated the seasonal dependence of forecast errors using

several techniques. They concluded that post-processing the weather parameters in the NWP models

significantly captures the dependence between forecast accuracy and climatic conditions. Perez et al.
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[16] validated the performance of the NWP models across seven stations in the SURFRAD network.

They extracted the hourly GHI forecasts by time-interpolating the 3-hour and 6-hour cloud cover

parameter forecasts in the NWP models, and further adjusting them using sky-cover-to-irradiance

fits. In this work, the authors explored a diverse set of climatic environments and noted that the

models’ performance in winters tends to be poorer than in summers. They also concluded that

forecasts from the one-hour time-interpolated data are on par or better than the forecasts from the

satellite-imagery based data for a forecast horizon up to 5 hours.

In [13], Mathiesan and Kleissl also infer that the NWP models like GFS and NAM are biased

towards forecasting clear conditions resulting in large biases in global horizontal irradiance (GHI)

parameter in these conditions. They obtain the metric Mean Bias Error (MBE) for each NWP

model based on the solar zenith angle and the clear sky index (kc) metric, which is the ratio of

the measured GHI in the model to the clear sky GHI. However, like Diagne et al. [17] note, the

methodology used by Mathiesan and Kliessl was not adequate, as they did not present information

about the bias source, which is important to selectively correct forecasts. They observed that these

bias corrections did not help in reducing the Root Mean Squared Error (RMSE) metric, as even the

accurate forecasts were unnecessarily corrected - indicating a need for a better approach for GHI

bias corrections in the NWP models.

The effectiveness of physical NWP models such as the NAM Forecast System for the purpose

of day-ahead solar irradiance forecasting, demonstrated in the aforementioned works, prompted us

to study and analyze it further. Accurate identification of clear-sky conditions is essential towards

selectively correcting the bias in GHI [18]. Such an identification requires additional measurements

such as direct or diffuse components of global solar irradiance, which is not measured by the NAM

Forecast System. However, these irradiance components can be estimated by means of empirical

solar radiation models. The main difference between physical models such as the NAM Forecast

System and empirical solar radiation models is that the former parameterizes cloud microphysics

through mathematical equations, while the latter formulates the relation between meteorological

variables derived through experimental observations.

Empirical Solar Radiation Models

Several empirical formulations have been proposed in literature which help predict the irra-

diance metrics such as global horizontal irradiance (GHI), diffuse horizontal irradiance (DHI) and
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direct normal irradiance (DNI) from atmospheric properties. GHI is the total amount of shortwave

radiation reaching a surface horizontal to the ground, and is the most useful solar radiation data

parameter. In comparison, DHI is the part of global solar radiation which passes through the atmo-

sphere, and is absorbed, scattered or reflected by the gases in the atmosphere. DNI is the amount of

solar radiation received by a surface that is held normal to the rays from the sun. It needs emphasis

because of the sharp shadows that it can extend on the surface of the earth. Irradiance on the

surface of a solar cell can be determined with the help of DNI, and thus, proper estimation of DNI

is of high importance in Concentrated Solar Power (CSP) systems [24].

The empirical solar radiation models to estimate the sky (DHI) and beam (DNI) components

of global solar radiation can be categorized into parametric and decomposition models [25]. Para-

metric models require detailed information about atmospheric conditions such as turbidity, cloud

cover, precipitable water content, etc. to be able to calculate DHI and DNI. In comparison, the

decomposition models formulate empirical equations to estimate DHI and DNI from GHI, based on

the correlations between each of the components. The parametric models are a better alternative to

decomposition models only in cases where the meteorological data is not available [25][26].

Radiative Transfer Models (RTMs) help in simulating the radiative transfer of electromagnetic

radiation through a planetary atmosphere, and thus help in estimating solar irradiance. However,

they are computationally expensive to maintain. The clear-sky solar irradiance parametric models

provide relatively simple parameterizations to estimate solar irradiance in conditions with less visible

clouds [30]. The aerosols and water vapour present in the atmosphere play a significant role in

scattering the sunlight, and have an impact on the amount of solar radiation reaching the Earth’s

surface. Thus, solar forecasting researchers concentrated their efforts towards estimating GHI in

clear-sky conditions, i.e, conditions where visible clouds are negligible, and further scaling this

parameter across cloud conditions.

Bird and Hulstrom [31] proposed the Bird Clear Sky Model based on comparisons of results

from the radiative transfer codes, to estimate clear sky direct beam, hemispherical diffuse, and total

hemispherical solar radiation on a horizontal surface. However, one of the drawbacks with this model

is that various atmospheric parameters such as aerosol optical depth, ozone and water vapour are

fixed for an entire year. Gueymard [19] proposed the REST2 Clear Sky Model which specifically

accounts the effects of aerosols to predict cloudless-sky broadband irradiance. The REST2 model

represents broadband components of two different spectra, and incorporates the transmission esti-
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mates for each of the spectra separately. Finally, the total diffuse radiation on a horizontal surface

is aggregated from the estimates of both the spectra.

Ineichen and Perez [23] proposed a new airmass independent formulation to estimate the Linke

Turbidity coefficient, thus removing it’s dependency on solar geometry, and used the coefficient to

develop two clear-sky models to estimate global and direct normal irradiance. Furthermore, Ineichen

[20] modified the original version of the Solis Clear Sky Model proposed by Mueller et al [21] to

accommodate the circumstances in which spectral computations aren’t possible, by introducing a

broadband version of the algorithm.

The decomposition models are formulated on the basis of the clearness index (kt) parameter,

which is the ratio of the measured solar radiation to the extraterrestrial solar radiation. A higher

value (kt → 1) of the clearness index parameter indicates that the atmosphere is clear, while a

lower value (kt → 0) of the clearness index parameter indicates that the atmosphere is cloudy.

Chandrasekaran and Kumar [27] collected data in Madras, India to formulate a fourth-order poly-

nomial correlation depending on the clearness index parameter to estimate the irradiance metrics in

a tropical setting [28].

By analyzing the data collected across multiple locations in the United States and Canada,

Liu and Jordan [29] formulated an empirical equation on the basis of the clearness index parameter

to estimate the irradiance metrics. Maleki et al [25] reviewed various solar radiation models, and

observed that the Liu and Jordan model is very effective in estimating diffuse radiation on inclined

surfaces.

Recent Work on Solar Irradiance Forecasting at the University of Georgia

”Georgia Power”, a regional utility company, recently partnered with the University of Georgia

(UGA) to set up a 1MW solar facility in Athens, GA. The facility consists of multiple fixed and

tracking (single-axis and dual-axis) solar arrays. Recent work at UGA has been devoted to analyzing

or predicting solar radiation based upon the data provided by the facility and the GAEMN (Georgia

Automated Environmental Monitoring Network) weather station network.

In [49], Sanders investigated the importance of different weather variable observations in the

prediction of solar irradiance. From among the sixteen weather variables recorded by GAEMN,

he obtained current and historical weather information for the following weather variables which
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are typically known to affect solar irradiance: air temperature, precipitation rate, visibility, wind

speed, wind direction, dew point temperature, air pressure and relative humidity. Utilizing the solar

radiation data from GAEMN, they built predictive models including current weather observations,

weather forecasts from NWP models for the target location, and additional weather forecasts from

NWP models for area surrounding the target location.

In addition, they obtained NWP model predictions for these weather variables at the target

locations to analyze the effect of using NWP model predictions for these variables as a means of

forecasting solar radiation over one-hour and 24-hour time frames. Upon including the weather

forecast data in the predictive models, it was observed that there was a reduction in mean absolute

error (MAE) for 1-hour predictions by 7.6% and for 24-hour predictions 40.2%. They noted that

the incorporation of weather forecasts from NWP Forecast System is extremely important in solar

forecasting, especially over a longer time horizon.

Sanders [49] performed work based on Lorenz et al. [1], who found that expanding the fore-

cast region to approximately 100km x 100km and performing a spatial averaging across the region

resulted in an improvement in day-ahead solar forecasting. Larson et al. [53] noted that the solar

radiation predictive models which use NWP data can usually be improved by averaging the GHI

forecasts from NWP grid points surrounding the target location. Sanders [49] validated these find-

ings by including weather forecasts from areas surrounding the target location, and found that it was

extremely beneficial, especially while forecasting over a longer time horizon, where the weather sys-

tem is less predictable. This was performed by including forecasted weather variables from the NWP

cells lying to the north-west, north, north-east, east, south-east, south, south-west and south, result-

ing in eight additional parameters for each weather variable. They found that such a methodology

led to an increase in predictive accuracy in both one-hour ad 24-hour solar radiation predictions.

Jones [58] extended the work in [49] by developing machine learning models for hourly targets

from 1 - 24 hours, using GAEMN observational data and NWP predictions (Rapid Refresh, RAP

and North American Mesoscale, NAM). He observed that the forecasted weather variables from

NWP models became more important for target hours beyond a very short forecast horizon. In

addition, utilizing the solar irradiance observations from the solar farm, they presented a case-study

in irradiance prediction by augmenting these observations along with the NAM data. They explored

the geographic expansion of forecast coverage by including the NAM weather forecasts from a grid

of cells around the NAM data grid representing Athens, towards obtaining a 3 x 3 geographical grid
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shape, representing a geographical expanse of 36km x 36km. It was observed that using the 3 x 3

grid shape was optimal for solar irradiance forecasting at the farm, and it improved the accuracy

significantly as compared to just considering weather forecasts from the NAM data grid representing

Athens. Using the 3 x 3 grid shape, they achieved the best accuracy with an MAE of 47.6 W/m2

for the fixed-axis solar array, 58.7 W/m2 for single-axis tracking solar array and 75.4 W/m2 for

dual-axis tracking solar arrays.

Jones [58] attempted to quantify the improvement in accuracy of predictive irradiance models as

a result of the expansion of forecast coverage. Two of the best-performing machine learning models

for the 3 x 3 grid shape, k-Nearest Neighbors and Random Forests were retrained for 5 x 5 and 7

x 7 grid shapes as well, representing a geographical expanse of 60km x 60km and 84km x 84km

respectively, and their performance in MAE and R2 were recorded. They realized that the benefits

from a wider geographic coverage of forecasted weather variables resulted in diminishing returns as

the size grows larger. While the improvement due to using 3 x 3 grid shape over 1 x 1 grid shape

(representing Athens) was significant (~16%), those for 5 x 5 and 7 x 7 grid shapes over 3 x 3 was

negligible.
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CHAPTER 3

SOLAR IRRADIANCE FORECASTING USING NUMERICAL WEATHER

PREDICTION MODELS

3.1 OVERVIEW

For a days-ahead forecast horizon, utilizing Numerical Weather Prediction (NWP) models,

which predict the evolution of the atmospheric system have been shown to be more useful [58].

The NWP models derive their initial conditions from different ground and airborne sensors from

across the world. Based on thermodynamic equations describing the physical processes occurring

in atmosphere, they forecast different weather variables into the forecast horizon. The National

Oceanic and Atmospheric Administration (NOAA) operates a variety of NWP models with their

spatial resolution ranging from approximately 10 km - 50 km, and their temporal resolution typically

being 1 hour or 3 hours [40].

Solar forecasting researchers have successfully employed meteorological forecasts from NWP

models for forecasting applications for years. The making of a weather forecast involves assessing

the current weather situation, assimilating observational information, and projecting this initial

state into the future based on the laws of thermodynamics. Weather forecasting employs a set of

equations that describe the flow of fluids, being run over a geographic area. Several parameterizations

of physical processes are carried out, based on the physical and statistical representations of the

physical process. This is useful to approximate the bulk effects of the physical processes.

One of the major challenges faced in this process is determining the range of area to observe.

The further the forecasting of the weather conditions, i.e, higher the forecast horizon, wider is

the range of area that needs to be observed. Multiple weather prediction models, both global and

regional, depending on the spatial domain, are maintained by the National Oceanic and Atmospheric

Administration (NOAA). Global Forecast System (GFS) is one of the widely-known global weather

prediction models, which represents the atmospheric state as a superposition
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of wave functions. It covers the entire globe at a base horizontal resolution of 28km between grid

points, predicting weather out to 16 days. Within continental United States, North American

Mesoscale (NAM), Rapid Refresh (RAP), High Resolution Rapid Refresh (HRRR) are the popular

regional weather prediction models, each having it’s own advantages. The NAM Forecast System

follows a complex cloud prediction scheme accounting for the internal cloud processes, and thus has

better cloud parameterizations over RAP and HRRR.

In this work, we developed machine learning models to forecast solar irradiance on multiple

dual-axis tracking (array A), fixed-axis (array B) and single-axis tracking (array E) solar arrays.

The irradiance predictions were made 24 hours into the future, at a one-hour temporal resolution.

The NAM Forecast System, which can predict parameters describing cloudiness [45], was input to

these predictive models. A weather forecast dataset spanning NAM data for the years 2017 and

2018 was created, though a few forecasts are missing sporadically.

In order to gauge the effect of different weather variables specified by the NAM Forecast System

on the solar irradiance predictions, the following were evaluated: air temperature, geopotential

height, cloud cover, visibility, wind speed, dew point temperature, air pressure, downward shortwave

radiation flux, downward longwave radiation flux, and humidity. Using random forests, the more

relevant of these weather variables were identified. It was observed that the irradiance readings from

the solar farm for each of the arrays were influenced more by the surface temperature, downward

short-wave radiation flux, total cloud cover, and atmospheric height. Thus, the remaining weather

variables were discarded. This enabled a cut in computational cost of modeling and also led to an

improvement in the performance of the models.

Each of the weather variables in the NAM Forecast System are projected 36 hours into the

future, at a 1-hour temporal resolution. Of these, the effect of the first 24 feature projections on the

target solar irradiance was analyzed based on the mutual information statistical measure. It was

found that the weather variable for a particular target hour offset in the forecast horizon depends on

only 6 feature projections following the target hour offset, and 6 feature projections preceding the

target hour offset. Separate machine learning models were trained, and the efficacy of the proposed

input-selection scheme was tested.

The performance of this input-selection scheme was compared with the methodology followed

by Jones [58]. It was observed that the input-selection scheme resulted in an average improvement

in mean absolute error (MAE) across machine learning models by 19.05%, 19.68% and 10.65% for
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the dual-axis tracking, fixed-axis and single-axis solar arrays respectively. Random forests achieved

a best performance for such predictive models, with an MAE of 72.63 W/m2, 44.94 W/m2 and

63.60 W/m2 for each of the arrays.

The effect of the geographic expansion of weather forecast coverage was analyzed by including

the 3 x 3 and 5 x 5 geo shapes, wherein weather forecasts data from eight and twenty four NAM

data grid cells centered around the NAM data grid representing Athens, Georgia were incorporated

respectively. Such a spatial expansion was assessed for the attribute-selected weather forecast data,

obtained by incorporating the input-selection scheme. It was found that the geographic expansion

had a detrimental effect on the performance of the machine learning models, and had a marginal

improvement with respect to the 1 x 1 geo shape only for random forests, with the 5 x 5 geo shape

resulting in MAE of 69.38 W/m2, 43.62 W/m2, 61.99 W/m2 for the dual-axis tracking, fixed-axis

and single-axis tracking solar arrays respectively.

3.2 NORTH AMERICAN MESOSCALE (NAM) WEATHER PREDICTION MODEL

The North American Mesoscale (NAM) Forecast System is based on the Weather Research and

Forecasting (WRF) model infrastructure, following non-hydrostatic dynamics and thus enabling

vertical momentum estimations. It provides high resolution forecasts over North America for a

forecast horizon of 84 hours, the first 36 of which are at a one hour temporal resolution, and the

remaining thereafter, at a 3 hour temporal resolution. The forecasts are published for a grid spanning

approximately 12km x 12km across the continental United States, which are released four times daily

at 00h, 06h, 12h and 18h UTC.

In general, the NWP models cannot realize the physical phenomenon occurring within an indi-

vidual grid. Vertical redistribution of heat and moisture can easily occur between mesoscale grids

resulting in sub grid-scale variations in convection. The NAM Forecast System repeatedly nudge the

temperature and moisture profiles in a grid towards decreasing the convective instability. Moreover,

the wider forecast horizon of the NAM Forecast System requires it to model the radiative prop-

erties within the clouds effectively [47]. The NAM models handle this by implementing columnar

Radiative Transfer Models (RTMs), which parameterize the cloud properties for every vertical level

individually.
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Figure 1: Downward Shortwave Radiation Flux parameter from NAM data over North America do-
main for 06h forecast (top-left), 12h forecast (top-right), 18h forecast (bottom-left) and 24h forecast
(bottom-right) UTC for 11th February, 2020.

Dozens of weather variables are available in a NAM model data grid pertaining to environmental

components such as altitude, atmospheric pressure, atmospheric radiation, air temperature, water

vapour, atmospheric winds, precipitation, soil properties and cloud cover. Each of these are spread

across 60 vertical levels in a 0 - 3 km layer, and across 39 pressure levels from 50mb to 1000mb at

25mb intervals. From among these variables, in Fig. 11, the averaged downward short-wave radiation

flux over North America for the four forecasts on 11th February, 2020 is reported.

3.2.1 DATA COLLECTION

Weather Forecasts

As mentioned in 3.1.1, North American Mesoscale (NAM) Forecast System data was collected

from the years 2017 and 2018 for experiments. From this data, surface-level variables as described in
1NAM forecast snapshots retrieved from: https://www.emc.ncep.noaa.gov/mmb/mmbpll/etapll
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Table 1 were retrieved and analyzed. NAM Forecast System projects different weather parameters

84 hours into the future. The first 36 feature projections in the forecast horizon are at a 1-hour

temporal resolution, and subsequent 48 hours of the forecast horizon has feature projections at a

3-hour temporal resolution. In this work, we consider the first 24 feature projections (which are at a

1-hour temporal resolution) for each of the weather variables along with their corresponding target

pyranometer readings.

Table 1: NWP-NAM weather variables used in model development

Label Description Unit
PRES_SFC Air Pressure Pa
HGT_SFC Geopotential Height gpm
HGT_TOA Height at Planetary Boundary Layer gpm
TMP_SFC Air Temperature K
VIS_SFC Visibility m

UGRD_TOA U-Component of Wind Speed m/s
VGRD_TOA V-Component of Wind Speed m/s
DSWRF_SFC Downward Short-Wave Radiation Flux W/m2

DLWRF_SFC Downward Long-Wave Radiation Flux W/m2

TCC_EATM Total Cloud Cover %

Temporal Features

In this work, temporal features were designed so as to include the time of day and time of

year representations of the forecasts, which incorporate the periodicity in time2. The time of day

was computed by scaling the number of seconds in the reference time with the inverse of 8.64e+ 4

(number of seconds in a day); and the time of year was computed by scaling the day of the year

with the inverse of 365 or 366, depending on whether it is a leap year or not. The sine and cosine

values of these measures were added as the temporal features. Such time of day representations

make the temporal features pertaining to the target hour in the forecast horizon different from that

of the reference time. Thus, temporal features representing the target hours in the forecast horizon

were also included along with their corresponding predictors.

Irradiance Observations

The target irradiance observations are obtained from three solar arrays in the solar farm, namely

array A, array B and array E, representing a dual-axis tracking array, fixed axis array with 200◦(SW)
2In [58], Jones attempted to use the time of day and time of year representations by scaling the epoch representing

the reference time (in nanoseconds) with the inverse of 8.64e+13 (number of nanoseconds in a day) and 3.1536e+16
(number of nanoseconds in a year) respectively, and including their sine and cosine values. However, these do not
appear to be correct as they do not capture the periodicity of the reference time.
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azimuth, and a single-axis tracking array respectively. Each of the solar arrays are installed with

thermopile pyranometers from different manufacturers such as Kipp & Zonen3, and LICOR4. The

thermopile pyranometers have a black absorptive surface which uniformly absorbs the solar radiation

across the short-wave solar spectrum, i.e, between 0.2 µm and 3 µm.

Figure 2: Fixed axis (left), Single-axis tracking (center), Dual-axis tracking (right) Solar Arrays.

The fixed axis solar array has limited exposure to the sun, owing to the change in position of

the sun during the day from morning to night. Thus, the solar radiation captured by this solar array

is reduced. Though this limitation is minimized by installing the fixed solar array at an optimized

tilt angle, the solar radiation captured by solar tracking arrays is still considerably higher. In order

to maximize the overall solar energy captured, it is necessary to ensure that the angle of incidence

of the sunlight on the solar array is constantly perpendicular. This is achieved with the help of

single-axis trackers (horizontal and vertical), which have one degree of freedom acting as an axis

of rotation; and dual-axis trackers which have two degrees of freedom acting as axes of rotation

normal to one another [8]. This ability to move along the axes enhances the morning and afternoon

performance of the solar tracking systems.

While the irradiance observations from the solar arrays are received every five seconds, the NWP

NAM model data is available only for four reference times in a day, i.e 00h, 06h, 12h, 18h UTC

through 2017 and 2018. Thus, for the target hours in the forecast horizon of all the reference times

in 2017 and 2018, for which the NWP NAM model data was collected, the irradiance observations

were sampled. In Fig. 3, the average monthly solar radiation captured by the dual-axis tracking,

fixed-axis and single-axis tracking solar arrays through 2017 is shown. It can be observed that the

solar radiation captured by the tracking arrays (dual-axis and single-axis) is consistently higher than
3https://www.kippzonen.com/
4https://www.licor.com/
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that captured by the fixed axis array.

Figure 3: Average monthly solar radiation captured by dual-axis tracking, fixed-axis and single-axis
tracking solar arrays through 2017.

3.2.2 EVALUATING IMPACT OF WEATHER VARIABLES ON IRRADIANCE OB-

SERVATIONS

Mutual information is the measure between two possibly multi-dimensional variables, which

quantifies the amount of information obtained from one variable about the other. The relationship

detected between the variables can involve either mean, variance or even the higher moments [3].

The most straightforward and widespread approach towards estimating mutual information follows

partitioning the supports of X and Y into bins of finite size, and approximating the sum in the

following way:

I(X,Y ) ≈ Ibinned(X,Y ) ≡
∑
ij

p(i, j).log(
p(i, j)

px(i).py(j)
) (1)

In this work, the mutual information measure was estimated using the scikit-learn5 machine

learning software, which makes use of a non-parametric method based on entropy estimation from

the k-nearest neighbors as described in [3] and [4]. Mutual information measure was calculated for
5https://scikit-learn.org/stable/
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different weather variables from the NAM data and corresponding irradiance observations from the

solar arrays as described in the previous subsections. From among the weather variables, it was

observed that downward shortwave radiation flux, air temperature, height at planetary boundary

layer and total cloud cover have a mutual information score greater than 0.1, indicating a relatively

higher dependency on the irradiance observations.

Downward shortwave radiation flux is the total amount of shortwave radiation that reaches

the earth’s surface, and is a major component of the total solar radiation on the surface of the

earth. Thus, it is the most direct parameter in the estimation solar irradiance, and the high mutual

information score between this weather variable and the irradiance observations from the solar farm is

understandable. By absorbing the incoming solar radiation, the Earth warms up, and its temperature

rises. As long as the amount of incoming radiative flux is greater than the outgoing radiative flux,

the Earth will continue to warm. Thus, the air temperature at the surface is essential in estimating

the amount of heat absorbed at that particular location, which in turn reveals information about

the amount of solar radiation absorbed by the thermopiles in the pyranometers.

The influence of clouds on solar irradiance is significant. In the absence of visible clouds, aerosols,

precipitable water and other atmospheric conditions affect the transmission of solar radiation through

atmosphere. In cloudy conditions though, the clouds absorb a significant amount of the shortwave

radiation, making variables like total cloud cover, which is the fraction of the sky covered by visible

clouds essential. The planetary boundary layer (PBL) is the lowest part of the atmosphere which

is directly influenced by its contact with the planetary surface. The structure of turbulence within

this layer is mainly governed by the PBL height, which is higher during the day, and lower and

more stable during nighttime [5]. PBL height characterizes the planetary boundary layer in a fairly

integrated manner and affects the weather parameters such as cloud cover and heat flux [6]. This

makes PBL height an important parameter in predicting solar irradiance.

For the machine learning models to be able to capture and reconstruct the underlying rela-

tionship between input-output data pairs effectively, input selection is essential. By removing the

redundant and misleading data, input selection often helps in reducing the computational costs, and

improves the accuracy. Several approaches have been defined in literature for the purpose of input

selection. In addition to assessing the mutual information scores, we used random forests to identify

the more important weather variables, as they provide an in-built feature selection.

Random forests employ tree-based strategies, which naturally rank inputs based on how well
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they improve the purity of the node. They are an ensemble learning technique constructed over a

variety of randomized decision trees, each of which is built over a random extraction of features and

data observations. The training of these randomized decision trees is done with the objective of

decreasing the Gini Impurity, and the features which help in decreasing this measure are selected

[7]. Thus, random forests help determine the importance of the features in this manner. It was

observed that the weather parameters with higher mutual information scores also received high

feature importance scores through this technique, thus validating the dependence of the target

irradiance observations on this set of parameters.

In [58], Jones used 37 weather attributes, of which one corresponds to the weather data at

the reference time and 36 are feature projections at an one-hour temporal resolution in the forecast

horizon, as the predictor variables for machine learning models. In this work, a forecast horizon of 24

hours was selected, and the relationship between the weather attributes in this forecast horizon and

the irradiance observations corresponding to the target hours in this forecast horizon was studied.

Figure 4: Mutual information between feature projections of Downward Shortwave Radiation Flux
in the forecast horizon and irradiance observations for corresponding target hours along fixed-axis
solar array.

As was noted earlier, downward shortwave radiation flux was the most important NAM weather
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variable with respect to the irradiance observations in the solar farm. In Fig. 4, the mutual infor-

mation between the feature projections of this weather variable and the corresponding irradiance

observations from fixed-axis solar array are represented in a heatmap, wherein, different colours in

the colour-bar depict the amount of mutual information measure. It can be observed that the irradi-

ance observations from fixed axis array for a particular target hour are relatively more dependent on

only a certain number of feature projections in the forecast horizon. Thus, for the machine learning

models trained for each target hour in the forecast horizon, feature projections from six hours ahead,

and six hours prior were considered as predictors.

For the first six target hours in the forecast horizon which do not necessarily have six prior

feature projections, desired number of feature projections were selected from the end. Similarly,

for the last six target hours in the forecast horizon which do not necessarily have six subsequent

feature projections, desired number of feature projections were selected from the beginning of the

forecast horizon. Such a feature projection selection is justified because it is more likely for the

same reference time in two consecutive days to have similar weather conditions. Thus, following

this input selections scheme, the NAM model data contributes 13 feature projections for each of the

four environmental attributes described earlier, eight temporal features (four for the reference time

of the forecast, four for the target hour offset from the reference time) towards the post-processing

of solar irradiance from each of the solar arrays using machine learning models.

3.3 EXPERIMENT SETUP

In this chapter, two series of experiments are performed towards predicting solar irradiance

on the dual-axis tracking, fixed-axis and single-axis tracking solar arrays. In the first series of

experiments, solar irradiance forecasting using Numerical Weather Prediction (NWP) models such

as North American Mesoscale (NAM) Forecast System is investigated, replicating the modeling

methodology employed by Jones in [58]. This is compared with the processed NAM dataset obtained

by incorporating the input selection scheme described in 3.2.2.

In this work, 24-hour persistence models were used to set a baseline for the more sophisticated

machine learning models. Based on the assumption that conditions remain unchanged between

the current time and a future time, 24-hour persistence models measure the solar irradiance at a

particular time t based on the irradiance measured at t− 24. Making use of such a trivial model as

baseline provides a reference for improving the machine learning models.
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Several machine learning algorithms such as Least-Squares Linear Regression (LSLR), k-Nearest

Neighbors (KNN), Support Vector Regression (SVR), Decision Trees (DT), Random Forests (RF)

and Extreme Gradient Boosted Trees (XGBT) were used for the purpose of forecasting. Python-

based machine learning softwares scikit-learn and xgboost6 were used for the implementations of these

machine learning algorithms. Randomized cross-validated grid search was employed to identify the

optimal set of hyperparameters, ranges for each of which were selected around the default values set

for them in the scikit-learn implementations.

Weather variables from the NAM Forecast System were used as predictors for the machine

learning models, and the irradiance observations from the solar arrays were used as target variables.

Each of the weather variables are projected 36 hours into the future at a one-hour temporal res-

olution. As a part of the input-selection scheme, select feature projections were picked from the

important weather variables, depending on the target hour in the forecast horizon. Prediction of

target irradiance was done for a day-ahead forecast horizon, i.e, solar irradiance was predicted 24

hours into the future at a one hour temporal resolution. Models were trained on data collected

during 2017, and evaluated against data collected during 2018. In the first series of experiments, the

performance of the models, with and without employing the input-selection scheme was compared.

Jones [58] reported evaluation metrics such as mean absolute error (MAE) and coefficient of

determination (R2). MAE is a more natural and unambiguous measure of average error, and is

extremely useful in evaluating average-model performance. An evaluation metric such as R2 helps

in providing a reference point for comparing the model results with results from other literature.

Owing to these advantages, in this work, both the evaluation metrics were retained to facilitate a

consistent comparison. In addition, the correlation coefficient (r) is reported as well.

Model results were analyzed in two schemes: mean of the evaluations for each forecast hour in

the forecast horizon (Overall); mean of the evaluations for sets of six forecast hours in the forecast

horizon, i.e, 1 − 6, 7 − 12, 13 − 18 and 19 − 24. MAE was estimated for each of these forecast

horizon segments by taking an average of the metric across each of the target hours in the segment.

However, for R2 and r, this was performed by flattening the predictions and ground-truth values for

multiple target hours in the forecast horizon segment into single lists, and computing the metrics

over these lists. Such an analysis helped in realizing the performance of the models specifically for

different periods in the day.
6https://github.com/dmlc/xgboost
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Geographic expansion of forecast coverage by including additional weather forecasts specific

to areas surrounding the target location is considered to improve the solar irradiance forecasting

capabilities. In the second series of experiments, the effect of such a spatial expansion is investigated,

by including the feature projections of weather variables from a grid of cells around the NAM data

grid representing Athens, as predictors to the machine learning models. A geographic expansion from

the 1 x 1 grid to other geo shapes such as 3 x 3 and 5 x 5 is investigated for the K-Nearest Neighbors,

Random Forests and Extreme Gradient Boosted Trees algorithms. Each of these methodologies are

further explained in finer detail.

3.3.1 IRRADIANCE FORECASTING WITH NAM FORECAST SYSTEM

For the replication study, North American Mesoscale (NAM) weather forecast data and target

irradiance data from the solar farm at the University of Georgia were collected for the years 2017

and 2018. For a forecast horizon of 24 hours, planar surface features from the NAM Forecast System

such as air pressure, geopotential height, height at planetary boundary layer, air temperature, u-

component of wind speed, v-component of wind speed, downward short-wave radiation flux and

downward long-wave radiation flux were used.

As mentioned in 3.2.2, it was determined that weather variables such as air temperature, total

cloud cover, atmospheric height and downward short-wave radiation flux from among the surface-

level planar features affected the solar irradiance predictions more. Hence, the other weather vari-

ables were omitted. Depending on the target hour offset in the forecast horizon, select feature

projections were picked for the weather variables, so as to be included in the NAM dataset. This

was done by selecting 13 from among the 37 weather attributes at a one-hour temporal resolution

such that, six followed the reference time of the target hour offset, six preceded the reference time

of the target hour offset, and one corresponded to the reference time of the target hour offset. In

order to choose an ideal set of parameters for the machine learning models, hyperparameter tuning

was performed with the help of a randomized cross-validated grid search.

The weather forecast data obtained by both methodologies was input to several machine learning

models, which were trained on data collected during 2017, and evaluated against data collected

during 2018. The results obtained by both methodologies, i.e with and without incorporating the

input selection scheme, were compared and analyzed.
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3.3.2 GEOGRAPHIC EXPANSION OF FORECAST COVERAGE

Lorenz et al. [1] found that expanding the forecast region to approximately 100km x 100km

resulted in an improvement in day-ahead solar forecasting. They performed a spatial averaging across

the region, by taking an arithmetic mean of the weather variables from the surrounding weather

data grid cells. In contrast, Sanders et. al. [49] and Jones [58] performed a distance-dependent

weighted averaging, by including the weather variables from the surrounding weather data grid cells

as predictors to the machine learning models.

Figure 5: Geographic expansion of forecast coverage with 1 x 1 Geo Shape representing Athens NAM
model data grid, 3 x 3 Geo Shape and 5 x 5 Geo Shape representing grid of cells around Athens.

Jones [58] trained k-nearest neighbors and random forest algorithms for 3 x 3, 5 x 5 and 7 x 7

geo shapes, each reflecting a spatial expansion up to 36km x 36km, 60km x 60km and 84km x 84km

respectively. As shown in Figure 5, each of the geo shapes represent eight, fifteen and forty eight

NAM weather forecast data grid cells centered around Athens, Georgia. They realized that including

the weather forecasts from the surrounding data grid cells resulted in an improved day-ahead solar

forecasting, though it was observed that the improvement diminished as the geo shape grew larger.

Additionally, Jones [58] also noted that the 3 x 3 geo shape, equivalent to a 36km x 36km area was

optimal.

In this work both the schemes were compared: one in which GHI from the surrounding grids

is averaged, and other in which weather variables from surrounding cells are included as predictors.

It was observed that the latter helped in improving the performance of the models more. Thus, a

geographic expansion of weather forecast coverage was carried out with 3 x 3 and 5 x 5 geo shapes,

resulting in a spatial expansion upto 60km x 60km. The dataset set up using the input selection

scheme described in 3.2.2, was used to determine the effect of geographic expansion.
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3.4 RESULTS AND DISCUSSION

Assessment of Model Performance with and without Input Selection Scheme

In this work, an input selection scheme as described in 3.2.2 was incorporated towards selecting

features for the machine learning models. The performance of the machine learning models using

both the methodologies, i.e. with and without the input selection scheme were compared for dual-

axis tracking solar array, fixed-axis solar array and single-axis tracking solar array. As a part of this

scheme, the key differences between Jones’ dataset and the one used in this work, towards training

with the machine learning models are as follows:

• Jones [58] hadn’t considered the total cloud cover weather variable in the NAM weather dataset

• from among the other surface-level NAM weather variables used, only air temperature, height

at planetary boundary layer and downward shortwave radiation flux were considered

• instead of the 37 weather attributes for each of the weather variables, select feature projections

depending on the target hour offset were chosen as predictor variables

• 1 x 1 geo shape was selected instead of 3 x 3 (which Jones [58] had found to be optimal)

• time of day and time of year encodings were modified to incorporate periodicity of the reference

time in a particular day or in a particular year

For the dual-axis tracking solar array, all the machine learning models performed exceedingly

well with respect to the baseline 24-hour persistence models, which was expected. A substantial

improvement was observed for all the machine learning models built using weather forecast data

without incorporating the input-selection scheme. In particular, using the input selection scheme

helped in improving the MAE of simple linear regression by 52.17%. There was a considerable

improvement in the performance of support vector regression and k-nearest neighbors algorithms as

well, with the MAE reducing by 17.76% and 28.97% respectively. Each of these algorithms is greatly

affected by a higher dimensionality and quality of data, and by weeding out weather variables and

their feature projections which have a lesser influence on the target irradiance, the improvement in

performance of these models can be justified.

Ensemble tree-based methods have the intrinsic ability to calculate feature importance, and

account for the possible correlations between the variables. Thus in general, they perform better
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Table 2: Comparing performance of machine learning algorithms trained against dual-axis tracking
array utilizing NAM Forecast System data: (a) without input selection (upper), (b) with input
selection (lower)

Metric Horizon PER LSLR SVR KNN DT RF XGBT

Without
Input
Selection

MAE

1− 6 153.32 231.00 88.38 98.73 98.34 74.38 73.03
7− 12 153.91 231.06 89.83 101.77 105.17 77.14 76.97
13− 18 154.16 232.15 89.08 106.56 98.31 74.43 75.64
19− 24 161.43 243.04 89.88 104.15 98.19 75.02 76.69
Overall 155.71 234.31 89.29 102.80 100.00 75.24 75.58

R2

1− 6 0.46 0.31 0.85 0.78 0.71 0.86 0.86
7− 12 0.45 0.29 0.84 0.78 0.68 0.85 0.84
13− 18 0.45 0.31 0.84 0.77 0.71 0.86 0.85
19− 24 0.41 0.25 0.84 0.77 0.71 0.85 0.85
Overall 0.44 0.29 0.84 0.77 0.70 0.85 0.85

Relative
Imp. in
MAE (%)

Overall — 52.17 17.76 28.97 10.91 3.47 1.02

Input
Selection

MAE

1− 6 153.32 107.08 70.63 68.54 85.74 70.21 71.65
6− 12 153.91 114.52 73.82 72.35 90.57 72.92 74.6
13− 18 154.16 115.03 73.34 73.12 87.65 72.6 75.77
19− 24 161.43 111.68 75.93 78.04 92.39 74.78 77.23
Overall 155.71 112.08 73.43 73.02 89.09 72.63 74.81

R2

1− 6 0.46 0.84 0.88 0.88 0.78 0.88 0.87
7− 12 0.45 0.83 0.86 0.86 0.76 0.87 0.86
13− 18 0.45 0.82 0.86 0.86 0.77 0.87 0.86
19− 24 0.41 0.82 0.85 0.85 0.74 0.86 0.85
Overall 0.44 0.83 0.86 0.86 0.76 0.87 0.86

than the linear regression methods. For the dual-axis tracking array, random forests had the best

performance with an MAE of 72.63 W/m2, and extreme gradient boosted trees recorded an overall

MAE of 74.81 W/m2. The improvement over the performance of the same algorithms without

incorporating the input selection scheme was 3.47% and 1.02% respectively.

While the random forests performed the best, considerable improvements in performance as a

result of incorporating the input selection scheme were seen in the support vector regression and

k-nearest neighbors algorithms. Overall, there was an average improvement in MAE by 19.05%

across the machine learning models, with random forests having the best MAE with 72.63 W/m2

for the dual-axis tracking solar array.

In general, it’s expected that the performance of the models degrades as the forecast horizon

increases. However, Jones [58] did not observe such a pattern, with sometimes, even the 7− 12 hour

forecast horizon performing worse than 13 − 18 and 19 − 24 hours forecast horizons. Such a trend
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Table 3: Comparing performance of machine learning algorithms trained against fixed-axis solar
array utilizing NAM Forecast System data: (a) without input selection (upper), (b) with input
selection (lower)

Metric Horizon PER LSLR SVR KNN DT RF XGBT

Without
Input
Selection

MAE

1− 6 111.23 151.79 55.018 61.10 62.81 47.09 47.21
7− 12 111.51 147.12 56.65 63.78 62.05 48.32 49.56
13− 18 111.97 151.09 55.64 68.70 64.64 48.19 49.22
19− 24 117.15 159.29 56.11 66.53 62.28 47.65 49.44
Overall 112.96 152.32 55.85 65.03 62.95 47.81 48.86

R2

1− 6 0.59 0.54 0.89 0.85 0.80 0.90 0.89
7− 12 0.58 0.55 0.89 0.85 0.80 0.89 0.88
13− 18 0.58 0.55 0.89 0.83 0.78 0.89 0.88
19− 24 0.55 0.50 0.89 0.83 0.80 0.89 0.88
Overall 0.58 0.54 0.89 0.84 0.80 0.89 0.88

Relative
Imp. in
MAE (%)

Overall — 51.92 16.47 28.42 10.90 6.00 4.36

Input
Selection

MAE

1− 6 111.23 69.81 44.26 42.77 55.30 42.94 44.66
6− 12 111.51 74.74 47.19 46.72 55.96 45.16 46.77
13− 18 111.97 79.63 47.02 47.02 56.65 45.14 46.79
19− 24 117.15 68.75 48.13 49.67 56.48 46.51 48.69
Overall 112.96 73.24 46.65 46.55 56.09 44.94 46.73

R2

1− 6 0.59 0.89 0.91 0.92 0.84 0.92 0.91
7− 12 0.58 0.88 0.90 0.90 0.84 0.91 0.90
13− 18 0.58 0.87 0.90 0.90 0.83 0.91 0.90
19− 24 0.55 0.88 0.89 0.89 0.83 0.90 0.89
Overall 0.58 0.88 0.90 0.90 0.84 0.91 0.90

though, was realized in the results obtained by incorporating the input selection scheme. By and

large, most of the models displayed a trend where the error increased (performance degraded) with

the target hour in the forecast horizon. Considering the overall improvement in performance, it can

be inferred that this indicates an improvement in the short-term forecasting ability of the models.

Similar trends were also observed in the performance of the machine learning models for irradi-

ance predictions on the fixed-axis solar array (in Table 3). The random forests performed the best

with an MAE of 44.94 W/m2. This model achieved an improvement of 6% due to the incorporation

of the input-selection scheme. In contrast, random forests, which were also the best-performing

model without incorporating the input-selection methodology (as followed by Jones [58]), achieved

a MAE of 47.81 W/m2. In all, the input-selection scheme achieved an average improvement of

19.68% in MAE across all the machine learning models.
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Table 4: Comparing performance of machine learning algorithms trained against single-axis tracking
solar array utilizing NAM Forecast System data: (a) without input selection (upper), (b) with input
selection (lower)

Metric Horizon PER LSLR SVR KNN DT RF XGBT

Without
Input
Selection

MAE

1− 6 128.64 174.61 67.52 83.58 77.53 56.81 57.67
7− 12 128.97 176.21 70.13 86.63 82.25 60.32 61.40
13− 18 129.25 176.39 68.79 91.08 81.01 58.54 60.15
19− 24 135.35 182.16 68.70 87.62 82.42 58.42 60.85
Overall 130.55 177.34 68.79 87.23 80.80 58.52 60.02

R2

1− 6 0.53 0.48 0.88 0.79 0.77 0.89 0.88
7− 12 0.53 0.46 0.87 0.79 0.75 0.75 0.87
13− 18 0.53 0.48 0.87 0.77 0.75 0.88 0.87
19− 24 0.49 0.45 0.87 0.78 0.74 0.88 0.87
Overall 0.52 0.47 0.87 0.78 0.75 0.88 0.87

Relative
Imp. in
MAE (%)

Overall — 48.39 5.9 24.65 2.08 -8.68 -8.46

Input
Selection

MAE

1− 6 128.64 87.52 62.29 61.71 75.62 61.37 62.93
6− 12 128.97 95.30 65.77 65.98 81.80 64.09 65.55
13− 18 129.25 93.47 64.29 65.75 76.77 63.50 65.73
19− 24 135.35 89.84 66.57 69.47 82.28 65.44 66.18
Overall 130.55 91.53 64.73 65.73 79.12 63.60 65.10

R2

1− 6 0.53 0.86 0.88 0.88 0.80 0.89 0.88
7− 12 0.53 0.85 0.87 0.86 0.77 0.87 0.87
13− 18 0.53 0.85 0.87 0.86 0.79 0.88 0.87
19− 24 0.49 0.85 0.86 0.86 0.77 0.87 0.87
Overall 0.52 0.85 0.87 0.86 0.78 0.88 0.87

In the present investigation of incorporating the input-selection scheme, the most interesting

results were seen with the single-axis tracking solar array predictions (in Table 4). For the k-nearest

neighbors algorithm, trends followed the predictions for the other solar arrays reported so far, with

a reduction in MAE by 24.65%. For the predictions with support vector regression, a reduction

in MAE by 5.9% was observed. However, this relative improvement in performance was less in

magnitude as compared to those observed for dual-axis tracking array predictions and fixed-axis

array predictions. In addition, using the tree-based ensemble methods such as random forests and

extreme gradient boosted trees, a degradation in performance was recorded, with the MAE increasing

by 8.68% and 8.46%. Though random forests still performed the best with an MAE of 63.6 W/m2,

this performance paled in comparison to that of the random forests without incorporating the input-

selection scheme, where an MAE of 58.52 W/m2 was obtained. To explain this, the corresponding

data and code were investigated. No errors in data processing were found. Moreover, a systematic

error would have affected all the arrays, which wasn’t the case.
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Evaluating Effect of Geographic Expansion of Forecast Coverage

Better performing algorithms in 3.3.1 such as k-nearest neighbors, random forests and extreme

gradient boosted trees were retrained on dual-axis tracking, fixed-axis and single-axis tracking solar

arrays and corresponding weather forecast data for the year 2017, and evaluated against data be-

longing to the year 2018. The performance of these models for each of the geo shapes 1 x 1, 3 x 3

and 5 x 5 was compared and analyzed.

Using the k-nearest neighbors algorithm to predict the day-ahead solar irradiance on dual-axis

tracking solar array, it was observed that the geographic expansion had a slightly detrimental effect

on the performance. Expanding to 3 x 3 geo shape resulted in increasing the MAE by 1.59%, and

increasing the weather forecast coverage to 5 x 5 geo shape resulted in increasing the MAE by 0.44%.

For these models, the 1 x 1 performed best with a MAE of 73.01 W/m2.

Table 5: Evaluating effect of geographic expansion of forecast coverage for dual-axis tracking array.

Metric Horizon KNN RF XGBT
1x1 3x3 5x5 1x1 3x3 5x5 1x1 3x3 5x5

MAE

1− 6 68.61 69.68 69.02 68.53 67.90 66.69 71.04 69.23 85.32
7− 12 72.52 73.72 72.77 72.40 71.40 69.38 73.51 72.44 87.16
13− 18 72.86 74.27 73.06 70.82 69.85 68.39 73.69 71.91 87.47
19− 24 78.05 78.99 78.47 74.99 74.46 73.06 77.92 76.02 90.02
Overall 73.01 74.17 73.33 71.68 70.90 69.38 74.04 72.40 87.49

R2

1− 6 0.88 0.87 0.87 0.88 0.88 0.89 0.87 0.88 0.84
7− 12 0.86 0.85 0.86 0.87 0.87 0.88 0.86 0.86 0.84
13− 18 0.86 0.85 0.85 0.87 0.87 0.88 0.86 0.87 0.83
19− 24 0.85 0.84 0.84 0.86 0.86 0.87 0.84 0.85 0.83
Overall 0.86 0.85 0.86 0.87 0.87 0.88 0.86 0.87 0.83

r

1− 6 0.94 0.94 0.94 0.94 0.94 0.94 0.93 0.94 0.94
7− 12 0.93 0.93 0.93 0.93 0.93 0.94 0.93 0.93 0.93
13− 18 0.93 0.92 0.92 0.93 0.94 0.94 0.93 0.93 0.93
19− 24 0.92 0.92 0.92 0.93 0.93 0.93 0.92 0.92 0.92
Overall 0.93 0.93 0.93 0.93 0.93 0.94 0.93 0.93 0.93

Relative
Imp. in
MAE (%)

Overall — -1.59 -0.44 — 1.09 3.21 — 2.22 -18.17

However, for the random forests trained on weather forecast data and irradiance observations

from dual-axis tracking array, it was observed that spatial expansion was beneficial. While expanding

from 1 x 1 grid to 3 x 3 and 5 x 5 geo shapes, the model performance in MAE improved by 1.09%

and 3.21% respectively. An MAE of 70.90 W/m2 and 69.38 W/m2 was recorded for each of the
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geo shapes. A geographic expansion by including the additional weather forecasts as predictors

did not have a negative effect on model performance, possibly due to the better attribute-selection

capabilities of the decision-tree based ensemble algorithm.

An improvement in performance of this nature was expected for another decision tree based

ensemble algorithm, extreme gradient boosted trees as well. However in this case, while expanding to

3 x 3 geo shape improved the performance on the dual-axis tracking solar arrays by 2.22%, resulting in

an MAE of 72.40 W/m2, expanding to 5 x 5 geo shape had an extremely detrimental performance on

the models, subsequently increasing the MAE by 18.17% to 87.49 W/m2. The best performance for

the extreme gradient boosted trees models trained on the irradiance observations from the dual-axis

tacking solar arrays was recorded for the 3 x 3 geo shape, with an MAE of 72.40 W/m2.

Extreme gradient boosted trees are more sensitive to overfitting if the data is noisy. Because they

are built sequentially, training time is generally higher as well. Owing to this, when compared to

random forests, these models are harder to tune. In this work, for the extreme gradient boosted trees,

the number of trees, depth of trees and the learning rate were tuned. There was a sharp increase in

the number of predictors from 1 x 1 to 5 x 5. It is possible that an insufficient number of trees with

lesser depth (than that required for the scale of the dataset) were used in this ensemble technique,

resulting in shallow trees being trained for this model.

Similar trends in model performance was observed for irradiance predictions on the fixed-axis

and single-axis tracking solar arrays as well. Using the k-nearest neighbors algorithms, a best MAE

of 46.41 W/m2 and 65.69 W/m2 was recorded for the fixed-axis and single-axis tracking solar arrays

respectively, utilizing weather forecast data corresponding to 1 x 1 geo shape. Expanding to 5 x 5

geo shape, and leveraging the weather forecast data to the random forests algorithm improved the

performance by 2.79% and 2.3% resulting in an MAE of 43.62 W/m2 and 61.99 W/m2 for each of

the solar arrays.

Using the extreme gradient boosted trees algorithm too, similar trends were recorded, with the

3 x 3 geo shape performing the best, resulting in an MAE of 45.78 W/m2 and 63.77 W/m2 for the

fixed-axis and single-axis tracking solar arrays. However, it is to be noted that the random forests

performed best for the single-axis tracking array, with an MAE of 61.99 W/m2 for the 5 x 5 geo

shape. This is still worse than the best performance observed by Jones [58], with an MAE of 58.52

W/m2 for a 3 x 3 geo shape without input selection.
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Table 6: Evaluating effect of geographic expansion of forecast coverage for fixed-axis array.

Metric Horizon KNN RF XGBT
1x1 3x3 5x5 1x1 3x3 5x5 1x1 3x3 5x5

MAE

1− 6 42.62 44.10 44.06 42.33 41.77 41.12 44.46 43.42 56.95
7− 12 46.64 48.43 48.03 45.53 44.94 43.82 46.71 45.84 58.85
13− 18 46.82 48.77 48.26 44.80 44.13 43.73 46.56 45.56 59.97
19− 24 49.59 51.10 50.85 46.82 46.20 45.80 48.63 48.32 60.49
Overall 46.41 48.10 47.80 44.87 44.26 43.62 46.59 45.78 59.07

R2

1− 6 0.92 0.91 0.92 0.92 0.92 0.93 0.91 0.92 0.88
7− 12 0.90 0.89 0.89 0.90 0.91 0.91 0.90 0.90 0.87
13− 18 0.90 0.89 0.89 0.91 0.91 0.91 0.90 0.90 0.87
19− 24 0.89 0.89 0.89 0.90 0.90 0.91 0.89 0.89 0.86
Overall 0.90 0.90 0.90 0.91 0.91 0.91 0.90 0.90 0.87

r

1− 6 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96
7− 12 0.95 0.95 0.95 0.95 0.95 0.96 0.95 0.95 0.95
13− 18 0.95 0.94 0.95 0.95 0.95 0.96 0.95 0.95 0.95
19− 24 0.95 0.94 0.94 0.95 0.95 0.95 0.95 0.95 0.95
Overall 0.95 0.95 0.95 0.95 0.96 0.96 0.95 0.95 0.95

Relative
Imp. in
MAE (%)

Overall — -3.64 -3.00 — 1.36 2.79 — 1.74 -26.79

Another aspect which needs to be considered in the comparison of methodologies with/without

incorporating the input selection scheme is the computational cost. For the 1 x 1 geo shape, the

methodology followed by Jones [58] uses input data for the machine learning models involving 337

predictors (333 weather attributes, 4 temporal attributes). In contrast, the input data generated

by incorporating the input-selection scheme for 1 x 1 geo shape uses 60 predictors (52 weather

attributes, 8 temporal attributes). Similarly, for the 3 x 3 and 5 x 5 geo shapes, as compared

to 3001 (2997 weather attributes, 4 temporal attributes) and 8329 (8325 weather attributes, 4

temporal attributes) predictors respectively, by incorporating the input-selection scheme, 476 (468

weather attributes, 8 temporal attributes) and 1308 (1300 weather attributes, 8 temporal attributes)

predictors respectively were used. This drastic reduction in the number of predictors led to a

considerable decrease in the training time of the machine learning models.

Stratified Diurnal Analysis of Performance

NAM forecasts are released at 00h, 06h, 12h and 18h UTC. In order to assess the performance

of the machine learning models as a result of incorporating the input-selection scheme better, a

stratified analysis was carried out. The mean absolute error (MAE) of the models for each of the

32



Table 7: Evaluating effect of geographic expansion of forecast coverage for single-axis tracking array

Metric Horizon KNN RF XGBT
1x1 3x3 5x5 1x1 3x3 5x5 1x1 3x3 5x5

MAE

1− 6 61.68 63.41 63.00 60.83 60.55 60.15 61.32 60.96 75.44
7− 12 65.93 67.27 67.03 64.18 63.73 62.52 65.58 64.43 77.09
13− 18 65.64 67.99 67.08 62.61 60.91 60.32 64.35 62.66 76.09
19− 24 69.53 71.07 70.83 66.19 65.82 64.97 67.30 67.01 80.16
Overall 65.69 67.44 66.99 63.45 62.75 61.99 64.63 63.77 77.20

R2

1− 6 0.88 0.88 0.88 0.89 0.89 0.89 0.88 0.89 0.85
7− 12 0.86 0.86 0.86 0.87 0.87 0.88 0.87 0.87 0.84
13− 18 0.86 0.85 0.86 0.88 0.88 0.88 0.87 0.87 0.84
19− 24 0.86 0.85 0.85 0.87 0.87 0.87 0.86 0.86 0.83
Overall 0.86 0.86 0.86 0.88 0.88 0.88 0.87 0.87 0.84

r

1− 6 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94
7− 12 0.93 0.93 0.93 0.93 0.94 0.94 0.93 0.93 0.93
13− 18 0.93 0.92 0.93 0.94 0.94 0.94 0.93 0.93 0.94
19− 24 0.93 0.92 0.92 0.93 0.93 0.93 0.93 0.93 0.93
Overall 0.93 0.93 0.93 0.94 0.94 0.94 0.93 0.93 0.93

Relative
Imp. in
MAE (%)

Overall — -2.66 -1.98 — 1.10 2.30 — 1.33 -19.45

target hours in the forecast horizon, i.e. between 1 and 24 was compared for all four types of NAM

forecasts individually.

For using weather data from NAM Forecast System for training with the machine learning

models, the reference times of the NAM forecasts were made time-zone aware with respect to the

target location, i.e. Athens, Georgia. For the reference times corresponding to each of the NAM

forecasts, corresponding solar irradiance observations were collected. The target location is -5.00

hours with respect to UTC in the standard time zone, and -4.00 hours with respect to UTC during

daylight saving time. For the sake of a diurnal analysis, it was assumed that the target location is

-4.00 hours with respect to UTC throughout the year.

Thus, 00h, 06h, 12h, 18h NAM forecasts each correspond to 8 P.M, 2 A.M, 8 A.M and 2 P.M

locally. In Figure 6, for each of the NAM forecasts, local time of day (i.e. between 6.00 AM and

6.00 PM) was identified. In the forecast horizon, i.e. in the consequent 24 hours, for each of the

NAM forecasts, such time of day was marked in yellow, so as to signify daytime. In Figure 6, it can

be seen that the performance of most of the machine learning models is comparable regardless of

day-time or night-time. While the support vector regression models performed well during daytime,
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Figure 6: Stratified diurnal analysis of day-ahead irradiance predictions for fixed-axis array: (left-
top) 00h NAM forecasts, (right-top) 16h NAM forecasts, (left-bottom) 12h NAM forecasts, (right-
bottom) 18h NAM forecasts. Local time of day (6A.M to 6P.M) at the target location for each of
the NAM forecasts is indicated in light yellow.

they performed slightly worse during night-time, only performing better than the simple linear

regression. The stratified diurnal analysis was essential in realizing that the performance of the

models in Tables 2, 3 and 4 is misleading, as a much higher MAE can be observed for certain target

hours in the time of day, for each of the forecasts.

In order to get a better understanding of the performance of the models, a local-time analysis

was done. For each of the NAM forecasts, the forecast horizon corresponds to the following time

ranges with respect to the target location: 9 P.M - 8 P.M, 3 A.M - 2 A.M, 9 A.M - 8 P.M, 3 P.M

- 2 P.M. From these local time ranges, the predictions obtained from the random forests algorithm

corresponding to target hours representing the same local time were sampled together. MAE was

estimated for each of these groups, so as to attain the model performance at a certain time in a

day, at the target location. In Fig. 7(a), this was plotted for each of the 00h, 06h, 12h, 18h NAM
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(a) Local time analysis of NAM forecasts (b) Model comparison at noon (local time)

Figure 7: (a) Average performance of different target hours in the forecast horizon corresponding
to each of 00h, 06h, 12h, 18h NAM forecasts, adjusted according to local time. (b) Comparison of
box-and-whisker plots of residuals from different predictive models utilizing GHI at 12 P.M local
time, i.e. noon.

forecasts. The worst performance, expectedly, was observed at 12.00 P.M (local time) or noon. Such

an analysis helps realize that for day-ahead solar forecasting with quality weather forecast data, the

local time for which the prediction is being made is key to the quality of the prediction, than how

farther away the target hour is in the forecast horizon.

In order to ascertain the better machine learning model at the local time most difficult to predict

solar irradiance for, the quality of prediction of all machine learning models at 12 P.M (local time)

was compared. To enable this, in Fig. 7(b), box-and-whisker plots were drawn for the residuals of

the predictions from all the models at this time. It was observed that the random forests had the

least dispersion beyond the whiskers, indicating its effectiveness in irradiance prediction irrespective

of the position of the target hour in the forecast horizon, or the local time of the target hour.
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CHAPTER 4

MULTI-MODEL BLENDING APPROACHES TO SOLAR IRRADIANCE

FORECASTING

4.1 OVERVIEW

There is a significant variability in the global horizontal irradiance (GHI) measured by NWP

models with respect to cloud conditions. Mathiesan and Kliessl [46] found that the NAM Forecast

System tends to overpredict GHI in clear-sky conditions, i.e. sky conditions in which visible clouds

are absent, by up to 40 percent. They proposed a bias-correction scheme to selectively correct the

overpredicted GHI. In this scheme, they derived a multivariate fourth-order model-output statistics

(MOS) correction function depending on solar zenith angle (θz) and clear-sky index (Kc). Based on

Kc, sky-conditions for the forecasts were determined. The bias correction function was employed on

the forecasts possessing a positive bias in clear-sky conditions.

However, Diagne et al. [17] noted that this bias-correction methodology was not adequate, as

even the accurate forecasts were unnecessarily corrected. Thus, a need for a superior bias-correction

methodology depending on cloud-conditions was identified, so as to improve the GHI predicted by

the NAM Forecast System. The experiments conducted in this chapter are devoted towards exploring

theory-driven approaches for this purpose.

There are multiple empirical solar radiation formulations which have been extensively discussed

in literature [19][20][21][22][23][31], which compute the different components of solar irradiance from

environmental conditions, through experimental observations. These can be broadly classified into

decomposition and parametric models [25]. Using assumptions on solar geometry and transmit-

tance, the former are used to estimate direct beam and diffuse irradiance. The latter are useful

for approximating daily solar radiation reaching tilted surfaces. In this chapter, two such empirical

solar radiation models, Clear-Sky Scaling and Liu-Jordan Model are discussed, which help estimate

different components of global solar radiation, including GHI.
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In climatic research, in order to be able to distinguish between clear-sky and cloudy-sky condi-

tions effectively, measures such as clear-sky index (Kc) and clearness index (Kt) have been intro-

duced. Clear-sky index is generally described as the ratio of measured global horizontal irradiance

in a system to its measure in clear-sky conditions, estimated with the help of a clear-sky solar

radiation model. It makes accurate and continuous determination of cloud amount from surface

measurements possible [41]. In contrast, clearness index is simply a ratio of the measured irradiance

at a location, to the extraterrestrial irradiance calculated at the location. It is extremely useful as

it incorporates both light scattering and light absorption, which is beneficial towards estimating the

shortwave radiation reaching the surface of the earth.

In this work, a theory-driven multi-model blending approach is explored towards correcting

the reported bias in GHI. This is done by combining the NAM Forecast System with the empirical

Clear-Sky Scaling technique based on Kc estimates, and with the Liu-Jordan model based on Kt

estimates. In the case of the former, the clear-sky Ineichen Model was used to compute the clear-sky

GHI, which goes into estimating Kc. From among the 00h, 06h, 12h, 18h UTC forecasts released by

the NAM Forecast System, 18h NAM forecasts with Kc > 0.85 were corrected, by substituting the

GHI from NAM Forecast System (GHINAM) with the arithmetic mean of the GHINAM and GHI

estimates from Clear-Sky Scaling technique (GHICS).

Predictive models implementing the random forest technique were developed utilizing GHINAM

and GHICS independently. The models were compared, and it was observed that such a bias-

correction scheme led to an improvement in performance, reducing the mean absolute error (MAE)

by 4.95%, 4.53% and 4.12% for the dual-axis tracking, fixed-axis and single-axis tracking solar arrays

respectively. A similar comparison was performed by including other weather variables from NAM

Forecast System, and incorporating the input-selection scheme described in 3.2. However, in this

case, the model-blending approach did not lead to an improvement in performance, resulting in an

MAE of 72.57 W/m2, 44.91 W/m2 and 63.6 W/m2 for each of the solar arrays.

A similar model-blending approach was evaluated for combining the NAM Forecast System

with Liu-Jordan model, depending on Kt estimates. Kt was computed based on estimations for

extraterrestrial radiation and solar zenith angle for the target location, i.e. Athens, Georgia. For the

18h NAM forecasts with Kt > 0.35, GHINAM was substituted with the arithmetic mean of GHINAM

and GHI from Liu-Jordan model (GHILJ). Predictive models implementing the random forests

technique were developed, utilizing GHINAM and GHILJ independently as well. It was observed
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that the former performed better, with the MAE improving by 4.17%, 4.14% and 3.62% for dual-axis

tracking, fixed-axis and single-axis tracking solar arrays respectively. Additionally, predictive models

implementing random forests technique were developed by including other weather variables from

NAM Forecast System, and incorporating the input-selection scheme. For these models, the model-

blending technique slightly deteriorated the performance, resulting in an MAE of 72.74 W/m2, 45.25

W/m2 and 63.97 W/m2 for each of the solar arrays.

In order to study the utility of clear-sky index, another model-blending methodology was ex-

plored in which clear-sky index was included as a predictor variable to various machine learning

models rather than GHI. The intuition behind this approach was to capture the diurnal and sea-

sonal cyclicity capturing ability of this measure [42]. Such an ability can be attributed to the solar

zenith angle, which goes into the computation of this measure and helps track the position of the

Sun. An input-selection scheme in line with that followed in Chapter 3 was used to generate a

weather forecast data for the machine learning models, so as to forecast solar irradiance for the

dual-axis tracking, fixed-axis and single-axis tracking solar arrays.

The performance of such predictive models was worse than that obtained by utilizing the input-

selected weather forecast data from the NAM Forecast System (reported in Tables 2, 3, 4). The

MAE increased for the best performing random forests by 11.59%, 9.8% and 9.42% along each of

the solar arrays, recording an MAE of 79.58 W/m2, 49.18 W/m2 and 69.98 W/m2 respectively.

A stratified diurnal and seasonal analysis was performed on the predictions attained through this

methodology. The presumed cyclicity-capturing ability of the clear-sky index measure did not trans-

late into improving the performance of the predictive models across corresponding seasons.

4.2 EMPIRICAL SOLAR RADIATION MODELS

Solar researchers have developed various formulations through experimental observations, which

help in determining the relation between different components of solar radiation and various meteo-

rological parameters. Of these, parametric models require information about atmospheric conditions

such as turbidity, cloud cover, etc. to be able to formulate the different components of solar irradiance

such as diffuse horizontal irradiance (DHI), direct normal irradiance (DNI) and global horizontal

irradiance (GHI). Decomposition models formulate equations to estimate the solar irradiance com-

ponents based on the correlations between them. Such formulations are relevant, especially in cases

where meteorological data is not adequately available.
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DHI is the amount of solar radiation received by a horizontal surface, which has been scattered

by the molecules and particles in the atmosphere. It is the part of solar radiation which does not

belong to the 5◦ field of view concentric around the sun. DNI is the direct radiation received on

a plane normal to the sun over the total solar spectrum. It is an essential component of global

irradiance, especially in cloudless conditions. GHI is the total amount of such terrestrial irradiance

which is received by a surface horizontal to the surface of the earth. It can measured with the help

of pyranometers, and in general, can be computed from DHI and DNI using the following equation,

where θz is the solar zenith angle (the angle between sun and the vertical):

GHI = DHI +DNI.cos(θz) (2)

Holmgrem et al [51] contributed to building pvlib-python7 an open source, python-based soft-

ware, ported from the PVLIB MATLAB toolbox developed at Sandia National Laboratories. This

software provides a set of utilities for simulating the performance of the photovoltaic energy systems,

with implementations of algorithms related to solar energy. Specifically, it contains components to

obtain weather forecast data from NOAA/NCEP/NWS models including the GFS, NAM, RAP,

HRRR, and the NDFD, retrieved from the UNIDATA THREDDS servers; and components to con-

vert this weather forecast data into a PV power forecast.

For our experiments, we retrieved a NAM data product (NAMawphys) from the NCEP servers.

This is different from the one retrieved by pvlib-python (NAMawip) in that the former is a full com-

plement of both the pressure level fields and surface-based fields, while the latter is a full complement

of just the surface-based fields. To be able to extend the solar energy related algorithms to the NAM

weather forecast data collected by us, making it compatible with NAMawip becomes essential.

NAMawip data retrieved by pvlib-python consists of the following surface-level parameters: air

temperature, wind speed, total clouds, low clouds, mid clouds and high clouds. In order to enable

the use of pvlib-python functionalities on the weather forecast dataset collected by us, equivalent

surface-level fields were identified in NAMawphys. In this work, each of the irradiance metrics GHI,

DHI and DNI were computed from the pvlib-python compatible NAM dataset using two empirical

solar radiation models implemented in the software: Clear-sky Scaling, Liu-Jordan Model.
7https://github.com/pvlib/pvlib-python
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4.2.1 CLEAR-SKY SCALING

Global horizontal irradiance can be measured with the help of a pyranometer on a horizontal

surface. For this reason, it is typically the most common type of irradiance measurement. Knowledge

of clear sky conditions, i.e. where the visible clouds are absent, is a key requirement for forecasting

terrestrial solar radiation. Empirical solar radiation models such as clear-sky models estimate the

solar radiation under a cloudless sky based on various atmospheric parameters. Such models can

generally be validated by comparing the estimated irradiance with the measured irradiance in clear-

sky conditions.

Several parametric models have been proposed in literature to compute the different components

of solar radiation from environmental conditions such as atmospheric turbidity, fractional sunshine,

perceptible water vapor, etc. Ineichen et al [52] formulated a model to compute Linke turbidity

independent of the airmass, and clear-sky GHI from this metric. In this technique, the Ineichen

Clear-Sky Model was used to compute the clear-sky GHI (GHICS). Going by Larson et al’s [53]

work, this was scaled on the basis of the total cloud cover (TCC) according to the following equation:

GHI = GHICS .[0.35 + 0.65(1− TCC)] (3)

In addition, the popular Direct Insolation Simulation Code (DISC) model introduced by Maxwell

et al. [50] was used to compute the direct beam component of global solar radiation, i.e. DNI. The

diffuse part of global solar radiation, i.e. DHI was computed by subjecting the GHI (estimated with

Eq. 3) and DHI to Eq. 2

4.2.2 LIU-JORDAN MODEL

Decomposition models typically utilize only data pertaining to global solar radiation, to estimate

the diffused component. They depend on the atmospheric effects in an isolated place, varying

according to time of the year, season and climatic conditions [54]. Liu et al. proposed one of the

simplest and earliest models of radiation, the Liu-Jordan model [55], which presumes that diffuse

radiation intensity is distributed uniformly over the whole sky. In this model, the diffuse irradiance

on a surface tilted towards the equator at an angle θ, where ID is the diffuse radiation on a horizontal

surface is given by the following empirical equation:
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IDt = ID.(
1 + cosθ

2
) (4)

Liu-Jordan model, though simple, is one of the more accurate models for estimating diffuse

radiation on inclined surfaces [56]. This model helps determine DNI, GHI from properties such as

extraterrestrial flux, transmittance, and optical air mass number. It has been observed that the

Liu-Jordan model provides a good fit to empirical data under overcast skies, but underestimates the

solar radiation on tilted surfaces when used for partially-clear and clear-sky days [57].

4.3 EXPERIMENT SETUP

In this chapter, two series of experiments are performed towards predicting solar irradiance

on each of the dual-axis tracking, fixed-axis and single-axis tracking solar arrays. They can be

summarized as follows:

• contrasting the utilization of GHI (from NAM Forecast System), adjusted GHI (from blend-

ing NAM Forecast System with Clear-Sky Scaling and Liu-Jordan techniques) as a predictor

variable

(a) comparing performance of random forests utilizing GHI and adjusted GHI independently

as predictors

(b) comparing performance of random forests utilizing other input-selected NAM weather

variables along with GHI and adjusted GHI as predictors

• contrasting performance of predictive models utilizing clear-sky index rather than GHI

In the first series of experiments, a theory-driven bias-correction scheme combining the NAM

Forecast System with empirical solar radiation models such as Clear-Sky Scaling and Liu-Jordan

is explored. In Chapter 3, it was observed that the random forest was the best performing ma-

chine learning model for the purpose of solar irradiance forecasting. Independent predictive models

were developed using this algorithm, utilizing GHI estimates from NAM Forecast System and bias-

corrected GHI estimates from model-blending as input. These models were compared and analyzed,

so as to gauge the effect of the model-blending scheme. In order to enable a consistent comparison

of model performance, evaluation metrics used in Chapter 3, i.e. mean absolute error (MAE) and

coefficient of determination (R2) were used in this chapter as well.
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Figure 8: Correlation of the first feature projection corresponding to GHI from NAM data, Clear-sky
Scaling and Liu-Jordan Model, with respect to irradiance observations from dual-axis tracking (left),
fixed-axis (center) and single-axis tracking (right) solar arrays through 2017.

Furthermore, other NAM weather variables such as air temperature, height at planetary bound-

ary layer, and total cloud cover, which were observed to be effective for solar irradiance prediction

were also considered. Predictive models were developed by including these weather variables along

with the different variants of GHI described earlier. This weather forecast dataset was input to

random forests with the input-selection scheme described in 3.2, so as to predict solar irradiance on

each of the solar arrays. The performance of these predictive models was compared with models

utilizing input-selected NAM weather forecast data, in which the GHI estimates weren’t adjusted.

A second series of experiments was performed, where multiple machine learning models were

developed using clear-sky index rather than GHI, along with the other NAM weather variables.

An input-select scheme in line with that in 3.2 was designed to selectively pick relevant feature

projections of the weather variables in the forecast horizon. Solar irradiance predictions were made

utilizing this weather forecast data on each of the dual-axis tracking, fixed-axis and single-axis

tracking solar arrays. A stratified diurnal and seasonal analysis of the performance of these predictive

models was performed, to gauge the cyclicity-capturing ability of these models.

4.3.1 BLENDING NAM FORECAST SYSTEM WITH EMPIRICAL MODELS

Clear-Sky Scaling and Liu-Jordan techniques were used to evaluate GHI (GHICS and GHILJ

respectively) from the meteorological variables in the NAM Forecast System. Both of these GHI

estimates were compared with the GHI from the NAM Forecast System (GHINAM) for each of

the 00h, 06h, 12h and 18h NAM forecasts. In Fig. 9, the residuals of the first feature projection

of GHICS and GHINAM (left), GHILJ and GHINAM (right) with respect to the corresponding

irradiance observations from the fixed-axis solar array were plotted for all NAM forecasts in 2017.
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Residuals correspond to the difference between the target irradiance observations and the mod-

eled GHI estimates. Thus, in Fig. 9, lying above the X-axis signifies the under-estimation of the

corresponding GHI values, and lying under the X-axis signifies the over-estimation of corresponding

GHI values. For both the 00h and 06h NAM forecasts, the residuals in both the sub-plots are mostly

close to the X-axis, except for a small period for the 00h NAM forecasts. The 00h NAM forecasts

correspond to late-evening at the target location. The period for which the residuals corresponding

to GHICS and GHILJ are under the X-axis signifies the middle of the year where days are longer,

thus leading to possible over-estimation of GHI by the empirical techniques. Meanwhile, the 06h

NAM forecasts correspond to night-time at the target location, where there is no sun. Thus, the

near-zero residual values for these forecasts are justified.

The residuals of GHI estimates from 12h NAM forecasts are consistently above the X-axis, with

those corresponding to the GHI estimates from Clear-Sky Scaling and Liu-Jordan techniques being

constantly greater than the residuals corresponding to the GHI estimates from the NAM Forecast

System. This illustrates the under-prediction of GHI by all the modeling techniques, with that

from the empirical techniques being greater than the NAM Forecast System. Similarly, residuals

corresponding to 18h NAM forecasts are studied as well. However in this case, more variability of

the GHI estimates was observed, with a considerable number of over-predicted GHI estimates across

all the modeling techniques.

To be able to explain the variability in the GHI estimates of the 18h NAM forecasts better,

studying measures which determine the amount of cloudiness in the sky is essential. In this regard,

clear-sky index and clearness index were explored. Clear-sky index helps in the removal of diurnal

and seasonal signals from a given set of radiation data [2]. This can be attributed to the fact that

the solar zenith angle, i.e. the elevation angle of the Sun is utilized in the estimation of this measure.

In contrast, Clearness index helps in estimating the clearness in the sky and can be determined for

a specific day based on collected meteorological data and knowledge of extraterrestrial irradiance.

It is extremely important in the parameterization of Liu-Jordan model.

The Ineichen Model was used to compute the clear-sky GHI, which goes into the estimation

of clear-sky index. For the computation of clearness index, estimation of extraterrestrial radiation

for a day of the year, and the estimation of solar zenith angle are necessary. Reda et al. [48]

proposed Solar Position Algorithm, an implementation of which was used in the determination of

the solar zenith angle. The extraterrestrial radiation was determined using an implementation of
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(a) NAM Forecast System + Clear-Sky Scaling (b) NAM Forecast Sytem + Liu Jordan Model

Figure 9: Comparing GHI estimates from Clearsky-Scaling (GHICS) and Liu-Jordan (GHILJ tech-
niques with NAM Forecast System (GHINAM for 00h, 06h, 12h, 18h NAM forecasts: Residuals of
GHICS (blue) and GHINAM (orange) with respect to fixed-axis solar array irradiance observations
for individual weather forecasts in 2017 (left); Residuals of GHILJ (blue) and GHINAM (orange)
with respect to fixed-axis solar array irradiance observations for individual weather forecasts in 2017
(right).

the algorithm described by Spencer. J in [43]. Both of these measures were formulated such that

the negative and non-finite values are truncated to zero, and the maximum value is 2, allowing the

over-irradiance events typically seen in sub-hourly data. In Fig. 10, to further study the variability

in GHICS and GHILJ, clear-sky index and clearness index were plotted for the 18h NAM forecasts.

Generally, clear-sky index values greater than 1 indicate higher solar irradiance observations.

It was observed that the clear-sky index for the 18h NAM forecasts were highly variable, and

identifying clear-sky periods based on the clear-sky index was not as straightforward. Thus, a

randomized cross-validated grid search was performed to find a threshold for the clear-sky index,

above which clear-sky periods could be presumed, and GHINAM could be corrected. The proposed

bias-correction involved substituting GHINAM with the arithmetic mean of GHINAM and GHICS.

Based on such an approach, it was found that Kc could be thresholded at 0.85. For the sake of

convenience, in this work, the GHI estimates corresponding to the model-blending techniques will be

referred to as adjusted GHI, and those corresponding to model-blending between the NAM Forecast

System and Clear-Sky Scaling as adjusted GHINAM+CS.

A similar randomized cross-validated grid search was performed to identify a threshold for

the clearness index as well. For NAM forecasts with clearness index greater than this threshold,
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(a) (b)

Figure 10: Clear-Sky Index (Kc, left) estimates and Clearness Index (Kt, right) estimates for 18h
NAM forecasts in 2017.

sunny conditions could be presumed, and below which, cloudy sky conditions could be presumed.

Such a threshold was identified at 0.35. Thus, for all 18h NAM forecasts with Kt > 0.35 (i.e.

possessing sunny sky conditions), GHINAM was adjusted by substituting it with the arithmetic

mean of GHINAM and GHILJ. For the sake of convenience, such bias-corrected GHI estimates will

be referred to as adjusted GHINAM+LJ.

Random forests were the better performing machine learning models for solar irradiance pre-

diction in Chapter 3. Separate predictive models were developed using this algorithm, utilizing

GHINAM, adjusted GHINAM+CS and adjusted GHINAM+LJ alone. The performance of each of

these models forecasting solar irradiance on the dual-axis tracking, fixed-axis and single-axis track-

ing solar arrays was compared.

In addition, such predictive models were also developed by including additional NAM weather

variables along with GHINAM, adjusted GHINAM+CS and adjusted GHINAM+LJ respectively. Rele-

vant feature projections were chosen for each of them based on the input-selection scheme described

in 3.2. Liu-Jordan model has been shown to be effective in predicting diffuse irradiance on in-

clined surfaces. This was also verified as the DHI estimated by this technique was highly correlated

with ground-based solar irradiance observations. Thus, DHI estimated by Liu-Jordan model was

included as a predictor to the models involving adjusted GHINAM+LJ. Performance of models using

these three variants of weather forecast data was compared for the dual-axis tracking, fixed-axis and

single-axis tracking solar arrays.
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4.3.2 PREDICTIVE MODELING USING CLEAR-SKY INDEX

For each of the 25 GHI feature projections in the NAM Forecast System, corresponding clear-

sky GHI estimates were computed using the Ineichen Clear-Sky Model. These estimates were used

to determine the clear-sky index (Kc) values, resulting in 25 feature projections for this measure.

A higher dependency was observed between Kc and solar irradiance observations from the solar

farm, as compared to the other NAM weather variables. Thus, following the input-selection scheme

described in 3.2, a mutual information matrix was computed for each of the feature projections of Kc

with respect to the solar irradiance observations from fixed-axis solar array in the forecast horizon.

Figure 11: Mutual information between feature projections of Clear-Sky Index (Kc) in the forecast
horizon and irradiance observations for corresponding target hours along fixed-axis solar array.

In Fig. 11, it can be seen that the solar irradiance observations are not dependent on all of

the Kc feature projections in the forecast horizon. In contrast to the mutual information matrix

between the GHI feature projections and solar irradiance observations in the forecast horizon (as

in Fig. 8), here, the irradiance for a particlar target hour offset in the forecast horizon doesn’t

necessarily depend on the Kc feature projection corresponding to the same reference time either. As

a matter of fact, a lower dependency was observed between the clear-sky index feature projections

and target solar irradiance at the center of the forecast horizon.
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In order to find one such optimal range, a cross-validated grid search was performed. It was

identified that the feature projections ranging from 13 hours to 17 hours in the forecast horizon

were less relevant. Hence, for the machine learning models trained for each of the target hours,

these feature projections were omitted. As a consequence of such an input-selection scheme, 20

feature projections corresponding to clear-sky index and the other NAM weather variables such as

air temperature, total cloud cover and height at planetary boundary layer were included as predictors

for the machine learning models. Eight temporal encodings (four representing the reference time of

the observation, four representing the target hour offset from the reference time) depicting the time

of day and time of year were included as well.

Using each of these features as predictors, machine learning models such as Least-Squares Linear

Regression (LSLR), k-Nearest Neighbors (KNN), Support Vector Regression (SVR), Decision Trees

(DT), Random Forests (RF) and Extreme Gradient Boosted Trees (XGBT) were utilized towards

post-processing the solar irradiance from each of the solar arrays. The trivial 24-hour persistence

models described in Chapter 3 were used as a baseline for this set of experiments as well. For

recording the performance of these models, evaluation metrics such as mean absolute error (MAE),

coefficient of determination (R2) and Pearson’s correlation coefficient (r) were used.

4.4 RESULTS AND DISCUSSION

Assessing Effect of Multi-Model Blending Approaches

In this chapter, the effectiveness of the multi-model blending approaches, i.e. methodologies

which combine the NAM Forecast System with the empirical solar radiation models was assessed.

Firstly, the performance of the random forests algorithm was compared by taking three versions of

weather data as input:

• GHI from NAM Forecast System

• adjusted GHI, from blending NAM Forecast System with Clear-Sky Scaling technique

(adjusted GHINAM+CS)

• adjusted GHI, from blending NAM Forecast System with Liu-Jordan model

(adjusted GHINAM+LJ)

In Table 8, the performance of these predictive models is reported as methodologies I, II and
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III respectively for each of the dual-axis tracking, fixed-axis and single-axis tracking solar arrays.

To enable a smooth comparison with the results reported in chapter 3, and also with the model

results from other literature, evaluation metrics such as mean absolute error (MAE), coefficient of

determination (R2) and Pearson’s correlation coefficient (r) are reported. The evaluation scheme

from Chapter 3, in which the averaged results over 6-hour partitions in the forecast horizon, and the

averaged results over the entire forecast horizon is reported, is continued in this chapter too. Both

R2 and r over a forecast horizon are computed in a similar fashion as well.

Random forests utilizing adjusted GHINAM+CS performed the best, improving upon those using

GHINAM by 4.95%, 4.53% and 4.12% for the dual-axis tracking, fixed axis and single-axis tracking

solar arrays respectively. An averaged MAE of 80.61 W/m2, 49.32 W/m2 and 67.52 W/m2 over the

entire forecast horizon was reported for each of the solar arrays. An improvement was observed for

methodology III as well, in which adjusted GHINAM+LJ was utilized. Using such a weather forecast

dataset resulted in a decrease in MAE by 4.17%, 4.14% and 3.62% respectively, with an MAE of

81.27 W/m2, 49.52 W/m2 and 67.52 W/m2 for the solar arrays.

Table 8: Evaluating effect of multi-model blending approaches on irradiance observations from
dual-axis tracking, fixed-axis and single-axis tracking solar arrays, using random forests algorithm:
Methodology I - Using GHI from NAM Forecast System; Methodology II - GHI from blending NAM
Forecast System and Clear-Sky Scaling; Methodology III - GHI from blending NAM Forecast System
and Liu-Jordan.

Metric Horizon Dual-Axis Tracking Fixed-Axis Single-Axis Tracking
I II III I II III I II III

MAE

1− 6 77.57 75.95 76.13 48.12 47.31 46.88 66.07 64.85 64.96
6− 12 86.97 83.45 83.78 52.5 51.23 51.46 72.04 69.73 69.61
12− 18 86.62 80.43 81.05 53.13 49.42 49.89 71.04 66.1 66.79
18− 24 88.06 82.61 84.14 52.87 49.33 49.85 72.52 69.4 70.13
Overall 84.81 80.61 81.27 51.66 49.32 49.52 70.42 67.52 67.87

R2

1 - 6 0.86 0.86 0.86 0.91 0.91 0.91 0.87 0.87 0.87
6− 12 0.83 0.84 0.83 0.89 0.89 0.89 0.85 0.85 0.85
12 - 18 0.83 0.84 0.84 0.89 0.9 0.89 0.85 0.87 0.86
18 - 24 0.82 0.84 0.83 0.88 0.9 0.89 0.85 0.86 0.86
Overall 0.83 0.84 0.84 0.89 0.9 0.9 0.86 0.86 0.86

r

1 - 6 0.93 0.93 0.93 0.95 0.95 0.95 0.94 0.94 0.93
6− 12 0.91 0.91 0.91 0.94 0.94 0.94 0.92 0.92 0.92
12 - 18 0.91 0.92 0.92 0.94 0.95 0.95 0.93 0.93 0.93
18 - 24 0.91 0.92 0.91 0.94 0.95 0.95 0.92 0.93 0.93
Overall 0.91 0.92 0.92 0.94 0.95 0.95 0.93 0.93 0.93

Relative
Imp. in
MAE (%)

Overall — 4.95% 4.17% — 4.53% 4.14% — 4.12% 3.62%
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For the next set of experiments, the random forests algorithm was combined with the input-

selection scheme described in 3.2. This resulted in three versions of input data for the models, in

which NAM weather variables such as air temperature, height at planetary boundary layer and total

cloud cover were utilized along with the three variants of GHI described earlier. Select feature pro-

jections were chosen for each of these meteorological parameters in the predictive models, depending

on the target hour offset in the forecast horizon. The results from each of these methodologies is

described under I, II and III in Table 9.

It was observed that both the model-blending approaches observed a slight deterioration in

performance. The methodology blending NAM Forecast System with Clear-Sky Scaling technique

recorded an MAE of 72.57 W/m2, 44.91 W/m2 and 63.56 W/m2 for the dual-axis tracking, fixed-

axis and single-axis tracking solar arrays respectively. Meanwhile, combining the NAM Forecast

System with Liu-Jordan model recorded an MAE of 72.74 W/m2, 45.25 W/m2 and 63.97 W/m2

for each of the solar arrays.

Table 9: Evaluating effect of multi-model blending approaches on irradiance predictions along
dual-axis tracking, fixed-axis and single-axis tracking solar arrays, using random forests algorithm:
Methodology I - Using input-selected NAM Forecast System; Methodology II - Blending input-
selected NAM Forecast System and Clear-Sky Scaling; Methodology III - Blending input-selected
NAM Forecast System and Liu-Jordan.

Metric Horizon Dual-Axis Tracking Fixed-Axis Single-Axis Tracking
I II III I II III I II III

MAE

1 - 6 68.5 70.11 70.56 42.26 42.87 43.34 60.5 61.53 62.11
6− 12 72.55 72.82 73.05 45.49 45.16 45.37 63.98 63.88 64.41
12 - 18 70.65 72.59 72.71 44.75 45.22 45.22 62.75 63.67 63.38
18 - 24 74.97 74.77 74.66 46.65 46.39 47.06 66.34 65.15 65.98
Overall 71.67 72.57 72.74 44.79 44.91 45.25 63.39 63.56 63.97

R2

1 - 6 0.88 0.88 0.88 0.92 0.92 0.92 0.89 0.89 0.89
6− 12 0.87 0.87 0.87 0.91 0.91 0.91 0.87 0.87 0.87
12 - 18 0.87 0.87 0.87 0.91 0.91 0.91 0.88 0.88 0.88
18 - 24 0.86 0.86 0.86 0.9 0.91 0.9 0.87 0.87 0.87
Overall 0.87 0.87 0.87 0.91 0.91 0.91 0.88 0.88 0.88

r

1 - 6 0.94 0.94 0.94 0.96 0.96 0.96 0.94 0.94 0.94
6− 12 0.93 0.93 0.93 0.95 0.96 0.95 0.93 0.93 0.93
12 - 18 0.93 0.93 0.93 0.95 0.96 0.96 0.94 0.94 0.94
18 - 24 0.93 0.93 0.93 0.95 0.95 0.95 0.93 0.93 0.93
Overall 0.93 0.93 0.93 0.95 0.96 0.96 0.94 0.94 0.94

In general, the addition of weather variables has shown to incorporate site-specific information

into the predictive models. In Chapter 3, the selective picking of feature projections of NAM weather

variables in the forecast horizon improved the performance of the predictive models considerably.

49



A similar improvement in performance was expected by including additional weather data with the

model-blended GHI as well. However, this wasn’t the case. This can possibly be attributed to the

misidentification of clear-sky conditions by clear-sky index and clearness index respectively. Such a

misidentification could have led to an adjustment in GHI, where it wasn’t needed.

Performance Evaluation for Predictive Modeling using Clear-Sky Index

In this series of experiments, meteorological variables including relevant NAM weather variables

and clear-sky index was utilized. The machine learning models were trained on such weather data

corresponding to 2017, and evaluated against that corresponding to 2018. For the dual-axis tracking

solar array, all the models performed better than the baseline t− 24 persistence models, which was

expected. Random forests performed the best, recording an MAE of 79.58 W/m2. However, this was

worse in comparison to the performance of this model utilizing input-selected NAM forecast data (as

in Table 2), for which an MAE of 72.63 W/m2 was observed. In addition, a considerable degradation

in performance was observed in the performance of support vector regression, the MAE of which

increased from 73.43 W/m2 to 83.2 W/m2, and for k-nearest neighbors, whose MAE increased from

73.02 W/m2 to 98.52 W/m2.

Table 10: Evaluating performance of predictive models using Clear-Sky Index, for irradiance pre-
dictions along dual-axis tracking solar array.

Metric Horizon PER LSLR SVR KNN DT RF XGBT

MAE

1− 6 153.32 119.41 80.21 99.59 75.96 78.52 78.52
7− 12 153.91 134.82 82.3 94.59 79.9 77.8 79.98
13− 18 154.16 118.45 84.08 98.35 82.29 80.44 80.63
19− 24 161.43 134.98 86.19 101.54 83.76 81.55 81.36
Overall 155.71 126.92 83.2 98.52 80.48 79.58 80.12

R2

1− 6 0.46 0.82 0.87 0.71 0.86 0.86 0.86
7− 12 0.45 0.78 0.86 0.74 0.85 0.86 0.85
13− 18 0.45 0.82 0.86 0.72 0.84 0.85 0.85
19− 24 0.41 0.76 0.84 0.71 0.84 0.85 0.85
Overall 0.44 0.79 0.85 0.72 0.85 0.85 0.85

r

1− 6 0.73 0.91 0.93 0.86 0.93 0.93 0.93
7− 12 0.73 0.88 0.93 0.87 0.92 0.93 0.92
13− 18 0.73 0.91 0.93 0.86 0.92 0.92 0.92
19− 24 0.71 0.87 0.92 0.85 0.91 0.92 0.92
Overall 0.72 0.89 0.93 0.86 0.92 0.93 0.92

k-Nearest Neighbors algorithm does not make any assumptions about the distribution of the

data. In this methodology, the feature projections corresponding to GHI are replaced with those
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of clear-sky index, which have a lesser bias and variance as compared to the former. Thus, a more

rigorous cross-validated grid search can be performed to find a better set of hyperparameters. Doing

so might improve the model complexity and help in attaining a better model fit.

The decrease in performance of support vector regression can posssibly be attributed to the C

hyperparameter, which represents the strength of regularization. With the change in data distribu-

tion due to the substitution of GHI feature projections with those corresponding to clear-sky index,

the decrease in bias should be compensated with an increase in C. Doing so would decrease the

regularization penalty on the predictive models, and might improve the performance. This was not

accounted for during the training of the predictive models using clear-sky index.

Table 11: Evaluating performance of predictive models using Clear-Sky Index, for irradiance pre-
dictions along fixed-axis solar array.

Metric Horizon PER LSLR SVR KNN DT RF XGBT

MAE

1− 6 111.23 76.68 50.51 59.50 48.07 48.25 50.62
7− 12 111.51 84.61 52.89 60.35 52.34 47.76 51.36
13− 18 111.97 81.33 54.87 64.85 53.68 49.55 50.92
19− 24 117.15 88.48 56.06 63.35 53.55 51.17 51.87
Overall 112.96 82.77 53.58 62.01 51.91 49.18 51.20

R2

1− 6 0.59 0.88 0.91 0.83 0.90 0.91 0.90
7− 12 0.58 0.86 0.90 0.82 0.89 0.90 0.89
13− 18 0.58 0.87 0.90 0.80 0.89 0.90 0.90
19− 24 0.55 0.83 0.88 0.81 0.88 0.90 0.89
Overall 0.58 0.86 0.90 0.81 0.89 0.90 0.90

r

1− 6 0.79 0.94 0.96 0.91 0.95 0.96 0.95
7− 12 0.79 0.93 0.95 0.91 0.95 0.95 0.95
13− 18 0.79 0.93 0.95 0.90 0.94 0.95 0.95
19− 24 0.78 0.91 0.94 0.90 0.94 0.95 0.95
Overall 0.79 0.93 0.95 0.90 0.94 0.95 0.95

Similar trends were observed for the predictions along fixed-axis and single-axis tracking solar

arrays as well. Random forests performed the best, recording an MAE of 49.18 W/m2 and 69.98

W/m2 respectively for each of the solar arrays. This performance was worse when compared with the

best accuracy obtained by machine learning models utilizing input-selected NAM weather dataset

(as in Table 3 and Table 4). There, an MAE of 44.94 W/m2 and 63.60 W/m2 was recorded for

both the solar arrays respectively. Though the overall performance of predictive models using clear-

sky index worsened, in order to examine the cyclicity-capturing ability of these models, a stratified

diurnal and seasonal analysis of the performance of the predictive models with respect to target

irradiance predictions on the fixed-axis solar array is performed.
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Table 12: Evaluating performance of predictive models using Clear-Sky Index, for irradiance pre-
dictions along single-axis tracking solar array.

Metric Horizon PER LSLR SVR KNN DT RF XGBT

MAE

1− 6 128.64 94.40 68.81 85.56 68.16 69.6 70.55
7− 12 128.97 107.51 72.16 81.62 72.58 68.46 69.09
13− 18 129.25 98.92 72.48 87.56 72.49 69.39 69.50
19− 24 135.35 102.31 73.88 86.56 74.25 72.45 72.84
Overall 130.55 100.78 71.83 85.33 71.87 69.98 70.50

R2

1− 6 0.53 0.85 0.87 0.75 0.86 0.87 0.86
7− 12 0.53 0.81 0.86 0.77 0.85 0.86 0.86
13− 18 0.53 0.84 0.86 0.74 0.85 0.86 0.86
19− 24 0.49 0.83 0.86 0.75 0.85 0.86 0.86
Overall 0.52 0.82 0.85 0.74 0.84 0.85 0.85

r

1− 6 0.77 0.92 0.94 0.88 0.93 0.93 0.93
7− 12 0.77 0.90 0.93 0.89 0.92 0.93 0.92
13− 18 0.75 0.92 0.93 0.87 0.92 0.93 0.93
19− 24 0.75 0.91 0.92 0.87 0.92 0.92 0.92
Overall 0.76 0.91 0.93 0.87 0.92 0.93 0.93

Stratified Diurnal and Seasonal Analysis of Performance

The stratified diurnal analysis conducted in Chapter 3 was extended to the predictive models

utilizing clear-sky index as well. In Fig. 12, the performance of the machine learning models for all

target hours in the forecast horizon, were plotted for each of the 00h, 06h, 12h and 18h UTC NAM

forecasts individually. The time of day was presumed to be between 6 A.M and 6 P.M at the target

location, and was highlighted in yellow. In general, as was expected, it was observed that most of

the models were able to detect the period of darkness, i.e. night-time relatively well.

For the period of day, the more sophisticated machine learning algorithms like k-nearest neigh-

bors, support vector regression and random forests performed better than decision trees, and under-

standably, linear regression. However, interestingly enough, extreme gradient boosted trees failed to

capture day-time well for all the NAM forecasts. This can possibly be attributed to a lesser number

of decision trees being used in the ensemble technique. In addition, the diurnal performance of the

best performing random forests with respect to its performance when utilizing the input-selected

NAM weather forecast data (as shown in Fig. 6) can be summarized in the following way:

• performed worse for all the target hours in the day-time for the 00h NAM forecasts

• performed better for the target hours 8 through 12 in the forecast horizon, for the 06h NAM

forecasts
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Figure 12: Stratified diurnal analysis of day-ahead irradiance predictions using Clear-Sky Index for
fixed-axis solar array: (left-top) 00h NAM forecasts, (right-top) 16h NAM forecasts, (left-bottom)
12h NAM forecasts, (right-bottom) 18h NAM forecasts. Local time of day (6A.M to 6P.M) at the
target location for each of the NAM forecasts is indicated in light yellow.

• performed better for the target hours 22 through 24 in the forecast horizon, for the 12h NAM

forecasts

• performed worse for all the target hours in the day-time for the 18h NAM forecasts

The target location, i.e. Athens, Georgia is -5.00 hours with respect to UTC in the standard

time zone, and -4.00 hours with respect to UTC during daylight saving time. To be able to conduct

a uniform analysis of the individual NAM forecasts, it was assumed that the local time at the target

location is constantly -4.00 hours relative to UTC.

Based on this assumption, as was done in Chapter 3, the performance of different predictive

models was compared by analyzing their residuals corresponding to the target hour in the forecast

horizon, representing noon, i.e. 12 P.M locally at Athens, Georgia. In Fig. 13, box-and-whisker
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plots were drawn corresponding to the residuals from each of the predictive models, so as to study

their distributional characteristics. In the figure, the size of the box-plots for most of the models is

comparable. In addition, the spread of the residuals beyond the whiskers is minimum for random

forests, indicating that it is the better machine learning technique for this variant of weather data.

Figure 13: Comparison of box-and-whisker plots of residuals from different predictive models utilizing
clear-sky index at 12 P.M local time, i.e. noon.

Furthermore, a stratified seasonal analysis was conducted for NAM forecasts. It was extended

to the 12h and 18h NAM forecasts, which, under the above assumption, represent 8 A.M and 12

P.M locally. Based on the general seasonal trends in the target location i.e. Athens, Georgia, the

periods in a year were divided into four seasons: summer (May - July), autumn (August - October),

winter (November - January) and spring (February - April).

In Table 13, the performance of the better-performing random forests across each of these

seasons was compared. The MAE corresponding to predictions of the models utilizing NAM data

involving both GHI and clear-sky index was included. It can be observed that the predictive models

using clear-sky index performed poorly for both the 12h and 18h NAM forecasts across all the

seasons. Moreover, as was noted earlier in the diurnal analysis, the 18h NAM forecasts performed

poorly for all the target hours in the forecast horizon. Owing to the relatively poor performance of
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Table 13: Comparing seasonal performance (in MAE) of random forests using input-selected NAM
data with GHI (left) and clear-sky index (right) for 12h, 18h NAM forecasts.

Model Hour NAM using GHI / NAM using Clear-Sky Index
Summer Autumn Winter Spring

LSLR 12h 60.21 / 67.41 86.35 / 106.9 99.71 / 121.9 119.4 / 138.1
18h 84.93 / 112.9 95.13 / 121.0 70.82 / 91.61 38.68 / 49.09

SVR 12h 46.95 / 64.11 64.01 / 74.95 72.02 / 88.05 84.52 / 102.6
18h 76.11 / 102.4 78.75 / 94.32 49.03 / 60.49 12.39 / 19.49

DT 12h 74.60 / 90.51 104.4 / 107.9 101.8 / 116.4 128.3 / 171.6
18h 110.8 / 127.7 109.2 / 124.8 57.45 / 85.56 24.34 / 36.59

KNN 12h 54.16 / 58.54 81.13 / 83.87 89.93 / 90.19 98.44 / 87.89
18h 87.39 / 102.5 87.52 / 102.4 62.32 / 74.12 16.25 / 18.76

RF 12h 56.15 / 75.93 82.91 / 101.9 95.77 / 114.0 107.5 / 123.0
18h 80.52 / 139.3 81.73 / 119.8 56.84 / 94.25 10.47 / 29.03

XGBT 12h 54.07 / 74.41 86.37 / 98.35 101.1 / 123.3 119.2 / 126.0
18h 80.66 / 134.9 85.68 / 128.1 56.24 / 96.10 10.50 / 27.75

the NAM forecasts involving clear-sky index, as against those involving GHI, it can be concluded

that using the clear-sky index as a predictor in the machine learning models failed to improve the

diurnal and seasonal trend capturing ability of the models.
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CHAPTER 5

CONCLUSION & FUTURE DIRECTIONS

The main purpose of this thesis was to develop machine learning models to effectively predict

surface-level solar irradiance 24 hours into the future at multiple fixed and tracking solar arrays

located at a solar farm near the University of Georgia. Towards this end, firstly, a study was

conducted where the work done by Jones [58] was replicated. An input-selection scheme was designed

to weed out the less relevant weather variables, and corresponding feature projections. This scheme

helped in improving the performance (mean absolute error, MAE) in the replication study by

19.05%, 19.68% and 10.65% (average across machine learning models) for the dual-axis tracking,

fixed-axis and single-axis tracking solar arrays respectively. A best performance, i.e. least MAE of

72.63 W/m2, 44.94 W/m2 and 63.60 W/m2 was recorded for each of the arrays.

The effect of geographic expansion, i.e. including weather forecasts around the target location

was evaluated. This was extended to 3 x 3 and 5 x 5 geo shapes, by including the input-selected NAM

weather forecasts from these additional cells. It was observed that an improvement in performance

(marginal) with an increase in the geo shape was seen for only the random forests algorithm. By

utilizing the weather forecast data corresponding to the 5 x 5 geo shape as input for this machine

learning technique, an MAE of 69.38 W/m2, 43.62 W/m2 and 61.99 W/m2 was recorded for the

dual-axis tracking, fixed-axis and single-axis tracking solar arrays.

A few theory-driven bias-correction methodologies (multi-model blending approaches) were ex-

plored in Chapter 4. The motivation behind these approaches was to selectively correct the bias

in global horizontal irradiance (GHI) reported in literature, by identifying the clear-sky conditions

effectively. For this purpose, measures such as clear-sky index and clearness index were used de-

pending on the empirical solar radiation model that the NAM Forecast System was being combined

with. An exhaustive grid search was performed to identify a threshold for these measures, based on

which the clear-sky conditions could be distinguished from cloudy-sky conditions easily. Based on

these thresholds, the GHI weather variable was selectively corrected for the 18h NAM forecasts, for

which an over-prediction of this parameter was observed. This was carried out by substituting the
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GHI for such observations with the arithmetic mean of GHI from the NAM Forecast System and

the corresponding empirical solar radiation model.

Such a bias-correction scheme resulted in an improvement in performance for the predictive

models using the random forests technique, utilizing adjusted GHI from the model-blending tech-

niques, with respect to just using the GHI from NAM Forecast System. A reduction in MAE

by 4.95%, 4.53% and 4.12% for the dual-axis tracking, fixed axis and single-axis tracking solar ar-

rays was observed for the model-blending methodology combining the NAM Forecast System and

Clear-Sky Scaling technique, over using GHI from just the NAM Forecast System. Additionally,

the model-blending methodology combining the NAM Forecast System with the Liu-Jordan model

reduced the MAE by 4.17%, 4.14% and 3.62% for each of the solar arrays.

To further evaluate the model-blending approach, other NAM weather variables which were

identified to be relevant, i.e. air temperature, height at planetary boundary layer and total cloud

cover were included along with the adjusted GHI (obtained through the model-blending approaches).

Select feature projections were chosen for each of the weather variables depending on the target hour

offset in the forecast horizon, in line with the input-selection scheme described in 3.2. However,

it was observed that such an input-selection scheme slightly depreciated the performance of the

model-blending approaches combining the NAM Forecast System with both Clear-Sky Scaling and

Liu-Jordan techniques.

The lack of improvement possibly indicates an inability to adequately identify sky conditions

effectively, which in turn prevents accurate bias correction. In this work, the Ineichen model was

used to determine the clear-sky GHI. It would be interesting to see if utilizing other empirical clear-

sky models for this purpose will improve the ability of the clear-sky index measure to identify the sky

conditions, and in turn, improve model performance. This also leaves a scope for exploring superior

techniques for distinguishing between sky conditions, and in turn, for identifying the over-prediction

in the GHI weather variable.

In the theory-based bias correction methodology described in this work, a simple bias-correction

function was used, wherein, the GHI from the NAM Forecast System was substituted with the

arithmetic mean of GHI from the NAM Forecast System and the corresponding empirical solar

radiation model. This can be improved upon by subjecting both of these GHI estimates to statistical

post-processing, and determining a superior bias-correction function. This can be investigated in

future work.
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By utilizing the meteorological projections in NAM Forecast System, clear-sky index was pro-

jected into the future as well. Predictive models were developed utilizing this measure rather than

GHI, in order to exploit it’s presumed ability to capture seasonality. A best performance, i.e. least

MAE of 79.58 W/m2, 49.18 W/m2 and 69.98 W/m2 was recorded for the dual-axis tracking, fixed-

axis and single-axis tracking solar arrays respectively. In order to assess the seasonality-capturing

ability, a stratified seasonal analysis was performed, where the performance of individual forecasts

across seasons (summer, spring, winter, autumn) was compared with that of the models utilizing

GHI. It was observed that the former performed poorly across seasons, when compared to that

of the latter. Consequently, it can be concluded that the presumed cyclicity-capturing ability of

clear-sky index did not translate into improving the performance of the predictive models. It would

be interesting to explore other clear-sky models in literature towards determining this measure, and

reviewing their performance in such a framework. This can be looked into in further work.
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APPENDIX A

MODEL HYPERPARAMETERS

A.1 1 x 1 Grid Size

A.1.1 Dual-Axis Tracking Solar Array

• Support Vector Regression

– C : 1000, epsilon : 1, gamma : 0.01

• Decision Tree

– criterion : ’mae’, splitter : ’random’, max_depth : 10, min_impurity_decrease : 0.25

• k-Nearest Neighbors

– n_neighbors : 11, leaf_size : 20, p : 1

• Random Forests

– n_estimators : 650, max_depth : 20, min_impurity_decrease : 0.1

• Extreme Gradient Boosted Trees

– n_estimators : 700, max_depth : 5, learning_rate : 0.01

A.1.2 Fixed-Axis Solar Array

• Support Vector Regression

– C : 500, epsilon : 1, gamma : 0.01

• Decision Tree

– criterion : ’mae’, splitter : ’random’, max_depth : 10, min_impurity_decrease : 0.25

• k-Nearest Neighbors

– n_neighbors : 11, leaf_size : 25, p : 1

• Random Forests

– n_estimators : 500, max_depth : 40, min_impurity_decrease : 0.2

• Extreme Gradient Boosted Trees

– n_estimators : 600, max_depth : 5, learning_rate : 0.01
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A.1.3 Single-Axis Tracking Solar Array

• Support Vector Regression

– C : 500, epsilon : 1, gamma : 0.01

• Decision Tree

– criterion ’mae’: , splitter : ’random’, max_depth : 10, min_impurity_decrease : 0.25

• k-Nearest Neighbors

– n_neighbors : 11, leaf_size : 5, p : 1

• Random Forests

– n_estimators : 300, max_depth : 20, min_impurity_decrease : 0.1

• Extreme Gradient Boosted Trees

– n_estimators : 600, max_depth : 5, learning_rate : 0.01

A.2 3 x 3 Grid Size

A.2.1 Dual-Axis Tracking Solar Array

• Support Vector Regression

– C : 500, epsilon : 2, gamma : 0.01

• Decision Tree

– criterion : ’mae’, splitter : ’random’, max_depth : 10, min_impurity_decrease : 0.25

• k-Nearest Neighbors

– n_neighbors : 9, leaf_size : 40, p : 1

• Random Forests

– n_estimators : 500, max_depth : 20, min_impurity_decrease : 0.2

• Extreme Gradient Boosted Trees

– n_estimators : 550, max_depth : 5, learning_rate : 0.01

A.2.2 Fixed-Axis Solar Array

• Support Vector Regression

– C : 500, epsilon : 3, gamma : 0.01

• Decision Tree

– criterion : ’mae’, splitter : ’random’, max_depth : 10, min_impurity_decrease : 0.25
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• k-Nearest Neighbors

– n_neighbors : 9, leaf_size : 60, p : 1

• Random Forests

– n_estimators : 550, max_depth : 40, min_impurity_decrease : 0.1

• Extreme Gradient Boosted Trees

– n_estimators : 700, max_depth : 5, learning_rate : 0.01

A.2.3 Single-Axis Tracking Solar Array

• Support Vector Regression

– C : 1000, epsilon : 1, gamma : 0.01

• Decision Tree

– criterion : ’mae’, splitter : ’random’, max_depth : 10, min_impurity_decrease : 0.25

• k-Nearest Neighbors

– n_neighbors : 9, leaf_size : 60, p : 1

• Random Forests

– n_estimators : 300, max_depth : 20, min_impurity_decrease : 0.1

• Extreme Gradient Boosted Trees

– n_estimators : 600, max_depth : 5, learning_rate : 0.01

A.3 5 x 5 Grid Size

A.3.1 Dual-Axis Tracking Solar Array

• Support Vector Regression

– C : 500, epsilon : 3, gamma : 0.01

• Decision Tree

– criterion : ’mae’, splitter : ’random’, max_depth : 10, min_impurity_decrease : 0.25

• k-Nearest Neighbors

– n_neighbors : 9, leaf_size : 30, p : 1

• Random Forests

– n_estimators : 550, max_depth : 60, min_impurity_decrease : 0.4

• Extreme Gradient Boosted Trees

– n_estimators : 200, max_depth : 5, learning_rate : 0.01
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A.3.2 Fixed-Axis Solar Array

• Support Vector Regression

– C : 500, epsilon : 2, gamma : 0.01

• Decision Tree

– criterion : ’mae’, splitter : ’random’, max_depth : 10, min_impurity_decrease : 0.25

• k-Nearest Neighbors

– n_neighbors : 9, leaf_size : 20, p : 1

• Random Forests

– n_estimators : 700, max_depth : 50, min_impurity_decrease : 0.3

• Extreme Gradient Boosted Trees

– n_estimators : 200, max_depth : 5, learning_rate : 0.01

A.3.3 Single-Axis Tracking Solar Array

• Support Vector Regression

– C : 1000, epsilon : 2, gamma : 0.01

• Decision Tree

– criterion : ’mae’, splitter : ’random’, max_depth : 10, min_impurity_decrease : 0.25

• k-Nearest Neighbors

– n_neighbors : 10, leaf_size : 20, p : 1

• Random Forests

– n_estimators : 300, max_depth : 20, min_impurity_decrease : 0.1

• Extreme Gradient Boosted Trees

– n_estimators : 200, max_depth : 5, learning_rate : 0.01
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